Blue-Print Autophagy in 2020: A Critical Review
Abstract
:1. Introduction
1.1. Autophagy as a Biological Process
- Stage 1
- induction: autophagy begins with the stimuli-initiation event (starvation, radiation, drug treatment, etc.).
- Stage 2
- phagophore formation: LC3-I converts to LC3-II via conjugation with phosphatidylethanolamine (PE). This process is called “lipidation”. “Phagophores” (or isolation membranes) are the double-membrane structures, which are growing in the cytosol.
- Stage 3
- autophagosome formation: phagophore engulfs bulk cytoplasm nonspecifically, including entire organelles; or it targets organelle cargos specifically, therefore forming vesicles called “autophagosomes”.
- Stage 4
- docking and fusion with lysosomes: the autophagosome fuses with a lysosome leading to the formation of “autolysosome”.
- Stage 5
- vesicle breakdown and degradation: finally, the sequestered material and organelles are degraded inside the autolysosome by lysosome proteases and recycled for the synthesis of ATP and various macromolecules such as proteins [4].
1.2. Blue-Print Autophagy
1.3. Challenges in Autophagy Monitoring and Results Interpretation
- (a)
- two or more independent methods were used to prove the suggested effect on autophagy;
- (b)
- these methods could clearly distinguish inhibition and activation of autophagy in the biological model used.
2. Marine Compounds with a Validated Autophagy-Modulatory Effect
2.1. Alkaloids
2.2. Macrocyclic Molecules
2.3. Triterpenes
2.4. Other Molecules
Name | Source Organism | Suggested Effect on Autophagy | Effect validated? 1 | Target 2 | Molecular Class | Model | Ref. |
---|---|---|---|---|---|---|---|
Alkaloids | |||||||
Fascaplysin | Marine sponge Fascaplysinopsis sp., and others | Activation of cytoprotective autophagy | Yes | p8 protein; ROS | Alkaloid | Vascular endothelial cells (HUVEC cells) | [38] |
Isofistularin-3 | Marine sponge Aplysina aerophoba | Activation | Yes | - | Alkaloid | Burkitt’s lymphoma (Raji cells) | [39] |
Macrocyclic molecules | |||||||
Coibamide A | Marine cyanobacteria Leptolyngbya sp. | Activation | Yes | VEGFR2 | Cyclic depsipeptide | Human umbilical vein endothelial cells (HUVEC) | [44] |
Activation of cytotoxic autophagy | Yes | -(was shown that ATG5 is required) | Mouse embryonic fibroblasts (MEF cells) | [45] | |||
Apratoxin A | Marine cyanobacteria Lyngbya majuscule | Activation | Yes | VEGFR2 | Cyclic depsipeptide | Human umbilical vein endothelial cells (HUVEC) | [44] |
Activation of cytotoxic autophagy | Yes | -(ATG5 is required, whereas acute ER stress is not important) | Mouse embryonic fibroblasts (MEF cells) | [45] | |||
Ikarugamycin | Marine bacteria Streptomyces phaeochromogenes | Activation | Yes | ER; CaMKKβ and AMPK pathways; mTORC1; TFEB | Macrocyclic antibiotic | Cervical carcinoma in vitro (HeLa cells); metabolic syndrome in vivo (mice); lifespan in vivo (C. elegans) | [46] |
Plitidepsin (aka dehydrodidemnin B; Aplidin®) | Ascidian Aplidium albicans | Inhibition | Yes | eEF1A2; ER stress | Cyclic depsipeptide | Cervical carcinoma (HeLa cells) | [49] |
8,9-Dehydroneopeltolide (8,9-DNP) | Marine sponge Neopeltidae sp. (synthetic derivative) | Inhibition of cytoprotective autophagy (at early stages) | Yes | - | Macrolide | Pancreatic cancer (PANC-1 cells) | [51] |
Triterpenes | |||||||
Frondoside A | Sea cucumber Cucumaria frondosa | Inhibition of cytoprotective autophagy | Yes | - | Triterpene glycoside | Prostate cancer | [53] |
Inhibition | No | - | Bladder cancer | [54] | |||
Inhibition | No | - | Burkitt’s lymphoma | [55] | |||
Ergosterol peroxide | Marine fungus Phoma sp. | Activation of cytoprotective autophagy | Yes | ERK; JNK; p38; AKT; mTOR and others | Sterol | Lung adenocarcinoma cells (A549 cells) | [56] |
Stellettin B | Marine sponge Jaspis stellifera | Activation | Yes | PI3K-p110; PI3K/Akt/mTOR pathway | Isomalabaricane triterpene | Non-small cell lung cancer (A549 cells) | [58] |
Another molecules | |||||||
Yessotoxin | Dinoflagellates Protoceratium reticulatum and Gonyaulax grindleyi | Activation | Yes | ER- and ribotoxic stress | Polyether | Mouse brain tumor (BC3H1 cells) | [63] |
Activation of cytotoxic autophagy | Yes | mTOR; BNIP3 | Glioma (SF295, SF539, and SNB75 cells) | [61] | |||
Rhizochalinin and the derivatives | Marine sponge Rhizochalina incrustata (semisynthetic derivative) | Inhibition | Yes | - | Lipid | Prostate cancer (PC-3 cells) | [69,70] |
Trachycladines derivatives (Compound 1, 7 and 8) | Marine sponges Trachycladus laevispirulifer and Theonella sp. (synthetic analogue) | Inhibition | Yes | - | Nucleoside | Cervical carcinoma (HeLa cells) | [73] |
Luminacin | Marine bacteria Streptomyces sp. | Activation | Yes | p38; JNK; Akt | Secondary metabolite | Head and neck squamous cell carcinoma (HNSCC); zebrafish | [75] |
Fucoxanthin | Various brown algae and diatoms | Activation of cytotoxic autophagy | Yes | ROS | Carotenoid | Nasopharyngeal carcinoma | [77] |
Activation of cytoprotective autophagy | No | Nrf2 signaling | In vivo traumatic brain injury; primary cultured neuron | [78] | |||
Phycocyanin | Cyanobacteria (Arthrospira sp. aka Spirulina) | Activation of cytotoxic autophagy | Yes | MAPK, Akt/mTOR/p70S6K and NF-κB pathways | Pigment-protein complex | Pancreatic cancer cells (PANC-1 cells) | [79] |
Jaspine B | Marine sponge Pachastrissa sp. | No effect (autophagy-unrelated vacuolization of cytoplasm) | Yes | - | Cyclic anhydrophytosphingosine | Gastric Cancer (HGC-27 cells) | [81] |
C-2 (2-alkylaminomethyl derivatives of jaspine B) | Marine sponge Pachastrissa sp. (synthetic analogue) | Activation of cytoprotective autophagy | Yes | JNK; Nrf2 pathway | Cyclic anhydrophytosphingosine, 2-alkylaminomethyl derivative | Bladder cancer (BIU87, 5637 and EJ cells) | [80,83] |
Cromomycin A2 | Marine bacterium Streptomyces sp. | Activation | Yes | TP53 family members (TP53, TP63 and TP73) | Anthraquinone antibiotic glycoside | Squamous cell carcinoma (SCC-11 cells) | [87] |
Psammaplin A | Marine sponge Psammaplysilla sp. | Bromotyrosine-cystamine conjugate | Glioblastoma (U87-MG cells) | ||||
Ilimaquinone | Marine sponge Hippospongia metachromia | Prenylquinone; monohydroxy-1,4-benzoquinones | Colon colorectal cancer (RKO cells) | ||||
Petromurin C | Marine fungus Aspergillus candidus KUFA0062, and others | Activation | Yes | Mitochondrial stress; Mcl-1 | bis-Indolyl benzenoid | Acute myeloid leukemia (AML) (MV4-11 and U937 cells) | [88] |
3. Marine Compounds with a Non-Validated Autophagy-Modulatory Effect
3.1. Alkaloids
3.2. Terpenes and Similar Compounds
3.3. Bromphenols
3.4. Peptides
3.5. Lipids
3.6. Lectins
3.7. Polysaccharides
3.8. Other Metabolites
Name | Source Organism | Suggested Effect on Autophagy | Effect Validated? 1 | Target 2 | Molecular Class | Model | Ref. |
---|---|---|---|---|---|---|---|
Alkaloids | |||||||
4-Chlorofascaplysin | Marine sponge Fascaplysinopsis sp., and others (synthetic derivatives) | Activation | No | PI3K/Akt/mTOR | Alkaloid | Breast cancer (MDA-MB-231 cells) | [92] |
Prodigiosin | Marine bacteria Vibrio sp. | Activation | No | JNK; AKT/mTOR; CHOP; ER stress | Alkaloid | Glioblastoma (GBM) (U87MG and GBM8401 cells) | [96] |
Bacteria Serratia marcescens | Activation of cytotoxic autophagy | No | mTOR, Akt, and rpS6 | Oral squamous carcinoma (SAS and OECM1 cells) | [97] | ||
Ovothiol A | Sea urchin Paracentrotus lividus | Activation | No | γ-Glutamyl transpeptidase (GGT) | Alkaloid | Leukemia (HG3 cells) | [99] |
Nocuolin A | Cyanobacteria Nodularia sp. LEGE 06071 | Activation | No | Mitochondria; Oxidative phosphorylation | Oxadiazine alkaloid | Colon cancer (HCT116 cells) | [100] |
C278 (synthetic analog of makaluvamines) | Marine sponges Zyzzya spp. and others (synthetic derivative) | Activation | No | - | Pyrroloiminoquinone alkaloid | Non-melanoma skin cancer (SCC13 cells) | [102] |
Isoaaptamine | Marine sponges Aaptos spp. and others | Activation | No | mTOR; ER stress; ROS; MMP | Alkaloid | Breast cancer (T-47D cells) | [103] |
Gliotoxin | Marine fungus Aspergillus fumigatus | Activation of cytotoxic autophagy | No | DAPK1/TAp63 signaling | Alkaloid | Paclitaxel-resistant ovarian cancer (CaOV3/PTX_R and SKOV3/PTX_R cells) | [108] |
Terpenes and similar compounds | |||||||
Scalarin | Marine sponge Euryspongia cf. rosea and others | Inhibition | No | Receptor for advanced glycation end products (RAGE) | Sesterterpene | Pancreatic cancer (PANC-1 and MIA PaCa-2 cells) | [110] |
7-Acetylsinumaximol B | Soft coral Sinularia sandensis | Activation | No | Mitochondria dysfunction; PERK/eIF2/ATF4/CHOP signaling | Diterpene | Gastric cancer (NCI-N87 cells) | [112] |
Heteronemin | Marine sponge Hyrtios sp. | Activation of cytoprotective autophagy | No | Oxidative and ER stress | Sesterterpenoid | Prostate cancer (LNCaP cells) | [114] |
3β,11-Dihydroxy-9,11-secogorgost-5-en-9-one | Soft coral Klyxum flaccidum | Activation of cytotoxic autophagy | No | PPARγ; ROS | Stetol | Breast cancer (MCF-7 cells) | [115] |
Bromophenols | |||||||
Bromophenol derivative (compound 11) | Various marine algae (synthetic analogue) | Activation | No | - | Bromophenol-thiosemicarbazone hybrid | Ovarian cancer (SK-OV-3 cells) | [118] |
EGPI-1 | Various marine algae (synthetic analogue) | Activation | No | eIF4E/eIF4G; mTOR/4EBP1 pathway; ROS | Bromophenol-thiosemicarbazone hybrid | Lung carcinoma (A549 cells) | [119] |
BOS-93 | Various marine algae (synthetic analogue) | Activation | No | PI3K/Akt/mTOR pathway; MAPK | Bromophenol derivative | Lung carcinoma (A549 cells) | [121] |
Peptides | |||||||
Microcionamide A | Marine sponge Clathria basilana | Inhibition | No | - | Cyclic peptide | Murine embryonic fibroblasts (MEF cells) | [122] |
Microcionamide C | |||||||
Microcionamide D | |||||||
K092A and K092B | Dogfish Scyliorhinus canicula L. | Inhibition | No | - | Peptide | Prostate cancer (MDA-PCa 2b cells) | [123] |
pE-K092D | Dogfish Scyliorhinus canicula L. (pyroglutamate modification of K092D peptide) | [124] | |||||
acyclolaxaphycin B | Cyanobacteria Anabaena torulosa | Activation | No | Mitochondria; ROS; mTOR; AMPK; p70S6 | Peptide (acyclic B-type laxaphycins) | Neuroblastoma (SH-SY5Y cells) | [126] |
acyclolaxaphycin B3 | |||||||
[des-(Ala4-Hle5)]acyclolaxaphycin B | Gastropod Stylocheilus striatus. | ||||||
[des-(Ala4-Hle5)]acyclolaxaphycin B3 | |||||||
PYP15 | Marine alga Pyropia yezoensis | Inhibition | No | IGF-IR; Akt/mTOR | peptide | Mouse skeletal muscle cells (C2C12 cells) | [128] |
Lipids | |||||||
Eicosapentaenoic acid-enriched phosphatidylcholine (EPA-PC) | Fish oil, antarctic krill, sea cucumbers | Activation | No | - | Lipid | Aβ1-42-induced neurotoxicity in vivo (rats) | [131] |
Melonoside A | Marine sponge Melonanchora kobjakovae | Activation | No | - | ω-Glycosylated fatty acid amide | Germ cell tumor (GCT) (NCCIT-R cells) | [136] |
2-trans-4-trans-decadienal | Different diatoms | Activation | No | - | Polyunsaturated aldehydes | Sea urchin embrios Paracentrotus lividus; lung cancer (A549 cells) | [139] |
2-trans-4-trans-7-octadienal | |||||||
2-trans-4-trans-7-heptadienal | |||||||
Lectins | |||||||
Ulva pertusa lectin 1 (the expression cassette the lectin integrated in the adenovirus genome) | Marine alga Ulva pertusa | Activation | No | - | Lectin | Liver cancer (BEL-7404 and Huh7 cells) | [140] |
Halilectin-3 | Marine sponge Haliclona caerulea | Activation | No | - | Lectin | Breast cancer (MCF7 cells) | [142] |
Polysaccharides | |||||||
3,6-O-sulfated chitosan | Marine shrimps | Inhibition | No | PI3K/Akt/mTOR pathway | Sulfated polysaccharide | Cervical carcinoma (HeLa cells) | [143] |
Fucoidan | Fucus vesiculosus and other brown algae | Inhibition of cytotoxic CCl4-induced autophagy | No | TGF-β1/Smad pathway | Sulfated polysaccharide | In vivo CCl4- and BDL-induced liver fibrosis | [146] |
Other metabolites | |||||||
K41 A | Marine actinobacterium Streptomyces cacao | Inhibition (contradictive results are reported) | No (contradictive results are reported) | - | Polyether antibiotic | Cervical cancer (HeLa cells); prostate cancer (PC-3 cells); colorectal cancer (CaCo-2 cells) | [147] |
29-O-methyl-K41 A | - | ||||||
Zosteropenillines A–L | Marine-derived fungus Penicillium thomii | Inhibition | No | - | Polyketide | Prostate cancer (PC-3 cells) | [148] |
Diphlorethohydroxycarmalol (DPHC) | Marine alga Ishige okamurae | Inhibition of the particulate matter-induced autophagy | No | - | Polyphenol | Non-cancer keratinocytes (HaCaT cells) | [150] |
4. Autophagy-Modulatory Effect of the Compounds with an Undefined Structure, or of the Compounds Mixtures
Name | Source organism | Suggested effect on autophagy | Effect validated? 1 | Target 2 | Molecular Class | Model | Ref. |
---|---|---|---|---|---|---|---|
Glycoprotein-containing fraction from Alexandrium minutum | Marine dinoflagellate Alexandrium minutum | Activation of mitophagy | No | - | Glycoprotein (?) | Lung adenocarcinoma (A549 cells) | [156] |
Pyropia yezoensis crude protein extract | Marine alga Pyropia yezoensis | Inhibition | No | - | - | Mouse skeletal muscle cells (C2C12 cells) | [129] |
Extract of Posidonia oceanica (L.) Delile | Seagrass Posidonia oceanica (L.) Delile | Activation | No | - | - | Fibrosarcoma (HT1080 cells) | [155] |
Extract of Neosartorya tsunodae KUFC 9213 | Marine fungi Neosartorya tsunodae KUFC 9213 | Activation | No | - | - | Nonsmall cell lung cancer (A459 cells) | [154] |
Extract of Neosartorya laciniosa KUFC 7896 | Marine fungi Neosartorya laciniosa KUFC 7896 | ||||||
Extract of Streptomyces sp. U3 | Marine bacteria Streptomyces sp. U3/mangrove | Activation | No | - | - | Marine alga Heterosigma akashiwo | [153] |
Extract of Agelas sp. | Marine sponge Agelas sp. | Activation | No | ER stress, ROS; IRE1α; CHOP; ATF4; JNK | - | Hepatocellular carcinoma (Hep3B cells) | [152] |
Extract of Lipastrotethya sp. | Marine sponge Lipastrotethya sp. | Activation | No | - | - | Colon cancer (HCT116 p53 KO cells) | [151] |
5. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell 2011, 147, 728–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The role of autophagy in cancer: Therapeutic implications. Mol. Cancer Ther. 2011, 10, 1533–1541. [Google Scholar] [CrossRef] [Green Version]
- Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer 2007, 7, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ren, X.; Hait, W.N.; Yang, J.M. Therapeutic targeting of autophagy in disease: Biology and pharmacology. Pharmacol. Rev. 2013, 65, 1162–1197. [Google Scholar] [CrossRef] [Green Version]
- Rubinsztein, D.C.; Frake, R.A. Yoshinori Ohsumi’s Nobel Prize for mechanisms of autophagy: From basic yeast biology to therapeutic potential. J. R. Coll. Physicians Edinb. 2016, 46, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Gewirtz, D.A. The four faces of autophagy: Implications for cancer therapy. Cancer Res. 2014, 74, 647–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klionsky, D.J.; Abdelmohsen, K.; Abe, A.; Abedin, M.J.; Abeliovich, H.; Acevedo Arozena, A.; Adachi, H.; Adams, C.M.; Adams, P.D.; Adeli, K.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016, 12, 1–222. [Google Scholar] [CrossRef] [Green Version]
- Klionsky, D.J.; Abdel-Aziz, A.K.; Abel, S.; Adamopoulos, I.E.; Adolph, T.; Agnello, M.; Agostinis, P.; Aits, S.; Aizawa, S.; Al-Abd, A.M.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4rd edition). Autophagy 2020, in press. [Google Scholar]
- Klionsky, D.J. Autophagy participates in, well, just about everything. Cell Death Differ. 2020, 27, 831–832. [Google Scholar] [CrossRef] [Green Version]
- Solitro, A.R.; MacKeigan, J.P. Leaving the lysosome behind: Novel developments in autophagy inhibition. Future Med. Chem. 2016, 8, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, W.; Burke, D.C. Contributions to the Study of Marine Products. XL. The Nucleosides of Sponges.1 IV. Spongosine2. J. Org. Chem. 1956, 21, 226–228. [Google Scholar] [CrossRef]
- Bergmann, W.; Feeney, R.J. Contributions to the study of marine products. XXXII. The nucleosides of spongies. I. J. Org. Chem. 1951, 16, 981–987. [Google Scholar] [CrossRef]
- Bergmann, W.; Stempien, M.F. Contributions to the Study of Marine Products. XLIII. The Nucleosides of Sponges. V. The Synthesis of Spongosine1. J. Org. Chem. 1957, 22, 1575–1577. [Google Scholar] [CrossRef]
- Stonik, V. Marine natural products: A way to new drugs. Acta Nat. 2009, 2, 15–25. [Google Scholar] [CrossRef]
- Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov 2009, 8, 69–85. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 2004, 67, 1216–1238. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar. Drugs 2014, 12, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Galmarini, C.M.; D’Incalci, M.; Allavena, P. Trabectedin and plitidepsin: Drugs from the sea that strike the tumor microenvironment. Mar. Drugs 2014, 12, 719–733. [Google Scholar] [CrossRef] [Green Version]
- Dyshlovoy, S.A.; Honecker, F. Marine Compounds and Cancer: 2017 Updates. Mar. Drugs 2018, 16, 41. [Google Scholar] [CrossRef] [Green Version]
- Dyshlovoy, S.A.; Honecker, F. Marine Compounds and Cancer: The First Two Decades of XXI Century. Mar. Drugs 2019, 18. [Google Scholar] [CrossRef] [Green Version]
- Dyshlovoy, S.A.; Honecker, F. Marine Compounds and Cancer: Where Do We Stand? Mar. Drugs 2015, 13, 5657–5665. [Google Scholar] [CrossRef]
- Ruocco, N.; Costantini, S.; Costantini, M. Blue-Print Autophagy: Potential for Cancer Treatment. Mar. Drugs 2016, 14, 138. [Google Scholar] [CrossRef] [PubMed]
- Dyshlovoy, A.S.; Honecker, F. Marine Compounds and Autophagy: Beginning of a New Era. Mar. Drugs 2018, 16, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyshlovoy, S.A.; Honecker, F. Marine Drugs Acting as Autophagy Modulators. Mar. Drugs 2020, 18, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, G.; Williams, D.E.; Díaz-Marrero, A.R.; Patrick, B.O.; Bottriell, H.; Balgi, A.D.; Donohue, E.; Roberge, M.; Andersen, R.J. Bafilomycins Produced in Culture by Streptomyces spp. Isolated from Marine Habitats Are Potent Inhibitors of Autophagy. J. Nat. Prod. 2010, 73, 422–427. [Google Scholar] [CrossRef] [PubMed]
- PubMed. U.S. National Library of Medicine, National Institutes of Health. Search: Autophagy. Available online: https://www.ncbi.nlm.nih.gov/pubmed/?term=autophagy (accessed on 15 August 2020).
- PubMed. U.S. National Library of Medicine, National Institutes of Health. Search: “Autophagy” and “Marine”. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=%28Autophagy%5BTitle%2FAbstract%5D%29+AND+%28marine%5BTitle%2FAbstract%5D%29&sort=date&size=50 (accessed on 15 August 2020).
- Yoshii, S.R.; Mizushima, N. Monitoring and Measuring Autophagy. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef]
- Tanida, I.; Ueno, T.; Kominami, E. LC3 and Autophagy. Methods Mol. Biol. 2008, 445, 77–88. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Abeliovich, H.; Agostinis, P.; Agrawal, D.K.; Aliev, G.; Askew, D.S.; Baba, M.; Baehrecke, E.H.; Bahr, B.A.; Ballabio, A.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008, 4, 151–175. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Abdalla, F.C.; Abeliovich, H.; Abraham, R.T.; Acevedo-Arozena, A.; Adeli, K.; Agholme, L.; Agnello, M.; Agostinis, P.; Aguirre-Ghiso, J.A.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8, 445–544. [Google Scholar] [CrossRef]
- Kung, H.-J.; Changou, C.; Nguyen, H.G.; Yang, J.C.; Evans, C.P.; Bold, R.J.; Chuang, F. Autophagy and prostate cancer therapeutics. In Prostate Cancer; Tindal, D.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 16, pp. 497–518. [Google Scholar]
- Klionsky, D.J. 2020 Is not that far away, which means it is time for the new guidelines. Autophagy 2019, 15, 1129. [Google Scholar] [CrossRef] [Green Version]
- Roll, D.M.; Ireland, C.M.; Lu, H.S.M.; Clardy, J. Fascaplysin, an unusual antimicrobial pigment from the marine sponge Fascaplysinopsis sp. J. Org. Chem. 1988, 53, 3276–3278. [Google Scholar] [CrossRef]
- Bharate, S.B.; Manda, S.; Mupparapu, N.; Battini, N.; Vishwakarma, R.A. Chemistry and biology of fascaplysin, a potent marine-derived CDK-4 inhibitor. Mini Rev. Med. Chem. 2012, 12, 650–664. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yan, X.J.; Chen, H.M. Fascaplysin, a selective CDK4 inhibitor, exhibit anti-angiogenic activity in vitro and in vivo. Cancer Chemother. Pharmacol. 2007, 59, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.I.; Lee, Y.M.; Nam, T.J.; Ko, Y.S.; Mah, S.; Kim, J.; Kim, Y.; Reddy, R.H.; Kim, Y.J.; Hong, S.; et al. Fascaplysin Exerts Anti-Cancer Effects through the Downregulation of Survivin and HIF-1α and Inhibition of VEGFR2 and TRKA. Int. J. Mol. Sci. 2017, 18, 2074. [Google Scholar] [CrossRef] [PubMed]
- Meng, N.; Mu, X.; Lv, X.; Wang, L.; Li, N.; Gong, Y. Autophagy represses fascaplysin-induced apoptosis and angiogenesis inhibition via ROS and p8 in vascular endothelia cells. Biomed. Pharmacother. 2019, 114, 108866. [Google Scholar] [CrossRef]
- Florean, C.; Schnekenburger, M.; Lee, J.Y.; Kim, K.R.; Mazumder, A.; Song, S.; Kim, J.M.; Grandjenette, C.; Kim, J.G.; Yoon, A.Y.; et al. Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells. Oncotarget 2016, 7, 24027–24049. [Google Scholar] [CrossRef]
- Bechmann, N.; Ehrlich, H.; Eisenhofer, G.; Ehrlich, A.; Meschke, S.; Ziegler, C.G.; Bornstein, S.R. Anti-Tumorigenic and Anti-Metastatic Activity of the Sponge-Derived Marine Drugs Aeroplysinin-1 and Isofistularin-3 against Pheochromocytoma In Vitro. Mar. Drugs 2018, 16, 172. [Google Scholar] [CrossRef] [Green Version]
- Teeyapant, R.; Kreis, P.; Wray, V.; Witte, L.; Proksch, P. Brominated Secondary Compounds from the Marine Sponge Verongia aerophoba and the Sponge Feeding Gastropod Tylodina perversa. Z. Für Nat. C 1993, 48, 640. [Google Scholar] [CrossRef]
- Medina, R.A.; Goeger, D.E.; Hills, P.; Mooberry, S.L.; Huang, N.; Romero, L.I.; Ortega-Barría, E.; Gerwick, W.H.; McPhail, K.L.; Coibamide, A. A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J. Am. Chem. Soc. 2008, 130, 6324–6325. [Google Scholar] [CrossRef] [Green Version]
- Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J.; Corbett, T.H. Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J. Am. Chem. Soc. 2001, 123, 5418–5423. [Google Scholar] [CrossRef]
- Serrill, J.D.; Wan, X.; Hau, A.M.; Jang, H.S.; Coleman, D.J.; Indra, A.K.; Alani, A.W.; McPhail, K.L.; Ishmael, J.E. Coibamide A, a natural lariat depsipeptide, inhibits VEGFA/VEGFR2 expression and suppresses tumor growth in glioblastoma xenografts. Investig. New Drugs 2016, 34, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Serrill, J.D.; Humphreys, I.R.; Tan, M.; McPhail, K.L.; Ganley, I.G.; Ishmael, J.E. ATG5 Promotes Death Signaling in Response to the Cyclic Depsipeptides Coibamide A and Apratoxin A. Mar. Drugs 2018, 16, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Niederstrasser, H.; Douglas, P.M.; Lin, R.; Jaramillo, J.; Li, Y.; Oswald, N.W.; Zhou, A.; McMillan, E.A.; Mendiratta, S.; et al. Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nat. Commun. 2017, 8, 2270. [Google Scholar] [CrossRef] [PubMed]
- Jomon, K.; Kuroda, Y.; Ajisaka, M.; Sakai, H. A new antibiotic, ikarugamycin. J. Antibiot. 1972, 25, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Urdiales, J.; Morata, P.; De Castro, I.N.; Sánchez-Jiménez, F. Antiproliferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates. Cancer Lett. 1996, 102, 31–37. [Google Scholar] [CrossRef]
- Losada, A.; Berlanga, J.J.; Molina-Guijarro, J.M.; Jiménez-Ruiz, A.; Gago, F.; Avilés, P.; de Haro, C.; Martínez-Leal, J.F. Generation of endoplasmic reticulum stress and inhibition of autophagy by plitidepsin induces proteotoxic apoptosis in cancer cells. Biochem. Pharmacol. 2020, 172, 113744. [Google Scholar] [CrossRef]
- Wright, A.E.; Botelho, J.C.; Guzmán, E.; Harmody, D.; Linley, P.; McCarthy, P.J.; Pitts, T.P.; Pomponi, S.A.; Reed, J.K. Neopeltolide, a macrolide from a lithistid sponge of the family Neopeltidae. J. Nat. Prod. 2007, 70, 412–416. [Google Scholar] [CrossRef]
- Fuwa, H.; Sato, M. A Synthetic Analogue of Neopeltolide, 8,9-Dehydroneopeltolide, Is a Potent Anti-Austerity Agent against Starved Tumor Cells. Mar. Drugs 2017, 15, 320. [Google Scholar] [CrossRef] [Green Version]
- Girard, M.; Bélanger, J.; ApSimon, J.W.; Garneau, F.-X.; Harvey, C.; Brisson, J.-R.; Frondoside, A. A novel triterpene glycoside from the holothurian Cucumaria frondosa. Can. J. Chem. 1990, 68, 11–18. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Menchinskaya, E.S.; Venz, S.; Rast, S.; Amann, K.; Hauschild, J.; Otte, K.; Kalinin, V.I.; Silchenko, A.S.; Avilov, S.A.; et al. The marine triterpene glycoside frondoside A exhibits activity in vitro and in vivo in prostate cancer. Int. J. Cancer 2016, 138, 2450–2465. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Madanchi, R.; Hauschild, J.; Otte, K.; Alsdorf, W.H.; Schumacher, U.; Kalinin, V.I.; Silchenko, A.S.; Avilov, S.A.; Honecker, F.; et al. The marine triterpene glycoside frondoside A induces p53-independent apoptosis and inhibits autophagy in urothelial carcinoma cells. BMC Cancer 2017, 17, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyshlovoy, S.; Rast, S.; Hauschild, J.; Otte, K.; Alsdorf, W.; Madanchi, R.; Kalinin, V.; Silchenko, A.; Avilov, S.; Dierlamm, J.; et al. Frondoside A induces AIF-associated caspase-independent apoptosis in Burkitt’s lymphoma cells. Leuk. Lymphoma 2017, 58, 2905–2915. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-Y.; Yang, F.-L.; Li, L.-H.; Rao, Y.K.; Ju, T.-C.; Wong, W.-T.; Hsieh, C.-Y.; Pivkin, M.V.; Hua, K.-F.; Wu, S.-H. Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent apoptosis and autophagy in human lung adenocarcinoma cells. Sci. Rep. 2018, 8, 17956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravi, B.N.; Wells, R.J.; Croft, K.D. Malabaricane triterpenes from a Fijian collection of the sponge Jaspis stellifera. J. Org. Chem. 1981, 46, 1998–2001. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Q.; Peng, X.; Zhou, C.; Zhong, Y.; Chen, X.; Qiu, Y.; Jin, M.; Gong, M.; Kong, D. Stellettin B Induces G1 Arrest, Apoptosis and Autophagy in Human Non-small Cell Lung Cancer A549 Cells via Blocking PI3K/Akt/mTOR Pathway. Sci. Rep. 2016, 6, 27071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satake, M.; MacKenzie, L.; Yasumoto, T. Identification of Protoceratium reticulatum as the biogenetic origin of yessotoxin. Nat. Toxins 1997, 5, 164–167. [Google Scholar] [CrossRef]
- Draisci, R.; Ferretti, E.; Palleschi, L.; Marchiafava, C.; Poletti, R.; Milandri, A.; Ceredi, A.; Pompei, M. High levels of yessotoxin in mussels and presence of yessotoxin and homoyessotoxin in dinoflagellates of the Adriatic Sea. Toxicon 1999, 37, 1187–1193. [Google Scholar] [CrossRef]
- Rubiolo, J.A.; López-Alonso, H.; Martínez, P.; Millán, A.; Cagide, E.; Vieytes, M.R.; Vega, F.V.; Botana, L.M. Yessotoxin induces ER-stress followed by autophagic cell death in glioma cells mediated by mTOR and BNIP3. Cell. Signal. 2014, 26, 419–432. [Google Scholar] [CrossRef]
- Korsnes, M.S.; Røed, S.S.; Tranulis, M.A.; Espenes, A.; Christophersen, B. Yessotoxin triggers ribotoxic stress. Toxicol. Vitr. 2014, 28, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Korsnes, M.S.; Kolstad, H.; Kleiveland, C.R.; Korsnes, R.; Ørmen, E. Autophagic activity in BC3H1 cells exposed to yessotoxin. Toxicol Vitr. 2016, 32, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Molinski, T.F.; Makarieva, T.N.; Stonik, V.A. (-)-Rhizochalin is a dimeric enantiomorphic (2R)-sphingolipid: Absolute configuration of pseudo-C(2v)-symmetric bis-2-amino-3-alkanols by CD. Angew. Chem. Int. Ed. Engl. 2000, 39, 4076–4079. [Google Scholar] [CrossRef]
- Makarieva, T.N.; Denisenko, V.A.; Stonik, V.A.; Milgrom, Y.M.; Rashkes, Y.V. Rhizochalin, a novel secondary metabolite of mixed biosynthesis from the sponge Rhizochalina Incrustata. Tetrahedron Lett. 1989, 30, 6581–6584. [Google Scholar] [CrossRef]
- Makarieva, T.N.; Zakharenko, A.M.; Denisenko, V.A.; Dmitrenok, P.S.; Guzii, A.G.; Shubina, L.K.; Kapustina, I.I.; Fedorov, S.N. Rhizochalinin A, a new antileukemic two-headed sphingolipid from the sponge Rhizochalina incrustata. Chem. Nat. Compd. 2007, 43, 468–469. [Google Scholar] [CrossRef]
- Fedorov, S.N.; Makarieva, T.N.; Guzii, A.G.; Shubina, L.K.; Kwak, J.Y.; Stonik, V.A. Marine two-headed sphingolipid-like compound rhizochalin inhibits EGF-induced transformation of JB6 P+ Cl41 cells. Lipids 2009, 44, 777–785. [Google Scholar] [CrossRef]
- Khanal, P.; Kang, B.S.; Yun, H.J.; Cho, H.G.; Makarieva, T.N.; Choi, H.S. Aglycon of rhizochalin from the Rhizochalina incrustata induces apoptosis via activation of AMP-activated protein kinase in HT-29 colon cancer cells. Biol. Pharm. Bull. 2011, 34, 1553–1558. [Google Scholar] [CrossRef] [Green Version]
- Dyshlovoy, S.A.; Otte, K.; Tabakmakher, K.M.; Hauschild, J.; Makarieva, T.N.; Shubina, L.K.; Fedorov, S.N.; Bokemeyer, C.; Stonik, V.A.; von Amsberg, G. Synthesis and anticancer activity of the derivatives of marine compound rhizochalin in castration resistant prostate cancer. Oncotarget 2018, 9, 16962–16973. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Otte, K.; Alsdorf, W.H.; Hauschild, J.; Lange, T.; Venz, S.; Bauer, C.K.; Bahring, R.; Amann, K.; Mandanchi, R.; et al. Marine compound rhizochalinin shows high in vitro and in vivo efficacy in castration resistant prostate cancer. Oncotarget 2016, 7, 69703–69717. [Google Scholar] [CrossRef] [Green Version]
- Searle, P.A.; Molinski, T.F. Trachycladines A and B: 2’-C-methyl-5’-deoxyribofuranosyl nucleosides from the marine sponge Trachycladus laevispirulifer. J. Org. Chem. 1995, 60, 4296–4298. [Google Scholar] [CrossRef]
- Ichiba, T.; Nakao, Y.; Scheuer, P.J.; Sata, N.U.; Kelly-Borges, M. Kumusine, a chloroadenine riboside from a sponge, Theonella sp. Tetrahedron Lett. 1995, 36, 3977–3980. [Google Scholar] [CrossRef]
- Peitsinis, Z.V.; Mitrakas, A.G.; Nakiou, E.A.; Melidou, D.A.; Kalamida, D.; Kakouratos, C.; Koukourakis, M.I.; Koumbis, A.E. Trachycladines and Analogues: Synthesis and Evaluation of Anticancer Activity. ChemMedChem 2017, 12, 448–455. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Kageyama-Kawase, R.; Naruse, N.; Funahashi, Y.; Yoshimatsu, K. Luminacins: A family of capillary tube formation inhibitors from Streptomyces sp. II. Biological activities. J. Antibiot. 2000, 53, 591–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.S.; Cha, H.Y.; Lee, B.-S.; Kang, S.U.; Hwang, H.S.; Kwon, H.C.; Kim, C.-H.; Choi, E.C. Anti-cancer Effect of Luminacin, a Marine Microbial Extract, in Head and Neck Squamous Cell Carcinoma Progression via Autophagic Cell Death. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2016, 48, 738–752. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Yuan, J.P.; Wu, C.F.; Wang, J.H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs 2011, 9, 1806–1828. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Cao, X.; Zhao, R.; Gong, S.; Jin, L.; Feng, C. Fucoxanthin treatment inhibits nasopharyngeal carcinoma cell proliferation through induction of autophagy mechanism. Environ. Toxicol. 2020, 35, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, H.; Fan, Y.; Gao, Y.; Li, X.; Hu, Z.; Ding, K.; Wang, Y.; Wang, X. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways. Sci. Rep. 2017, 7, 46763. [Google Scholar] [CrossRef] [Green Version]
- Liao, G.; Gao, B.; Gao, Y.; Yang, X.; Cheng, X.; Ou, Y. Phycocyanin Inhibits Tumorigenic Potential of Pancreatic Cancer Cells: Role of Apoptosis and Autophagy. Sci. Rep. 2016, 6, 34564. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wu, C.-L.; Wang, X.; Ban, Q.; Quan, C.; Liu, M.; Dong, H.; Li, J.; Kim, G.-Y.; Choi, Y.H.; et al. SP600125 enhances C-2-induced cell death by the switch from autophagy to apoptosis in bladder cancer cells. J. Exp. Clin. Cancer Res. 2019, 38, 448. [Google Scholar] [CrossRef] [Green Version]
- Cingolani, F.; Simbari, F.; Abad, J.L.; Casasampere, M.; Fabrias, G.; Futerman, A.H.; Casas, J. Jaspine B induces nonapoptotic cell death in gastric cancer cells independently of its inhibition of ceramide synthase. J. Lipid Res. 2017, 58, 1500–1513. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, I.; Musman, M.; Ohtani, I.I.; Ichiba, T.; Tanaka, J.; Gravalos, D.G.; Higa, T. Pachastrissamine, a Cytotoxic Anhydrophytosphingosine from a Marine Sponge, Pachastrissa sp. J. Nat. Prod. 2002, 65, 1505–1506. [Google Scholar] [CrossRef]
- Zhang, E.; Wang, S.; Li, L.-L.; Hua, Y.-G.; Yue, J.-F.; Li, J.-F.; Jin, C.-Y. Discovery of novel jaspine B analogues as autophagy inducer. Biorg. Med. Chem. Lett. 2018, 28, 497–502. [Google Scholar] [CrossRef]
- Miyamoto, M.; Kawamatsu, Y.; Kawashima, K.; Shinohara, M.; Tanaka, K.; Tatsuoka, S.; Nakanishi, K. Chromomycin A2, A3 and A4. Tetrahedron 1967, 23, 421–437. [Google Scholar] [CrossRef]
- Quiñoà, E.; Crews, P. Phenolic constituents of Psammaplysilla. Tetrahedron Lett. 1987, 28, 3229–3232. [Google Scholar] [CrossRef]
- Luibrand, R.T.; Erdman, T.R.; Vollmer, J.J.; Scheuer, P.J.; Finer, J.; Clardy, J. Ilimaquinone, a sesquiterpenoid quinone from a marine sponge. Tetrahedron 1979, 35, 609–612. [Google Scholar] [CrossRef]
- Ratovitski, E.A. Tumor Protein (TP)-p53 Members as Regulators of Autophagy in Tumor Cells upon Marine Drug Exposure. Mar. Drugs 2016, 14, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, Y.N.; Song, S.; Orlikova-Boyer, B.; Cerella, C.; Christov, C.; Kijjoa, A.; Diederich, M. Petromurin C Induces Protective Autophagy and Apoptosis in FLT3-ITD-Positive AML: Synergy with Gilteritinib. Mar. Drugs 2020, 18, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttachon, S.; Ramos, A.A.; Inácio, Â.; Dethoup, T.; Gales, L.; Lee, M.; Costa, P.M.; Silva, A.M.S.; Sekeroglu, N.; Rocha, E.; et al. Bis-Indolyl Benzenoids, Hydroxypyrrolidine Derivatives and Other Constituents from Cultures of the Marine Sponge-Associated Fungus Aspergillus candidus KUFA0062. Mar. Drugs 2018, 16, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooike, M.; Nozawa, K.; Kawai, K.-I.; Udagawa, S.-i. Bisindolylbenzenoids from ascostromata of Petromycesmuricatus. Can. J. Chem. 1997, 75, 625–628. [Google Scholar] [CrossRef]
- Mauvezin, C.; Neufeld, T.P. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 2015, 11, 1437–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Guru, S.K.; Manda, S.; Kumar, A.; Mintoo, M.J.; Prasad, V.D.; Sharma, P.R.; Mondhe, D.M.; Bharate, S.B.; Bhushan, S. A marine sponge alkaloid derivative 4-chloro fascaplysin inhibits tumor growth and VEGF mediated angiogenesis by disrupting PI3K/Akt/mTOR signaling cascade. Chem. Biol. Interact. 2017, 275, 47–60. [Google Scholar] [CrossRef]
- Hubbard, R.; Rimington, C. The biosynthesis of prodigiosin, the tripyrrylmethene pigment from Bacillus prodigiosus (Serratia marcescens). Biochem. J. 1950, 46, 220–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, N.R.; Fineran, P.C.; Leeper, F.J.; Salmond, G.P. The biosynthesis and regulation of bacterial prodiginines. Nat. Rev. Microbiol 2006, 4, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Bentley, R. Seeing Red: The Story of Prodigiosin; Advances in Applied Microbiology; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Cheng, S.Y.; Chen, N.F.; Kuo, H.M.; Yang, S.N.; Sung, C.S.; Sung, P.J.; Wen, Z.H.; Chen, W.F. Prodigiosin stimulates endoplasmic reticulum stress and induces autophagic cell death in glioblastoma cells. Apoptosis 2018, 23, 314–328. [Google Scholar] [CrossRef]
- Cheng, M.F.; Lin, C.S.; Chen, Y.H.; Sung, P.J.; Lin, S.R.; Tong, Y.W.; Weng, C.F. Inhibitory Growth of Oral Squamous Cell Carcinoma Cancer via Bacterial Prodigiosin. Mar. Drugs 2017, 15, 224. [Google Scholar] [CrossRef] [PubMed]
- Castellano, I.; Seebeck, F.P. On ovothiol biosynthesis and biological roles: From life in the ocean to therapeutic potential. Nat. Prod. Rep. 2018, 35, 1241–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brancaccio, M.; Russo, M.; Masullo, M.; Palumbo, A.; Russo, G.L.; Castellano, I. Sulfur-containing histidine compounds inhibit γ-glutamyl transpeptidase activity in human cancer cells. J. Biol. Chem. 2019, 294, 14603–14614. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.L.; Preto, M.; Vasconcelos, V.; Linder, S.; Urbatzka, R. Antiproliferative Effects of the Natural Oxadiazine Nocuolin A Are Associated With Impairment of Mitochondrial Oxidative Phosphorylation. Front. Oncol. 2019, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Kita, Y.; Fujioka, H. Marine pyrroloiminoquinone alkaloids. Top. Curr. Chem. 2012, 309, 131–162. [Google Scholar]
- Cowan, J.; Shadab, M.; Nadkarni, D.H.; Kc, K.; Velu, S.E.; Yusuf, N. A Novel Marine Natural Product Derived Pyrroloiminoquinone with Potent Activity against Skin Cancer Cells. Mar. Drugs 2019, 17, 443. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-F.; Lee, M.-G.; El-Shazly, M.; Lai, K.-H.; Ke, S.-C.; Su, C.-W.; Shih, S.-P.; Sung, P.-J.; Hong, M.-C.; Wen, Z.-H.; et al. Isoaaptamine Induces T-47D Cells Apoptosis and Autophagy via Oxidative Stress. Mar. Drugs 2018, 16, 18. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, S.; Yamanokuchi, R.; Yoshitomi, M.; Sato, K.; Ikeda, T.; Rotinsulu, H.; Mangindaan, R.E.P.; de Voogd, N.J.; van Soest, R.W.M.; Yokosawa, H. Aaptamine, an alkaloid from the sponge Aaptos suberitoides, functions as a proteasome inhibitor. Biorg. Med. Chem. Lett. 2010, 20, 3341–3343. [Google Scholar] [CrossRef]
- Shubina, L.K.; Kalinovsky, A.I.; Fedorov, S.N.; Radchenko, O.S.; Denisenko, V.A.; Dmitrenok, P.S.; Dyshlovoy, S.A.; Krasokhin, V.B.; Stonik, V.A. Aaptamine alkaloids from the vietnamese sponge Aaptos sp. Nat. Prod. Commun. 2009, 4, 1085–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shubina, L.K.; Makarieva, T.N.; Dyshlovoy, S.A.; Fedorov, S.N.; Dmitrenok, P.S.; Stonik, V.A. Three new aaptamines from the marine sponge Aaptos sp. and their proapoptotic properties. Nat. Prod. Commun. 2010, 5, 1881–1884. [Google Scholar] [CrossRef] [Green Version]
- Weindling, R. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 1932, 22, 837–845. [Google Scholar]
- Park, G.-B.; Jeong, J.-Y.; Kim, D. Gliotoxin Enhances Autophagic Cell Death via the DAPK1-TAp63 Signaling Pathway in Paclitaxel-Resistant Ovarian Cancer Cells. Mar. Drugs 2019, 17, 412. [Google Scholar] [CrossRef] [Green Version]
- Cimino, G.; De Stefano, S.; Minale, L.; Trivellone, E. 12-epi-Scalarin and 12-epi-deoxoscalarin, sesterterpenes from the sponge Spongia nitens. J. Chem. Soc., Perkin Trans. 1977, 1, 1587–1593. [Google Scholar] [CrossRef]
- Guzmán, E.A.; Pitts, T.P.; Diaz, M.C.; Wright, A.E. The marine natural product Scalarin inhibits the receptor for advanced glycation end products (RAGE) and autophagy in the PANC-1 and MIA PaCa-2 pancreatic cancer cell lines. Investig. New Drugs 2019, 37, 262–270. [Google Scholar] [CrossRef]
- Tsai, T.C.; Chen, H.Y.; Sheu, J.H.; Chiang, M.Y.; Wen, Z.H.; Dai, C.F.; Su, J.H. Structural Elucidation and Structure-Anti-inflammatory Activity Relationships of Cembranoids from Cultured Soft Corals Sinularia sandensis and Sinularia flexibilis. J. Agric. Food Chem. 2015, 63, 7211–7218. [Google Scholar] [CrossRef]
- Tsai, T.-C.; Lai, K.-H.; Su, J.-H.; Wu, Y.-J.; Sheu, J.-H. 7-Acetylsinumaximol B Induces Apoptosis and Autophagy in Human Gastric Carcinoma Cells through Mitochondria Dysfunction and Activation of the PERK/eIF2α/ATF4/CHOP Signaling Pathway. Mar. Drugs 2018, 16, 104. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Okamoto, T.; Hayashi, K.; Yokoyama, N.; Sasaki, T.; Kitagawa, I. Marine natural products. XXXII. Absolute configurations of C-4 of the manoalide family, biologically active sesterterpenes from the marine sponge Hyrtios erecta. Chem. Pharm. Bull. 1994, 42, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-G.; Liu, Y.-C.; Lee, Y.-L.; El-Shazly, M.; Lai, K.-H.; Shih, S.-P.; Ke, S.-C.; Hong, M.-C.; Du, Y.-C.; Yang, J.-C.; et al. Heteronemin, a Marine Sesterterpenoid-Type Metabolite, Induces Apoptosis in Prostate LNcap Cells via Oxidative and ER Stress Combined with the Inhibition of Topoisomerase II and Hsp90. Mar. Drugs 2018, 16, 204. [Google Scholar] [CrossRef] [Green Version]
- Weng, J.-R.; Chiu, C.-F.; Hu, J.-L.; Feng, C.-H.; Huang, C.-Y.; Bai, L.-Y.; Sheu, J.-H. A Sterol from Soft Coral Induces Apoptosis and Autophagy in MCF-7 Breast Cancer Cells. Mar. Drugs 2018, 16, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.-R.; Huang, C.-Y.; Chen, B.-W.; Tsai, Y.-Y.; Shih, S.-P.; Hwang, T.-L.; Dai, C.-F.; Wang, S.-Y.; Sheu, J.-H. New bioactive steroids from the soft coral Klyxum flaccidum. RSC Adv. 2015, 5, 12546–12554. [Google Scholar] [CrossRef]
- Liu, M.; Hansen, P.E.; Lin, X. Bromophenols in marine algae and their bioactivities. Mar. Drugs 2011, 9, 1273–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Wang, L.; Li, X.; Wang, S.; Yu, X.; Xu, K.; Zhao, Y.; Luo, J.; Li, X.; Jiang, B.; et al. Discovery of Novel Bromophenol–Thiosemicarbazone Hybrids as Potent Selective Inhibitors of Poly(ADP-ribose) Polymerase-1 (PARP-1) for Use in Cancer. J. Med. Chem. 2019, 62, 3051–3067. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guo, C.; Li, X.; Yu, X.; Xu, K.; Jiang, B.; Jia, X.; Li, C.; Shi, D. Design, synthesis and biological evaluation of bromophenol-thiazolylhydrazone hybrids inhibiting the interaction of translation initiation factors eIF4E/eIF4G as multifunctional agents for cancer treatment. Eur. J. Med. Chem. 2019, 177, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Guo, C.L.; Li, X.Q.; Wang, S.Y.; Jiang, B.; Zhao, Y.; Luo, J.; Xu, K.; Liu, H.; Guo, S.J.; et al. Discovery of Novel Bromophenol Hybrids as Potential Anticancer Agents through the Ros-Mediated Apoptotic Pathway: Design, Synthesis and Biological Evaluation. Mar. Drugs 2017, 15, 343. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Wang, L.; Zhao, Y.; Jiang, B.; Luo, J.; Shi, D. BOS-93, a novel bromophenol derivative, induces apoptosis and autophagy in human A549 lung cancer cells via PI3K/Akt/mTOR and MAPK signaling pathway. Exp. Ther. Med. 2019, 17, 3848–3858. [Google Scholar] [CrossRef] [Green Version]
- Mokhlesi, A.; Stuhldreier, F.; Wex, K.W.; Berscheid, A.; Hartmann, R.; Rehberg, N.; Sureechatchaiyan, P.; Chaidir, C.; Kassack, M.U.; Kalscheuer, R.; et al. Cyclic Cystine-Bridged Peptides from the Marine Sponge Clathria basilana Induce Apoptosis in Tumor Cells and Depolarize the Bacterial Cytoplasmic Membrane. J. Nat. Prod. 2017, 80, 2941–2952. [Google Scholar] [CrossRef]
- Bosseboeuf, A.; Baron, A.; Duval, E.; Gautier, A.; Sourdaine, P.; Auvray, P. K092A and K092B, Two Peptides Isolated from the Dogfish (Scyliorhinus canicula L.), with Potential Antineoplastic Activity Against Human Prostate and Breast Cancer Cells. Mar. Drugs 2019, 17, 672. [Google Scholar] [CrossRef] [Green Version]
- Bosseboeuf, A.; Baron, A.; Duval, E.; Gautier, A.; Sourdaine, P.; Auvray, P. A Potential Antineoplastic Peptide of Human Prostate Cancer Cells Derived from the Lesser Spotted Dogfish (Scyliorhinus canicula L.). Mar. Drugs 2019, 17, 585. [Google Scholar] [CrossRef] [Green Version]
- Bonnard, I.; Rolland, M.; Salmon, J.-M.; Debiton, E.; Barthomeuf, C.; Banaigs, B. Total Structure and Inhibition of Tumor Cell Proliferation of Laxaphycins. J. Med. Chem. 2007, 50, 1266–1279. [Google Scholar] [CrossRef] [PubMed]
- Alvariño, R.; Alonso, E.; Bornancin, L.; Bonnard, I.; Inguimbert, N.; Banaigs, B.; Botana, L.M. Biological Activities of Cyclic and Acyclic B-Type Laxaphycins in SH-SY5Y Human Neuroblastoma Cells. Mar. Drugs 2020, 18, 364. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Yamaguchi, K.; Oda, T.; Nam, T.J. Chemical and mass spectrometry characterization of the red alga Pyropia yezoensis chemoprotective protein (PYP): Protective activity of the N-terminal fragment of PYP1 against acetaminophen-induced cell death in Chang liver cells. Int. J. Mol. Med. 2015, 35, 271–276. [Google Scholar] [CrossRef]
- Lee, M.-K.; Choi, J.-W.; Choi, Y.H.; Nam, T.-J. Protective Effect of Pyropia yezoensis Peptide on Dexamethasone-Induced Myotube Atrophy in C2C12 Myotubes. Mar. Drugs 2019, 17, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.-K.; Choi, J.-W.; Choi, Y.H.; Nam, T.-J. Pyropia yezoensis Protein Prevents Dexamethasone-Induced Myotube Atrophy in C2C12 Myotubes. Mar. Drugs 2018, 16, 497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burri, L.; Hoem, N.; Banni, S.; Berge, K. Marine omega-3 phospholipids: Metabolism and biological activities. Int. J. Mol. Sci. 2012, 13, 15401–15419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, M.; Ding, L.; Zhang, L.; Zhang, T.; Teruyoshi, Y.; Wang, Y.; Xue, C. Eicosapentaenoic Acid-Enriched Phosphatidylcholine Mitigated Aβ1-42-Induced Neurotoxicity via Autophagy-Inflammasome Pathway. J. Agric. Food Chem. 2019, 67, 13767–13774. [Google Scholar] [CrossRef]
- Bonofiglio, D.; Lanzino, M.; Giordano, C.; Catalano, S.; Andò, S. Chapter 16-Omega-3 DHA and EPA Conjugates Trigger Autophagy Through PPARγ Activation in Human Breast Cancer Cells. In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging; Hayat, M.A., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 291–305. [Google Scholar] [CrossRef]
- Fukui, M.; Kang, K.S.; Okada, K.; Zhu, B.T. EPA, an omega-3 fatty acid, induces apoptosis in human pancreatic cancer cells: Role of ROS accumulation, caspase-8 activation, and autophagy induction. J. Cell. Biochem. 2013, 114, 192–203. [Google Scholar] [CrossRef]
- Gao, B.; Han, Y.H.; Wang, L.; Lin, Y.J.; Sun, Z.; Lu, W.G.; Hu, Y.Q.; Li, J.Q.; Lin, X.S.; Liu, B.H.; et al. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells. Cell Death Dis. 2016, 7, e2235. [Google Scholar] [CrossRef]
- Hsu, H.C.; Li, S.J.; Chen, C.Y.; Chen, M.F. Eicosapentaenoic acid protects cardiomyoblasts from lipotoxicity in an autophagy-dependent manner. Cell Biol. Toxicol. 2018, 34, 177–189. [Google Scholar] [CrossRef]
- Guzii, A.G.; Makarieva, T.N.; Denisenko, V.A.; Dmitrenok, P.S.; Kuzmich, A.S.; Dyshlovoy, S.A.; von Amsberg, G.; Krasokhin, V.B.; Stonik, V.A. Melonoside A: An ω-Glycosylated Fatty Acid Amide from the Far Eastern Marine Sponge Melonanchora kobjakovae. Org. Lett. 2016, 18, 3478–3481. [Google Scholar] [CrossRef]
- Caldwell, G.S. The influence of bioactive oxylipins from marine diatoms on invertebrate reproduction and development. Mar. Drugs 2009, 7, 367–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leflaive, J.; Ten-Hage, L. Chemical interactions in diatoms: Role of polyunsaturated aldehydes and precursors. New Phytol. 2009, 184, 794–805. [Google Scholar] [CrossRef]
- Galasso, C.; Celentano, S.; Costantini, M.; D’Aniello, S.; Ianora, A.; Sansone, C.; Romano, G. Diatom-Derived Polyunsaturated Aldehydes Activate Similar Cell Death Genes in Two Different Systems: Sea Urchin Embryos and Human Cells. Int. J. Mol. Sci. 2020, 21, 5201. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, Z.; Wu, B.; Su, Q.; Wu, L.; Yang, X.; Chen, J. Ulva pertusa lectin 1 delivery through adenovirus vector affects multiple signaling pathways in cancer cells. Glycoconj. J. 2017, 34, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, R.F.; de Melo, A.A.; de Almeida, A.S.; Moura, R.d.M.; Chaves, R.P.; de Sousa, B.L.; do Nascimento, K.S.; Sampaio, S.S.; Lima, J.P.M.S.; Cavada, B.S.; et al. H-3, a new lectin from the marine sponge Haliclona caerulea: Purification and mass spectrometric characterization. Int. J. Biochem. Cell Biol. 2013, 45, 2864–2873. [Google Scholar] [CrossRef]
- do Nascimento-Neto, L.G.; Cabral, M.G.; Carneiro, R.F.; Silva, Z.; Arruda, F.V.S.; Nagano, C.S.; Fernandes, A.R.; Sampaio, A.H.; Teixeira, E.H.; Videira, P.A. Halilectin-3, a Lectin from the Marine Sponge Haliclona caerulea, Induces Apoptosis and Autophagy in Human Breast Cancer MCF7 Cells Through Caspase-9 Pathway and LC3-II Protein Expression. Anticancer Agents Med. Chem. 2018, 18, 521–528. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, W.; Wang, W.; Zhang, X.; Zhao, X. The inhibitory effects and mechanisms of 3,6-O-sulfated chitosan against human papillomavirus infection. Carbohydr. Polym. 2018, 198, 329–338. [Google Scholar] [CrossRef]
- Usoltseva, R.V.; Shevchenko, N.M.; Malyarenko, O.S.; Anastyuk, S.D.; Kasprik, A.E.; Zvyagintsev, N.V.; Ermakova, S.P. Fucoidans from brown algae Laminaria longipes and Saccharina cichorioides: Structural characteristics, anticancer and radiosensitizing activity in vitro. Carbohydr. Polym. 2019, 221, 157–165. [Google Scholar] [CrossRef]
- Lin, Z.; Tan, X.; Zhang, Y.; Li, F.; Luo, P.; Liu, H. Molecular Targets and Related Biologic Activities of Fucoidan: A Review. Mar. Drugs 2020, 18, 376. [Google Scholar] [CrossRef]
- Li, J.; Chen, K.; Li, S.; Feng, J.; Liu, T.; Wang, F.; Zhang, R.; Xu, S.; Zhou, Y.; Zhou, S.; et al. Protective effect of fucoidan from Fucus vesiculosus on liver fibrosis via the TGF-β1/Smad pathway-mediated inhibition of extracellular matrix and autophagy. Drug Des. Dev. Ther. 2016, 10, 619–630. [Google Scholar]
- Khan, N.; Yılmaz, S.; Aksoy, S.; Uzel, A.; Tosun, Ç.; Kirmizibayrak, P.B.; Bedir, E. Polyethers isolated from the marine actinobacterium Streptomyces cacaoi inhibit autophagy and induce apoptosis in cancer cells. Chem. Biol. Interact. 2019, 307, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Afiyatullov, S.; Leshchenko, E.; Berdyshev, D.; Sobolevskaya, M.; Antonov, A.; Denisenko, V.; Popov, R.; Pivkin, M.; Udovenko, A.; Pislyagin, E.; et al. Zosteropenillines: Polyketides from the MarineDerived Fungus Penicillium thomii. Mar. Drugs 2017, 15, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, S.J.; Kim, J.P.; Jung, W.K.; Lee, N.H.; Kang, H.S.; Jun, E.M.; Park, S.H.; Kang, S.M.; Lee, Y.J.; Park, P.J.; et al. Identification of chemical structure and free radical scavenging activity of diphlorethohydroxycarmalol isolated from a brown alga, Ishige okamurae. J. Microbiol. Biotechnol. 2008, 18, 676–681. [Google Scholar]
- Zhen, A.X.; Piao, M.J.; Hyun, Y.J.; Kang, K.A.; Madushan Fernando, P.D.S.; Cho, S.J.; Ahn, M.J.; Hyun, J.W. Diphlorethohydroxycarmalol Attenuates Fine Particulate Matter-Induced Subcellular Skin Dysfunction. Mar. Drugs 2019, 17, 95. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Lim, H.K.; Oh, S.R.; Chung, W.-H.; Jung, J. Anticancer Effects of the Marine Sponge Lipastrotethya sp. Extract on Wild-Type and p53 Knockout HCT116 Cells. Evid.-Based Complement. Altern. Med. 2017, 2017, 7174858. [Google Scholar] [CrossRef]
- Choi, C.; Son, A.; Lee, H.-S.; Lee, Y.-J.; Park, H.C. Radiosensitization by Marine Sponge Agelas sp. Extracts in Hepatocellular Carcinoma Cells with Autophagy Induction. Sci. Rep. 2018, 8, 6317. [Google Scholar] [CrossRef]
- Yu, X.; Cai, G.; Wang, H.; Hu, Z.; Zheng, W.; Lei, X.; Zhu, X.; Chen, Y.; Chen, Q.; Din, H.; et al. Fast-growing algicidal Streptomyces sp. U3 and its potential in harmful algal bloom controls. J. Hazard. Mater. 2018, 341, 138–149. [Google Scholar] [CrossRef]
- Castro-Carvalho, B.; Ramos, A.A.; Prata-Sena, M.; Malhão, F.; Moreira, M.; Gargiulo, D.; Dethoup, T.; Buttachon, S.; Kijjoa, A.; Rocha, E. Marine-derived Fungi Extracts Enhance the Cytotoxic Activity of Doxorubicin in Nonsmall Cell Lung Cancer Cells A459. Pharmacogn. Res. 2017, 9, S92–S98. [Google Scholar] [CrossRef]
- Leri, M.; Ramazzotti, M.; Vasarri, M.; Peri, S.; Barletta, E.; Pretti, C.; Degl’Innocenti, D. Bioactive Compounds from Posidonia oceanica (L.) Delile Impair Malignant Cell Migration through Autophagy Modulation. Mar. Drugs 2018, 16, 137. [Google Scholar] [CrossRef] [Green Version]
- Galasso, C.; Nuzzo, G.; Brunet, C.; Ianora, A.; Sardo, A.; Fontana, A.; Sansone, C. The Marine Dinoflagellate Alexandrium minutum Activates a Mitophagic Pathway in Human Lung Cancer Cells. Mar. Drugs 2018, 16, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyshlovoy, S.A. Blue-Print Autophagy in 2020: A Critical Review. Mar. Drugs 2020, 18, 482. https://doi.org/10.3390/md18090482
Dyshlovoy SA. Blue-Print Autophagy in 2020: A Critical Review. Marine Drugs. 2020; 18(9):482. https://doi.org/10.3390/md18090482
Chicago/Turabian StyleDyshlovoy, Sergey A. 2020. "Blue-Print Autophagy in 2020: A Critical Review" Marine Drugs 18, no. 9: 482. https://doi.org/10.3390/md18090482
APA StyleDyshlovoy, S. A. (2020). Blue-Print Autophagy in 2020: A Critical Review. Marine Drugs, 18(9), 482. https://doi.org/10.3390/md18090482