Jeju Magma-Seawater Inhibits α-MSH-Induced Melanogenesis via CaMKKβ-AMPK Signaling Pathways in B16F10 Melanoma Cells
Abstract
:1. Introduction
2. Results
2.1. JMS Inhibits Melanogenesis in B16F10 Melanoma Cells
2.2. JMS Inhibits Melanogenesis via Activation of AMPK
2.3. JMS Activates AMPK in a CaMKKβ-Dependent Manner
2.4. JMS Inhibits Melanogenesis by Suppressing α-MSH-Induced PKA and MAPK Signaling
2.5. JMS Treatment-Activated AMPK Inhibits α-MSH-Induced PKA and MAPK Signaling
3. Discussion
4. Materials and Methods
4.1. Preparing Cell Culture with JMS
4.2. Cell Viability Assay
4.3. Stable cell Transfection
4.4. Measurement of Melanin Contents and Secretion
4.5. Intracellular Tyrosinase Activity
4.6. Antibodies and Reagents
4.7. Westernblot Analysis
4.8. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
4.9. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Brenner, M.; Hearing, V.J. The protective role of melanin against uv damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [Green Version]
- D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Videira, I.F.; Moura, D.F.; Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 2013, 88, 76–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.Y.; Kosmadaki, M.; Yaar, M.; Gilchrest, B.A. Cellular mechanisms regulating human melanogenesis. Cell. Mol. Life Sci. 2009, 66, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Tobin, D.J.; Shibahara, S.; Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004, 84, 1155–1228. [Google Scholar] [CrossRef] [PubMed]
- Pucci, M.; Pasquariello, N.; Battista, N.; Di Tommaso, M.; Rapino, C.; Fezza, F.; Zuccolo, M.; Jourdain, R.; Finazzi Agro, A.; Breton, L.; et al. Endocannabinoids stimulate human melanogenesis via type-1 cannabinoid receptor. J. Biol. Chem. 2012, 287, 15466–15478. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.C.; Kim, S.; Kim, J.H.; Lee, G.S.; Lee, J.N.; Lee, N.H.; Hyun, C.G. Pratol, an o-methylated flavone, induces melanogenesis in b16f10 melanoma cells via p-p38 and p-jnk upregulation. Molecules 2017, 22, 1704. [Google Scholar] [CrossRef]
- Jang, J.Y.; Kim, H.N.; Kim, Y.R.; Choi, Y.H.; Kim, B.W.; Shin, H.K.; Choi, B.T. Aqueous fraction from cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in b16f10 cells. J. Ethnopharmacol. 2012, 141, 338–344. [Google Scholar] [CrossRef]
- Lee, A.; Kim, J.Y.; Heo, J.; Cho, D.H.; Kim, H.S.; An, I.S.; An, S.; Bae, S. The inhibition of melanogenesis via the pka and erk signaling pathways by chlamydomonas reinhardtii extract in b16f10 melanoma cells and artificial human skin equivalents. J. Microbiol. Biotechnol. 2018, 28, 2121–2132. [Google Scholar] [CrossRef]
- Kim, B.H.; Hong, S.N.; Ye, S.K.; Park, J.Y. Evaluation and optimization of the anti-melanogenic activity of 1-(2-cyclohexylmethoxy-6-hydroxy-phenyl)-3-(4-hydroxymethyl-phenyl)-propenone derivatives. Molecules 2019, 24, 1372. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.C.; Kim, M.J.; Kang, E.Y.; Kim, Y.B.; Kim, B.S.; Park, S.M.; Hyun, C.G. Anti-melanogenic effects of hydroxyectoine via mitf inhibition by jnk, p38, and akt pathways in b16f10 melanoma cells. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef]
- Del Bino, S.; Duval, C.; Bernerd, F. Clinical and biological characterization of skin pigmentation diversity and its consequences on uv impact. Int. J. Mol. Sci. 2018, 19, 2668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadet, J.; Douki, T. Formation of uv-induced DNA damage contributing to skin cancer development. Photochem. Photobiol. Sci. 2018, 17, 1816–1841. [Google Scholar] [CrossRef]
- Pfeifer, G.P.; Besaratinia, A. Uv wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem. Photobiol. Sci. 2012, 11, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Vila, M. Neuromelanin, aging, and neuronal vulnerability in parkinson’s disease. Mov. Disord. 2019, 34, 1440–1451. [Google Scholar] [CrossRef] [PubMed]
- Vontzalidou, A.; Zoidis, G.; Chaita, E.; Makropoulou, M.; Aligiannis, N.; Lambrinidis, G.; Mikros, E.; Skaltsounis, A.L. Design, synthesis and molecular simulation studies of dihydrostilbene derivatives as potent tyrosinase inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 5523–5526. [Google Scholar] [CrossRef]
- Cavalieri, E.L.; Li, K.M.; Balu, N.; Saeed, M.; Devanesan, P.; Higginbotham, S.; Zhao, J.; Gross, M.L.; Rogan, E.G. Catechol ortho-quinones: The electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases. Carcinogenesis 2002, 23, 1071–1077. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T. Tyrosinase-expressing neuronal cell line as in vitro model of parkinson’s disease. Int. J. Mol. Sci. 2010, 11, 1082. [Google Scholar] [CrossRef] [Green Version]
- Tessari, I.; Bisaglia, M.; Valle, F.; Samori, B.; Bergantino, E.; Mammi, S.; Bubacco, L. The reaction of alpha-synuclein with tyrosinase: Possible implications for parkinson disease. J. Biol. Chem. 2008, 283, 16808–16817. [Google Scholar] [CrossRef] [Green Version]
- Ha, B.G.; Park, J.E.; Shin, E.J.; Shon, Y.H. Modulation of glucose metabolism by balanced deep-sea water ameliorates hyperglycemia and pancreatic function in streptozotocin-induced diabetic mice. PLoS ONE 2014, 9, e102095. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.T.; Lu, T.Y.; Cheng, M.C.; Lu, H.C.; Wu, M.F.; Hsu, C.L. Deep sea water improves abnormalities in lipid metabolism through lipolysis and fatty acid oxidation in high-fat diet-induced obese rats. Mar. Drugs 2017, 15, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohd Nani, S.Z.; Majid, F.A.; Jaafar, A.B.; Mahdzir, A.; Musa, M.N. Potential health benefits of deep sea water: A review. Evid. Based Complement. Alternat. Med. 2016, 2016, 6520475. [Google Scholar] [CrossRef] [PubMed]
- Martini, L.A.; Catania, A.S.; Ferreira, S.R. Role of vitamins and minerals in prevention and management of type 2 diabetes mellitus. Nutr. Rev. 2010, 68, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Woo, M.; Noh, J.S.; Kim, M.J.; Song, Y.O.; Lee, H. Magma seawater inhibits hepatic lipid accumulation through suppression of lipogenic enzymes regulated by srebps in thioacetamide-injected rats. Mar. Drugs 2019, 17, 317. [Google Scholar] [CrossRef] [Green Version]
- Noh, J.R.; Gang, G.T.; Kim, Y.H.; Yang, K.J.; Lee, C.H.; Na, O.S.; Kim, G.J.; Oh, W.K.; Lee, Y.D. Desalinated underground seawater of jeju island (korea) improves lipid metabolism in mice fed diets containing high fat and increases antioxidant potential in t-bhp treated hepg2 cells. Nutr. Res. Pract. 2010, 4, 3–10. [Google Scholar] [CrossRef]
- Lee, H.; Suh, I.S.; Woo, M.; Kim, M.J.; Jung, Y.H.; Song, Y.O. Beneficial effects of desalinated magma seawater in ameliorating thioacetamide-induced chronic hepatotoxicity. Biotechnol. Bioproc. E 2019, 24, 126–134. [Google Scholar] [CrossRef]
- Carling, D. Ampk signalling in health and disease. Curr. Opin. Cell Biol. 2017, 45, 31–37. [Google Scholar] [CrossRef]
- Hardie, D.G. Ampk-sensing energy while talking to other signaling pathways. Cell Metab. 2014, 20, 939–952. [Google Scholar] [CrossRef] [Green Version]
- Viollet, B.; Andreelli, F. Amp-activated protein kinase and metabolic control. Handb. Exp. Pharmacol. 2011, 203, 303–330. [Google Scholar]
- Xiao, B.; Sanders, M.J.; Underwood, E.; Heath, R.; Mayer, F.V.; Carmena, D.; Jing, C.; Walker, P.A.; Eccleston, J.F.; Haire, L.F.; et al. Structure of mammalian ampk and its regulation by adp. Nature 2011, 472, 230–233. [Google Scholar] [CrossRef] [Green Version]
- Oakhill, J.S.; Steel, R.; Chen, Z.P.; Scott, J.W.; Ling, N.; Tam, S.; Kemp, B.E. Ampk is a direct adenylate charge-regulated protein kinase. Science 2011, 332, 1433–1435. [Google Scholar] [CrossRef]
- Carling, D.; Sanders, M.J.; Woods, A. The regulation of amp-activated protein kinase by upstream kinases. Int. J. Obes. (London) 2008, 32 (Suppl. S4), S55–S59. [Google Scholar] [CrossRef] [Green Version]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehraiki, A.; Abbe, P.; Cerezo, M.; Rouaud, F.; Regazzetti, C.; Chignon-Sicard, B.; Passeron, T.; Bertolotto, C.; Ballotti, R.; Rocchi, S. Inhibition of melanogenesis by the antidiabetic metformin. J. Investig. Dermatol. 2014, 134, 2589–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.; Nam, S.; Jeong, J.H.; Kim, M.J.; Yang, Y.; Lee, M.S.; Lee, H.G.; Ryu, J.H.; Lim, J.S. Kazinol u inhibits melanogenesis through the inhibition of tyrosinase-related proteins via amp kinase activation. Br. J. Pharmacol. 2019, 176, 737–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fryer, L.G.; Parbu-Patel, A.; Carling, D. Protein kinase inhibitors block the stimulation of the amp-activated protein kinase by 5-amino-4-imidazolecarboxamide riboside. FEBS Lett. 2002, 531, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Cool, B.; Zinker, B.; Chiou, W.; Kifle, L.; Cao, N.; Perham, M.; Dickinson, R.; Adler, A.; Gagne, G.; Iyengar, R.; et al. Identification and characterization of a small molecule ampk activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006, 3, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Sarkozy, M.; Fekete, V.; Szucs, G.; Torok, S.; Szucs, C.; Barkanyi, J.; Varga, Z.V.; Foldesi, I.; Csonka, C.; Konya, C.; et al. Anti-diabetic effect of a preparation of vitamins, minerals and trace elements in diabetic rats: A gender difference. BMC Endocrinol. Disord. 2014, 14, 72. [Google Scholar]
- Houston, M.C. The role of cellular micronutrient analysis, nutraceuticals, vitamins, antioxidants and minerals in the prevention and treatment of hypertension and cardiovascular disease. Ther. Adv. Cardiovasc. Dis. 2010, 4, 165–183. [Google Scholar] [CrossRef]
- Omenn, G.S. Micronutrients (vitamins and minerals) as cancer-preventive agents. IARC Sci. Publ. 1996, 8, 33–45. [Google Scholar]
- Santillo, V.M.; Lowe, F.C. Role of vitamins, minerals and supplements in the prevention and management of prostate cancer. Int. Braz. J. Urol. 2006, 32, 3–14. [Google Scholar] [CrossRef]
- Fenech, M.; Ferguson, L.R. Vitamins/minerals and genomic stability in humans. Mutat. Res. 2001, 475, 1–6. [Google Scholar] [CrossRef]
- Lansdown, A.B. Calcium: A potential central regulator in wound healing in the skin. Wound Repair Regen. 2002, 10, 271–285. [Google Scholar] [CrossRef]
- Schwartz, J.R.; Marsh, R.G.; Draelos, Z.D. Zinc and skin health: Overview of physiology and pharmacology. Dermatol. Surg. 2005, 31 (7 Pt 2), 837–847. [Google Scholar] [CrossRef]
- Borkow, G. Using copper to improve the well-being of the skin. Curr. Chem. Biol. 2014, 8, 89–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwalfenberg, G.K.; Genuis, S.J. The importance of magnesium in clinical healthcare. Scientifica (Cairo) 2017, 2017, 4179326. [Google Scholar] [CrossRef] [PubMed]
- Borgdorff, V.; Rix, U.; Winter, G.E.; Gridling, M.; Muller, A.C.; Breitwieser, F.P.; Wagner, C.; Colinge, J.; Bennett, K.L.; Superti-Furga, G.; et al. A chemical biology approach identifies ampk as a modulator of melanoma oncogene mitf. Oncogene 2014, 33, 2531–2539. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, Y.; Liu, X.; Dagda, R.K.; Zhang, Y. How ampk and pka interplay to regulate mitochondrial function and survival in models of ischemia and diabetes. Oxid. Med. Cell. Longev. 2017, 2017, 4353510. [Google Scholar] [CrossRef] [Green Version]
- Johanns, M.; Lai, Y.C.; Hsu, M.F.; Jacobs, R.; Vertommen, D.; Van Sande, J.; Dumont, J.E.; Woods, A.; Carling, D.; Hue, L.; et al. Ampk antagonizes hepatic glucagon-stimulated cyclic amp signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4b. Nat. Commun. 2016, 7, 10856. [Google Scholar] [CrossRef]
- Miller, R.A.; Chu, Q.; Xie, J.; Foretz, M.; Viollet, B.; Birnbaum, M.J. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic amp. Nature 2013, 494, 256–260. [Google Scholar] [CrossRef] [Green Version]
- Nagata, D.; Takeda, R.; Sata, M.; Satonaka, H.; Suzuki, E.; Nagano, T.; Hirata, Y. Amp-activated protein kinase inhibits angiotensin ii-stimulated vascular smooth muscle cell proliferation. Circulation 2004, 110, 444–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Yoon, M.Y.; Choi, S.L.; Kang, I.; Kim, S.S.; Kim, Y.S.; Choi, Y.K.; Ha, J. Effects of stimulation of amp-activated protein kinase on insulin-like growth factor 1- and epidermal growth factor-dependent extracellular signal-regulated kinase pathway. J. Biol. Chem. 2001, 276, 19102–19110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhao, L.; Sherchan, P.; Ding, Y.; Yu, J.; Nowrangi, D.; Tang, J.; Xia, Y.; Zhang, J.H. Activation of melanocortin receptor 4 with ro27-3225 attenuates neuroinflammation through ampk/jnk/p38 mapk pathway after intracerebral hemorrhage in mice. J. Neuroinflamm. 2018, 15, 106. [Google Scholar] [CrossRef] [PubMed]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaidi, K.U.; Ali, S.A.; Ali, A.; Naaz, I. Natural tyrosinase inhibitors: Role of herbals in the treatment of hyperpigmentary disorders. Mini Rev. Med. Chem. 2019, 19, 796–808. [Google Scholar] [CrossRef] [PubMed]
- Bonesi, M.; Xiao, J.; Tundis, R.; Aiello, F.; Sicari, V.; Loizzo, M.R. Advances in the tyrosinase inhibitors from plant source. Curr. Med. Chem. 2019, 26, 3279–3299. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; Lee, J.; Kim, Y.-J.; Hoang, D.H.; Choe, W.; Kang, I.; Kim, S.S.; Ha, J. Jeju Magma-Seawater Inhibits α-MSH-Induced Melanogenesis via CaMKKβ-AMPK Signaling Pathways in B16F10 Melanoma Cells. Mar. Drugs 2020, 18, 473. https://doi.org/10.3390/md18090473
Song M, Lee J, Kim Y-J, Hoang DH, Choe W, Kang I, Kim SS, Ha J. Jeju Magma-Seawater Inhibits α-MSH-Induced Melanogenesis via CaMKKβ-AMPK Signaling Pathways in B16F10 Melanoma Cells. Marine Drugs. 2020; 18(9):473. https://doi.org/10.3390/md18090473
Chicago/Turabian StyleSong, Minhyeok, Jihyun Lee, Young-Joo Kim, Dang Hieu Hoang, Wonchae Choe, Insug Kang, Sung Soo Kim, and Joohun Ha. 2020. "Jeju Magma-Seawater Inhibits α-MSH-Induced Melanogenesis via CaMKKβ-AMPK Signaling Pathways in B16F10 Melanoma Cells" Marine Drugs 18, no. 9: 473. https://doi.org/10.3390/md18090473
APA StyleSong, M., Lee, J., Kim, Y. -J., Hoang, D. H., Choe, W., Kang, I., Kim, S. S., & Ha, J. (2020). Jeju Magma-Seawater Inhibits α-MSH-Induced Melanogenesis via CaMKKβ-AMPK Signaling Pathways in B16F10 Melanoma Cells. Marine Drugs, 18(9), 473. https://doi.org/10.3390/md18090473