Spinochrome Identification and Quantification in Pacific Sea Urchin Shells, Coelomic Fluid and Eggs Using HPLC-DAD-MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spinochrome Isolation
2.2. HPLC-DAD-MS Method Development and Validation
2.3. Quinonoid Pigments of Sea Urchin Shells and Spines
2.3.1. Order Camarodonta
Strongylocentrotidae
Toxopneustidae
2.3.2. Order Cidaroida
2.3.3. Order Diadematoida
Diadema Genus
Echinothrix Genus
2.3.4. Order Stomopneustoida
2.3.5. Order Clypeasteroida
2.3.6. Order Spatangoida
2.4. Total Quinonoid Pigments Content in Shells of Sea Urchins
2.5. Quinonoid Pigments of CF of Sea Urchins
2.6. Quinonoid Pigments of Eggs and Embryos of Sea Urchins
3. Materials and Methods
3.1. Materials
3.2. HPLC-DAD-MS Analysis
3.3. HPLC Method Validation
3.4. Animal Material
3.5. Quinonoid Pigments Extraction
3.6. Total Quinonoid Pigments Content
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MacMunn, C.A. On the chromatology of the blood of some invertebrates. Quart. J. Micr. Sci. 1885, 25, 469–490. [Google Scholar]
- Thomson, R.H. Naturally Occurring Quinones, 2nd ed.; Academic Press: London, UK, 1971; p. 734. [Google Scholar]
- Anderson, H.A.; Mathieson, J.W.; Thomson, R.H. Distribution of spinochrome pigments in echinoids. Comp. Biochem. Physiol. 1969, 28, 333–345. [Google Scholar] [CrossRef]
- Service, M.; Wardlaw, A.C. Echinochrome A as a bactericidal substance in the coelomic fluid of Echinus esculentus (L.). Comp. Biochem. Physiol. Part B Comp. Biochem. 1984, 79, 161–165. [Google Scholar] [CrossRef]
- Drozdov, A.L.; Vinnikova, V.V. Morphology of gametes in sea urchins from Peter the Great Bay, Sea of Japan. Russ. J. Dev. Biol. 2010, 41, 37–45. [Google Scholar] [CrossRef]
- Dautov, S.S.; Kashenko, S.D. Development of the Sand Dollar Scaphechinus mirabilis. Russ. J. Mar. Biol. 2008, 34, 415–420. [Google Scholar] [CrossRef]
- Takata, H.; Kominami, T. Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos. Zool. Sci. 2004, 21, 1025–1035. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, A.V.; Ivanova, M.V.; Krasnovid, N.I. Interaction of natural polyhydroxy-1, 4-naphthoquinones with superoxide anion-radical. Biochemistry 1999, 64, 1273–1278. [Google Scholar]
- Lebedev, A.V.; Ivanova, M.V.; Levitsky, D.O. Iron chelators and free radical scavengers in naturally occurring polyhydroxylated 1,4-naphthoquinones. Hemoglobin 2008, 32, 165–179. [Google Scholar] [CrossRef]
- Vasileva, E.A.; Mishchenko, N.P.; Zadorozhny, P.A.; Fedoreyev, S.A. New aminonaphthoquinone from the sea urchins Strongylocentrotus pallidus and Mesocentrotus nudus. Nat. Prod. Commun. 2016, 11, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Fedoreyev, S.A.; Krylova, N.V.; Mishchenko, N.P.; Vasileva, E.A.; Pislyagin, E.A.; Iunikhina, O.V.; Lavrov, V.F.; Svitich, O.A.; Ebralidze, L.K.; Leonova, G.N. Antiviral and antioxidant properties of Echinochrome A. Mar. Drugs 2018, 16, 509. [Google Scholar] [CrossRef] [Green Version]
- Brasseur, L.; Hennebert, E.; Fievez, L.; Caulier, G.; Bureau, F.; Tafforeau, L.; Flammang, P.; Gerbaux, P.; Eeckhaut, I. The roles of spinochromes in four shallow water tropical sea urchins and their potential as bioactive pharmacological agents. Mar. Drugs 2017, 15, 179. [Google Scholar] [CrossRef] [Green Version]
- Vo, H.M.N.; Tran, V.T.T.; Cao, H.T.T.; Mischenko, N.P.; Fedoreyev, S.A.; Truong, B.H. Polyhydroxynaphthoquinone pigment from Vietnam sea urchins as a potential bioactive ingredient in cosmeceuticals. Nat. Prod. Commun. 2020, 15, 1–8. [Google Scholar]
- Mishchenko, N.P.; Krylova, N.V.; Iunikhina, O.V.; Vasileva, E.A.; Likhatskaya, G.N.; Pislyagin, E.A.; Tarbeeva, D.V.; Dmitrenok, P.S.; Fedoreyev, S.A. Antiviral potential of sea urchin aminated spinochromes against herpes simplex virus type 1. Mar. Drugs 2020, 18, 550. [Google Scholar] [CrossRef]
- Jeong, S.H.; Kim, H.K.; Song, I.S.; Lee, S.J.; Ko, K.S.; Rhee, B.D.; Kim, N.; Mishchenko, N.P.; Fedoreyev, S.A.; Stonik, V.A.; et al. Echinochrome A protects mitochondrial function in cardiomyocytes against cardiotoxic drugs. Mar. Drugs 2014, 12, 2922–2936. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Vasileva, E.A.; Carne, A.; McConnell, M.; Bekhit, A.E.A.; Mishchenko, N.P. Naphthoquinones of the spinochrome class: Occurrence, isolation, biosynthesis and biomedical applications. RSC Adv. 2018, 8, 32637–32650. [Google Scholar] [CrossRef] [Green Version]
- Shikov, A.N.; Pozharitskaya, O.N.; Krishtopina, A.S.; Makarov, V.G. Naphthoquinone pigments from sea urchins: Chemistry and pharmacology. Phytochem. Rev. 2018, 17, 509–534. [Google Scholar] [CrossRef]
- Aminin, D.; Polonik, S. 1,4-Naphthoquinones: Some biological properties and application. Chem. Pharm. Bull. 2020, 68, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Mishchenko, N.P.; Fedoreev, S.A.; Glazunov, V.P.; Denisenko, V.A.; Krasovskaya, N.P.; Glebko, L.I.; Maslov, L.G.; Dmitrenok, P.S.; Bagirova, V.L. Isolation and identification of impurities in the parent substance of echinochrome and in the drug histochrome. Pharm. Chem. J. 2004, 38, 50–53. [Google Scholar] [CrossRef]
- Mishchenko, N.P.; Vasileva, E.A.; Fedoreev, S.A. Mirabiquinone, a new unsymmetrical binaphthoquinone from the sea urchin Scaphechinus mirabilis. Tetrahedron Lett. 2014, 55, 5967–5969. [Google Scholar] [CrossRef]
- Mischenko, N.P.; Fedoreyev, S.A.; Pokhilo, N.D.; Anufriev, V.P.; Denisenko, V.A.; Glazunov, V.P. Echinamines A and B, first aminated hydroxynaphthazarins from the sea urchin Scaphechinus mirabilis. J. Nat. Prod. 2005, 68, 1390–1393. [Google Scholar] [CrossRef]
- Novikov, V.L.; Shestak, O.P.; Mishchenko, N.P.; Fedoreev, S.A.; Vasileva, E.A.; Glazunov, V.P.; Artyukov, A.A. Oxidation of 7-ethyl-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone (echinochrome A) by atmospheric oxygen 1. Structure of dehydroechinochrome. Russ. Chem. Bull. 2018, 67, 282–290. [Google Scholar] [CrossRef]
- Vasileva, E.A.; Mishchenko, N.P.; Fedoreyev, S.A. Diversity of polyhydroxynaphthoquinone pigments in North Pacific sea urchins. Chem. Biodivers. 2017, 14, e1700182. [Google Scholar] [CrossRef]
- Borisova, K.L.; Melman, G.I.; Pelageev, D.N.; Mashnev, B.P.; Anufriev, V.P. Simple route to benzo[g]chromene-5,10-diones. Synthesis of biquinone of a new structural class, metabolite of the sea urchin Mesocentrotus nudus and related compounds. (manuscript in preparation).
- Kol’tsova, E.A.; Chumak, G.N.; Maksimov, O.B. Quinoid pigments of echinodermata III. Minor pigments of the sea urchin Strongylocentrotus nudus. Chem. Nat. Compd. 1977, 13, 174–177. [Google Scholar] [CrossRef]
- Zhou, D.Y.; Qin, L.; Zhu, B.W.; Wang, X.D.; Tan, H.; Yang, J.F.; Li, D.M.; Dong, X.P.; Wu, H.T.; Sun, L.M.; et al. Extraction and antioxidant property of polyhydroxylated naphthoquinone pigments from spines of purple sea urchin Strongylocentrotus nudus. Food Chem. 2011, 129, 1591–1597. [Google Scholar] [CrossRef]
- Bazhin, A.G. Distribution patterns of Strongylocentrotus sea urchins along the coast of Eastern Kamchatka. Russ. J. Mar. Biol. 2002, 28, 298–307. [Google Scholar] [CrossRef]
- Utkina, N.K.; Shchedrin, A.P.; Maksimov, O.B. A new binaphthoquinone from Strongylocentrotus intermedius. Chem. Nat. Compd. 1976, 12, 387–389. [Google Scholar] [CrossRef]
- Li, D.M.; Zhou, D.Y.; Zhu, B.W.; Miao, L.; Qin, L.; Dong, X.P.; Wang, X.D.; Murata, Y. Extraction, structural characterization and antioxidant activity of polyhydroxylated 1,4-naphthoquinone pigments from spines of sea urchin Glyptocidaris crenularis and Strongylocentrotus intermedius. Eur. Food Res. Technol. 2013, 237, 331–339. [Google Scholar] [CrossRef]
- Ziegenhorn, M.A. Best dressed test: A study of the covering behavior of the collector urchin Tripneustes gratilla. PLoS ONE 2016, 11, e0153581. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Soong, K. “Uncovering” behavior at spawning of the trumpet sea urchin Toxopneustes pileolus. Zool. Stud. 2010, 49, 1–9. [Google Scholar]
- Kol’tsova, E.A.; Krasovskaya, N.P. Quinoid pigments from the sea urchin Toxopneustes pileolus. Chem. Nat. Compd. 2009, 45, 427–428. [Google Scholar] [CrossRef]
- Muthiga, N.A. Coexistence and reproductive isolation of the sympatric echinoids Diadema savignyi Michelin and Diadema setosum (Leske) on Kenyan coral reefs. Mar. Biol. 2003, 143, 669–677. [Google Scholar] [CrossRef]
- Nishibori, K. Isolation of echinochrome A from the spines of the sea urchin, Diadema setosum (Leske). Nature 1959, 184, 1234. [Google Scholar] [CrossRef]
- Koltsova, E.; Maximov, O. Quinoid pigments of Echinodermata. 8. Pigments of the sea urchins Diadema setosum и Diadema savignije. Chem. Nat. Compd. 1981, 1, 115. [Google Scholar]
- Moore, R.E.; Singh, H.; Scheuer, P.J. Isolation of eleven new spinochromes from echinoids of the genus Echinothrix. J. Org. Chem. 1966, 31, 3645–3650. [Google Scholar] [CrossRef]
- Nishibori, K. Isolation of echinochrome A from the spines of the sea urchin, Stomopneustes variolaris (Lamarck). Nature 1961, 192, 1293–1294. [Google Scholar] [CrossRef]
- Lambert, P.; Austin, W.C. Brittle Stars, Sea Urchins and Feather Stars of British Columbia, Southeast Alaska and Puget Sound. Royal British Columbia Museum; UBC Press: Vancouver, BC, Canada, 2007. [Google Scholar]
- Takeda, S. Mechanism maintaining dense beds of the sand dollar Scaphechinus mirabilis in northern Japan. J. Exp. Mar. Biol. Ecol. 2008, 363, 21–27. [Google Scholar] [CrossRef]
- Nishibori, K. Studies on pigments of marine animals-III. Echinochrome A from the spine of sand-dollar, Echinarachnius mirabilis. Bull. Jpn. Soc. Sci. Fish. 1957, 22, 708–712. [Google Scholar] [CrossRef] [Green Version]
- Egea, E.; David, B.; Choné, T.; Laurin, B.; Féral, J.P.; Chenuil, A. Morphological and genetic analyses reveal a cryptic species complex in the echinoid Echinocardium cordatum and rule out a stabilizing selection explanation. Mol. Phylogenet. Evol. 2016, 94, 207–220. [Google Scholar] [CrossRef]
- Moore, R.E.; Singh, H.; Scheuer, P.J. A pyranonaphthazarin pigment from the sea urchin Echinothrix diadema. Tetrahedron Lett. 1968, 9, 4581–4583. [Google Scholar] [CrossRef]
- Yakubovskaya, A.Y.; Pokhilo, N.D.; Mishchenko, N.P.; Anufriev, V.F. Spinazarin and ethylspinazarin, pigments of the sea urchin Scaphechinus mirabilis. Russ. Chem. Bull. 2007, 56, 819–822. [Google Scholar] [CrossRef]
- Mishchenko, N.P.; Vasileva, E.A.; Gerasimenko, A.V.; Grigorchuk, V.P.; Dmitrenok, P.S.; Fedoreyev, S.A. Isolation and structure determination of Echinochrome A oxidative degradation products. Molecules 2020, 25, 4778. [Google Scholar] [CrossRef] [PubMed]
- Brasseur, L.; Caulier, G.; Flammang, P.; Gerbaux, P.; Eeckhaut, I. Mapping of spinochromes in the body of three tropical shallow water sea urchins. Nat. Prod. Commun. 2018, 13, 1659–1665. [Google Scholar] [CrossRef] [Green Version]
- Brasseur, L.; Demeyer, M.; Decroo, C.; Caulier, G.; Flammang, P.; Gerbaux, P.; Eeckhaut, I. Identification and quantification of spinochromes in body compartments of Echinometra mathaei’s coloured types. R. Soc. Open Sci. 2018, 5, 171213. [Google Scholar] [CrossRef] [Green Version]
- Brasseur, L.; Caulier, G.; Lepoint, G.; Gerbaux, P.; Eeckhaut, I. Echinometra mathaei and its ectocommensal shrimps: The role of sea urchin spinochrome pigments in the symbiotic association. Sci. Rep. 2018, 8, 17540. [Google Scholar] [CrossRef]
- Hira, J.; Wolfson, D.; Andersen, A.J.C.; Haug, T.; Stensvåg, K. Autofluorescence mediated red spherulocyte sorting provides insights into the source of spinochromes in sea urchins. Sci. Rep. 2020, 10, 1149. [Google Scholar] [CrossRef]
- Shikov, A.N.; Ossipov, V.I.; Martiskainen, O.; Pozharitskaya, O.N.; Ivanova, S.A.; Makarov, V.G. The offline combination of thin-layer chromatography and high-performance liquid chromatography with diode array detection and micrOTOF-Q mass spectrometry for the separation and identification of spinochromes from sea urchin (Strongylocentrotus droebachiensis) shells. J. Chromatogr. A 2011, 1218, 9111–9114. [Google Scholar]
- Amarowicz, R.; Synowiecki, J.; Shahidi, F. Sephadex LH-20 separation of pigments from shells of red sea urchin (Strongylocentrotus franciscanus). Food Chem. 1994, 51, 227–229. [Google Scholar] [CrossRef]
- Powell, C.; Hughes, A.D.; Kelly, M.S.; Conner, S.; McDougall, G.J. Extraction and identification of antioxidant polyhydroxynaphthoquinone pigments from the sea urchin Psammechinus miliaris. LWT Food Sci. Technol. 2014, 59, 455–460. [Google Scholar] [CrossRef]
- Matranga, V.; Pinsino, A.; Celi, M.; Natoli, A.; Bonaventura, R.; Schröder, H.C.; Müller, W.E.G. Monitoring chemical and physical stress using sea urchin immune cells. In Echinodermata; Springer: Berlin, Germany, 2005; pp. 85–110. [Google Scholar]
- Matranga, V.; Toia, G.; Bonaventura, R.; Müller, W.E. Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperon. 2000, 5, 113–120. [Google Scholar] [CrossRef]
- Service, M.; Wardlaw, A.C. Bactericidal activity of coelomic fluid of the sea urchin, Echinus esculentus, on different marine bacteria. J. Mar. Biol. Assoc. U. K. 1985, 65, 133–139. [Google Scholar] [CrossRef]
- Boolootian, R.A.; Giese, A.C. Coelomic corpuscles of echinoderms. Biol. Bull. 1958, 115, 53–63. [Google Scholar] [CrossRef]
- Hibino, T.; Loza-Coll, M.; Messier, C.; Majeske, A.J.; Cohen, A.H.; Terwilliger, D.P.; Buckley, K.M.; Brockton, V.; Nair, S.V.; Berney, K.; et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev. Biol. 2006, 300, 349–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Haug, T.; Styrvold, O.B.; Jørgensen, T.Ø.; Stensvåg, K. Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev. Comp. Immunol. 2008, 32, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Coates, C.J.; McCulloch, C.; Betts, J.; Whalley, T. Echinochrome A release by red spherule cells is an iron-withholding strategy of sea urchin innate immunity. J. Innate Immun. 2018, 10, 119–130. [Google Scholar] [CrossRef]
- Koltsova, E.A.; Boguslavskaya, L.V.; Maximov, O.B. On the functions of quinonoid pigments in sea urchin embryos. Int. J. Invertebr. Repr. 1981, 4, 17–23. [Google Scholar] [CrossRef]
- Drozdov, A.L.; Artyukov, A.A.; Elkin, Y.N. Pigments in egg cells and epidermis of sand dollar Scaphechinus mirabilis. Russ. J. Dev. Biol. 2017, 48, 257–262. [Google Scholar] [CrossRef]
- Kominami, T.; Takata, H. Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis. Dev. Growth Differ. 2002, 44, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Ageenko, N.V.; Kiselev, K.V.; Dmitrenok, P.S.; Odintsova, N.A. Pigment cell differentiation in sea urchin blastula-derived primary cell cultures. Mar. Drugs 2014, 12, 3874–3891. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.L.; Smith, A.C. Sensitization and histamine release by cells of the sand dollar, Mellita quinquiesperforata. Dev. Comp. Immunol. 1985, 9, 597–603. [Google Scholar] [CrossRef]
Standard Sample | Equation of Peak Area Versus Concentration | R2 | LOD * (ng/mL) | LOQ ** (ng/mL) |
---|---|---|---|---|
1 | y = 7.3003x − 0.1007 | 0.9992 | 48 | 159 |
3 | y = 6.5882x − 0.2588 | 0.9990 | 40 | 134 |
11 | y = 4.5986x − 0.4385 | 0.9984 | 72 | 240 |
16 | y = 9.5797x − 0.2320 | 0.9991 | 22 | 72 |
No | Rt, min | m/z [M − H]– | λmax, nm | Formula | Compound |
---|---|---|---|---|---|
1 | 5.56 | 253 | 264, 350, 478 | C10H6O8 | Spinochrome E |
2 | 6.67 | 252 | 275, 370, 473 | C10H7NO7 | Spinamine E |
3 | 7.09 | 237 | 251, 327, 463 | C10H6O7 | Spinochrome D |
4 | 7.45 | 221 | 265, 320, 390, 471 | C10H6O6 | Spinochrome B |
5 | 7.53 | 299 | 256, 321, 391 | C12H12O9 | Dehydroechinochrome |
6 | 8.11 | 535 | 260, 333, 394, 473 | - | Not identified |
7 | 8.40 | 221 | 270, 315, 515, 559 | C10H6O6 | Mompain |
8 | 8.49 | 262 | 272, 319, 511 | C12H9NO6 | Acetylaminotrihydroxynaphthoquinone |
9 | 8.86 | 483 | 264, 325, 452 | C22H12O13 | Mirabiquinone |
10 | 9.77 | 279 | 290, 456 | C12H8O8 | Spinochrome C |
11 | 9.83 | 483 | 265, 316, 470 | C22H12O13 | 7,7′-Anhydroethylidene-6,6′-bis(2,3,7-trihydroxynaphthazarin) |
12 | 10.14 | 499 | 264, 304, 408, 469, 532 | - | Not identified |
13 | 10.40 | 247 | 219, 268, 299 | C12H8O6 | 2-Acetyl-3-hydroxynaphthazarin |
14 | 10.42 | 501 | 254, 339, 471 | C22H14O14 | Ethylidene-3,3′-bis(2,6,7-trihydroxynaphthazarin) |
15 | 10.46 | 765 | 217, 273, 344, 473 | - | Not identified |
16 | 10.62 | 265 | 254, 338, 471 | C12H10O7 | Echinochrome A |
17 | 10.64 | 263 | 266, 312, 508 | C12H8O7 | Spinochrome A |
18 | 11.06 | 527 | 260, 335, 495, 542 | - | Not identified |
19 | 11.35 | 264 | 278, 352, 477 | C12H11NO6 | Echinamine A |
20 | 11.56 | 279 | 252, 330, 491, 525 | C13H12O7 | 7-Ethyl-3,5,6,8-tetrahydroxy-2-methoxy-1,4-naphthoquinone |
21 | 11.66 | 264 | 274, 352, 477 | C12H11NO6 | Echinamine B |
22 | 11.73 | 279 | 256, 332, 474, 497, 538 | C13H12O7 | 7-Ethyl-2,5,6,8-tetrahydroxy-3-methoxy-1,4-naphthoquinone |
Family Species | Content of Main Spinochromes, % of Pigment Sum | Other Pigments, % | Total PHNQ Content, µg/g | |||||
---|---|---|---|---|---|---|---|---|
Ech A (16) | A (17) | B (4) | C (10) | D (3) | E (1) | |||
REGULAR SEA URCHINS | ||||||||
Order Camarodonta | ||||||||
Strongylocentrotidae Mesocentrotus nudus | 21.0 ± 3.7 | 10.5 ± 2.2 | 2.1 ± 0.3 | 3.5 ± 2.2 | 2.1 ± 0.6 | 54.2 ± 13.1 | 2 (2.2 ± 1.8), 18 (4.4 ± 3.5) | 89.9 ± 13.3 |
Strongylocentrotus intermedius | 3.3 ± 0.3 | 4.0 ± 1.3 | 9.2 ± 1.5 | 16.5 ± 5.7 | 3.1 ± 1.6 | 9 (3.9 ± 0.6), 11 (51.3 ± 7.7), 18 (8.8 ± 5.2) | 175.7 ± 11.3 | |
Toxopneustidae Toxopneustes pileolus | 79.5 ± 5.3 | 3.7 ± 0.2 | 4.8 ± 1.7 | 6.4 ± 2.1 | 14 (5.6 ± 2.2) | 90.2 ± 7.3 | ||
Tripneustes gratilla | 26.1 ± 4.3 | 67.2 ± 11.8 | 2 (4.7 ± 2.1), 7 (2.0 ± 1.8) | 93.3 ± 6.8 | ||||
Order Cidaroida | ||||||||
Cidaridae Phyllacanthus imperialis | 74.7 ± 5.7 | 23.1 ± 3.8 | 8 (3.2 ± 0.2) | 87.3 ± 5.5 | ||||
Order Diadematoida | ||||||||
Diadematidae Diadema savignyi | 80.2 ± 6.9 | 1.1 ± 0.7 | 3.5 ± 2.2 | 5 (3.3 ± 0.3), 11 (2.9 ± 2.5), 12 (3.0 ± 0.9) 20 (3.4 ± 0.1), 22 (2.6 ± 0.2) | 1129.9 ± 63.8 | |||
Diadema setosum | 92.1 ± 4.2 | 3.8 ± 2.2 | 20 (4.1 ± 0.3) | 1267.1 ± 88.1 | ||||
Echinothrix calamaris | 65.3 ± 9.6 | 6.2 ± 1.2 | 13.9 ± 3.7 | 11 (2.9 ± 1.9), 13 (3.5 ± 0.3), 14 (8.2 ± 0.3) | 138.8 ± 7.3 | |||
Echinothrix diadema | 39.9 ± 11.3 | 9.7 ± 2.9 | 7.4 ± 1.5 | 5 (1.7 ± 1.5), 11 (36.9 ± 8.8), 12 (1.4 ± 0.3), 15 (3.0 ± 1.4) | 116.6 ± 5.9 | |||
Order Stomopneustoida | ||||||||
Stomopneustidae Stomopneustes variolaris | 81.4 ± 9.1 | 10.3 ± 6.8 | 5 (9.3 ± 0.8) | 66.7 ± 5.1 | ||||
IRREGULAR SEA URCHINS | ||||||||
Order Clypeasteroida | ||||||||
Echinarachniidae Echinarachnius parma | 14.6 ± 5.2 | 13.3 ± 1.9 | 1.3 ± 0.7 | 9 (3.0 ± 1.3), 11 (61.7 ± 18.0), 18 (6.1 ± 0.6) | 116.6 ± 7.4 | |||
Laganidae Laganum decagonale | 32.4 ± 7.3 | 28.3 ± 8.1 | 11.7 ± 4.7 | 27.6 ± 4.3 | 27.9 ± 8.8 | |||
Scutellidae Scaphechinus mirabilis | 89.1 ± 8.7 | 1.8 ± 0.9 | 9 (2.0 ± 0.2), 11 (2.3 ± 1.1), 14 (1.8 ± 0.4), 19 (1.1 ± 0.1), 21 (1.9 ± 0.1), | 1525.9 ± 93.4 | ||||
Scaphechinus griseus | 28.6 ± 12.1 | 18.3 ± 6.2 | 4.3 ± 0.4 | 11 (45.5 ± 13.4), 14 (3.3 ± 0.3) | 87.3 ± 5.5 | |||
Order Spatangoida | ||||||||
Loveniidae Echinocardium cordatum | 78.1 ± 6.7 | 1.7 ± 0.2 | 20.2 ± 10.9 | 37.8 ± 6.8 | ||||
Maretiidae Maretia planulata | 94.3 ± 5.4 | 5.7 ± 0.9 | 42.6 ± 3.7 |
Species | E. cordatum (n = 63) | E. parma (n = 77) | M. nudus (n = 61) | S. intermedius (n = 39) | S. mirabilis (n = 85) |
---|---|---|---|---|---|
Quinonoid pigments content,µg/mL | 8–38 | 4–31 | 14–103 | 5–27 | 10–93 |
Species | Collection Area and Period | Coordinates | Depth, m |
---|---|---|---|
South China Sea | |||
Astropyga radiata (Leske, 1778) | Nha Trang Bay, June 2014 | 12°11′49″ N, 109°15′55″ E | 12 |
Diadema savignyi (Audouin, 1829) | Hon Tre I., July 2013 | 12°13′58.5″ N, 109°14′02.0″ E | 5 |
Diadema setosum (Leske, 1778) | Hon Tre I., July 2013 Ly Son I., November 2016 | 12°13′58.5″ N, 109°14′02.0″ E 15°22′06.9″ N 109°06′62.5″ E | 5 15 |
Echinothrix calamaris (Pallas, 1774) | Nha Trang Bay, July 2013 Ly Son I., November 2016 | 09°55′26.7″ N, 104°01′57.7″ E 15°22′06.9″ N 109°06′62.5″ E | 8 15 |
Echinothrix diadema (Linnaeus, 1758) | Nha Trang Bay, July 2013 Con Co I., November 2016 | 12°11′47.3″ N, 109°16′01.7″ E 17°08′95.3″ N 107°20′56.5″ E | 10 10 |
Laganum decagonale (Blainville, 1827) | Con Co I., November 2016 | 17°02′5″ N 107°36′2″ E | 55 |
Maretia planulata (Lamarck, 1816) | Hon Tre I., July 2013 | 12°11′47.3″ N, 109°16′01.7″ E | 17 |
Phyllacanthus imperialis (Lamarck, 1816) | Hon Tre I., July 2013 | 12°11′47.3″ N, 109°16′01.7″ E | 11 |
Stomopneustes variolaris (Lamarck, 1816) | Hon Tre I., July 2013 | 12°13′58.5″ N, 109°14′02.0″ E | 8 |
Toxopneustes pileolus (Lamarck, 1816) | Nam Du I., July 2013 Ly Son I., November 2016 | 09°44′43.8″ N, 104°21′72.6″ E 15°22′06.9″ N 109°06′62.5″ E | 7 9 |
Tripneustes gratilla (Linnaeus, 1758) | Ca Na Bay, July 2013 Cu Lao Cham I., November 2016 | 11°13′92.4″ N, 108°50′28.0″ E 15°54′14.4″ N 108°32′03.0″ E | 20 7 |
Sea of Japan | |||
Echinarachnius parma (Lamarck, 1816) | Troitsa Bay, August 2014–2020 | 42°37′29.8″ N, 131°07′29.1″ E | 1–16 |
Echinocardium cordatum (Pennant, 1777) | Troitsa Bay, August 2014–2020 | 42°37′29.8″ N, 131°07′29.1″ E | 1–20 |
Mesocentrotus nudus (A. Agassiz, 1864) | Troitsa Bay, August 2014–2020 | 42°37′29.8″ N, 131°07′29.1″ E | 1–12 |
Scaphechinus mirabilis (A. Agassiz, 1864) | Troitsa Bay, August 2014–2020 | 42°37′29.8″ N, 131°07′29.1″ E | 1–12 |
Scaphechinus griseus (Mortensen, 1927) | Troitsa Bay, August 2014–2020 | 42°37′29.8″ N, 131°07′29.1″ E | 1–17 |
Strongylocentrotus intermedius (A. Agassiz, 1864) | Troitsa Bay, August 2014–2020 | 42°37′29.8″ N, 131°07′29.1″ E | 1–10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasileva, E.A.; Mishchenko, N.P.; Tran, V.T.T.; Vo, H.M.N.; Fedoreyev, S.A. Spinochrome Identification and Quantification in Pacific Sea Urchin Shells, Coelomic Fluid and Eggs Using HPLC-DAD-MS. Mar. Drugs 2021, 19, 21. https://doi.org/10.3390/md19010021
Vasileva EA, Mishchenko NP, Tran VTT, Vo HMN, Fedoreyev SA. Spinochrome Identification and Quantification in Pacific Sea Urchin Shells, Coelomic Fluid and Eggs Using HPLC-DAD-MS. Marine Drugs. 2021; 19(1):21. https://doi.org/10.3390/md19010021
Chicago/Turabian StyleVasileva, Elena A., Natalia P. Mishchenko, Van T. T. Tran, Hieu M. N. Vo, and Sergey A. Fedoreyev. 2021. "Spinochrome Identification and Quantification in Pacific Sea Urchin Shells, Coelomic Fluid and Eggs Using HPLC-DAD-MS" Marine Drugs 19, no. 1: 21. https://doi.org/10.3390/md19010021
APA StyleVasileva, E. A., Mishchenko, N. P., Tran, V. T. T., Vo, H. M. N., & Fedoreyev, S. A. (2021). Spinochrome Identification and Quantification in Pacific Sea Urchin Shells, Coelomic Fluid and Eggs Using HPLC-DAD-MS. Marine Drugs, 19(1), 21. https://doi.org/10.3390/md19010021