A Novel C1q Domain-Containing Protein Isolated from the Mollusk Modiolus kurilensis Recognizing Glycans Enriched with Acidic Galactans and Mannans
Abstract
:1. Introduction
2. Results
2.1. MkC1qDC Purification and Electrophoretic Properties
2.2. Sequencing Analysis
2.3. Physicochemical Properties
2.4. Carbohydrate Specificity
2.5. Bacterial Agglutination and Antimicrobial Activity
2.6. Antibody Production and Immunohistochemical Localization of MkC1qDC in Mussel Tissues
2.7. Antiproliferative Activity on HeLa Cell Line
3. Discussion
4. Materials and Methods
4.1. Purification and Electrophoretic Properties of the MkC1qDC
4.2. Amino Acid Sequencing
4.3. Hemagglutination, Carbohydrate Specificity Assay, pH and Temperature Effects
4.4. Bacterial Agglutination and Bacteriostatic Assays
4.5. Preparation and Validation of Polyclonal Antibodies
4.6. Immunohistochemistry and Protein Localization
4.7. Human Cell Culture and Proliferation Assay
4.8. Experimental Design and Statistical Rationales
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Song, X.; Wang, L.; Song, L. Pathogen-Derived Carbohydrate Recognition in Molluscs Immune Defense. Int. J. Mol. Sci. 2018, 19, 721. [Google Scholar] [CrossRef] [Green Version]
- Gerdol, M.; Venier, P.; Pallavicini, A. The genome of the Pacific oyster Crassostrea gigas brings new insights on the massive expansion of the C1q gene family in Bivalvia. Dev. Comp. Immunol. 2015, 49, 59–71. [Google Scholar] [CrossRef]
- Takeuchi, T.; Koyanagi, R.; Gyoja, F.; Kanda, M.; Hisata, K.; Fujie, M.; Goto, H.; Yamasaki, S.; Nagai, K.; Morino, Y.; et al. Bivalve-specific gene expansion in the pearl oyster genome: Implications of adaptation to a sessile lifestyle. Zool. Lett. 2016, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhang, Y.; Xu, T.; Zhang, Y.; Mu, H.; Zhang, Y.; Lan, Y.; Fields, C.J.; Hui, J.H.L.; Zhang, W.; et al. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nat. Ecol. Evol. 2017, 1, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mun, S.; Kim, Y.-J.; Markkandan, K.; Shin, W.; Oh, S.; Woo, J.; Yoo, J.; An, H.; Han, K. The Whole-Genome and Transcriptome of the Manila Clam (Ruditapes philippinarum). Genome Biol. Evol. 2017, 9, 1487–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, D.; Subramanian, S.; Suwansa-ard, S.; Zhao, M.; O’Connor, W.; Raftos, D.; Elizur, A. The genome of the oyster Saccostrea offers insight into the environmental resilience of bivalves. DNA Res. 2018, 25, 655–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerdol, M.; Greco, S.; Pallavicini, A. Extensive Tandem Duplication Events Drive the Expansion of the C1q-Domain-Containing Gene Family in Bivalves. Mar. Drugs 2019, 17, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Song, L.; Li, C.; Zhao, J.; Wang, H.; Qiu, L.; Ni, D.; Zhang, Y. A novel C1q-domain-containing protein from Zhikong scallop Chlamys farreri with lipopolysaccharide binding activity. Fish Shellfish Immunol. 2008, 25, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Zhang, H.; Wang, L.; Zhou, Z.; Yang, J.; Zhang, Y.; Qiu, L.; Wang, L.; Song, L. AiC1qDC-1, a novel gC1q-domain-containing protein from bay scallop Argopecten irradians with fungi agglutinating activity. Dev. Comp. Immunol. 2010, 34, 837–846. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Zhang, H.; Zhou, Z.; Siva, V.S.; Song, L. A C1q Domain Containing Protein from Scallop Chlamys farreri Serving as Pattern Recognition Receptor with Heat-Aggregated IgG Binding Activity. PLoS ONE 2012, 7, e43289. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Kong, P.; Yang, J.; Zhang, H.; Wang, M.; Zhou, Z.; Qiu, L.; Song, L. A novel C1qDC protein acting as pattern recognition receptor in scallop Argopecten irradians. Fish Shellfish Immunol. 2012, 33, 427–435. [Google Scholar] [CrossRef]
- Jiang, S.; Li, H.; Zhang, D.; Zhang, H.; Wang, L.; Sun, J.; Song, L. A C1q domain containing protein from Crassostrea gigas serves as pattern recognition receptor and opsonin with high binding affinity to LPS. Fish Shellfish Immunol. 2015, 45, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Gestal, C.; Pallavicini, A.; Venier, P.; Novoa, B.; Figueras, A. MgC1q, a novel C1q-domain-containing protein involved in the immune response of Mytilus galloprovincialis. Dev. Comp. Immunol. 2010, 34, 926–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, R.K.; Ferrier, G.A.; Kim, S.J.; Ogorzalek Loo, R.R.; Zimmer, C.A.; Loo, J.A. Keystone predation and molecules of keystone significance. Ecology 2017, 98, 1710–1721. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; He, Q.; Hao, R.; Zheng, Z.; Du, X. Molecular and functional analysis of PmC1qDC in nacre formation of Pinctada fucata martensii. Fish Shellfish Immunol. 2020, 106, 621–627. [Google Scholar] [CrossRef]
- Xiong, X.; Li, C.; Zheng, Z.; Du, X. Novel globular C1q domain-containing protein (PmC1qDC-1) participates in shell formation and responses to pathogen-associated molecular patterns stimulation in Pinctada fucata martensii. Sci. Rep. 2021, 11, 1105. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, Y.; Yu, F.; Yu, Z. A novel sialic acid binding lectin with anti-bacterial activity from the Hong Kong oyster (Crassostrea hongkongensis). Fish Shellfish Immunol. 2011, 31, 1247–1250. [Google Scholar] [CrossRef]
- Li, C.; Yu, S.; Zhao, J.; Su, X.; Li, T. Cloning and characterization of a sialic acid binding lectins (SABL) from Manila clam Venerupis philippinarum. Fish Shellfish Immunol. 2011, 30, 1202–1206. [Google Scholar] [CrossRef]
- Yang, J.; Wei, X.; Liu, X.; Xu, J.; Yang, D.; Yang, J.; Fang, J.; Hu, X. Cloning and transcriptional analysis of two sialic acid-binding lectins (SABLs) from razor clam Solen grandis. Fish Shellfish Immunol. 2012, 32, 578–585. [Google Scholar] [CrossRef]
- Gerdol, M.; Manfrin, C.; De Moro, G.; Figueras, A.; Novoa, B.; Venier, P.; Pallavicini, A. The C1q domain containing proteins of the Mediterranean mussel Mytilus galloprovincialis: A widespread and diverse family of immune-related molecules. Dev. Comp. Immunol. 2011, 35, 635–643. [Google Scholar] [CrossRef]
- Kilpatrick, D. Animal lectins: A historical introduction and overview. Biochim. Biophys. Acta-Gen. Subj. 2002, 1572, 187–197. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Wong, J.H.; Pan, W.; Chan, Y.S.; Yin, C.; Dan, X.; Ng, T.B. Marine lectins and their medicinal applications. Appl. Microbiol. Biotechnol. 2015, 99, 3755–3773. [Google Scholar] [CrossRef]
- Mayer, S.; Raulf, M.-K.; Lepenies, B. C-type lectins: Their network and roles in pathogen recognition and immunity. Histochem. Cell Biol. 2017, 147, 223–237. [Google Scholar] [CrossRef]
- Catanzaro, E.; Calcabrini, C.; Bishayee, A.; Fimognari, C. Antitumor Potential of Marine and Freshwater Lectins. Mar. Drugs 2019, 18, 11. [Google Scholar] [CrossRef] [Green Version]
- Kamei, R.; Devi, O.S.; Singh, S.J.; Singh, S.S. Roles and Biomedical Applications of Haemolymph Lectin. Curr. Pharm. Biotechnol. 2020, 21, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Gerdol, M.; Gomez-Chiarri, M.; Castillo, M.G.; Figueras, A.; Fiorito, G.; Moreira, R.; Novoa, B.; Pallavicini, A.; Ponte, G.; Roumbedakis, K.; et al. Immunity in Molluscs: Recognition and Effector Mechanisms, with a Focus on Bivalvia. In Advances in Comparative Immunology; Springer International Publishing: Cham, Switzerland, 2018; pp. 225–341. [Google Scholar]
- Tran, N.H.; Rahman, M.Z.; He, L.; Xin, L.; Shan, B.; Li, M. Complete De Novo Assembly of Monoclonal Antibody Sequences. Sci. Rep. 2016, 6, 31730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunkijjanukij, S.; Mikkelsen, H.V.; Olafsen, J.A. A Heterogeneous Sialic Acid-Binding Lectin with Affinity for Bacterial LPS from Horse Mussel (Modiolus modiolus) Hemolymph. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1997, 117, 273–286. [Google Scholar] [CrossRef]
- Tunkijjanukij, S.; Olafsen, J.A. Sialic acid-binding lectin with antibacterial activity from the horse mussel: Further characterization and immunolocalization. Dev. Comp. Immunol. 1998, 22, 139–150. [Google Scholar] [CrossRef]
- Ghosh, S. Sialic acid binding lectins (SABL) from Mollusca, a review and insilico study of SABL from Solen grandis and Limax flavus. J. Entomol. Zool. Stud. 2017, 5, 1563–1572. [Google Scholar]
- Allam, B.; Pales Espinosa, E.; Tanguy, A.; Jeffroy, F.; Le Bris, C.; Paillard, C. Transcriptional changes in Manila clam (Ruditapes philippinarum) in response to Brown Ring Disease. Fish Shellfish Immunol. 2014, 41, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Espinosa, E.P.; Tanguy, A.; Allam, B. Alterations of the immune transcriptome in resistant and susceptible hard clams (Mercenaria mercenaria) in response to Quahog Parasite Unknown (QPX) and temperature. Fish Shellfish Immunol. 2016, 49, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, L.; Zhang, D.; Jiang, Q.; Sun, R.; Wang, H.; Zhang, H.; Song, L. A novel multi-domain C1qDC protein from Zhikong scallop Chlamys farreri provides new insights into the function of invertebrate C1qDC proteins. Dev. Comp. Immunol. 2015, 52, 202–214. [Google Scholar] [CrossRef]
- Zhao, L.-L.; Jin, M.; Li, X.-C.; Ren, Q.; Lan, J.-F. Four C1q domain-containing proteins involved in the innate immune response in Hyriopsis cumingii. Fish Shellfish Immunol. 2016, 55, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, W.; Ren, Q. Identification and function of a novel C1q domain-containing (C1qDC) protein in triangle-shell pearl mussel (Hyriopsis cumingii). Fish Shellfish Immunol. 2016, 58, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wu, L.; Jin, M.; Hui, K.; Ren, Q. A C1qDC Protein (HcC1qDC6) with Three Tandem C1q Domains Is Involved in Immune Response of Triangle-Shell Pearl Mussel (Hyriopsis cumingii). Front. Physiol. 2017, 8, 521. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Xie, J.; Li, J.; Luo, M.; Ye, S.; Wu, X. Identification of expressed genes in cDNA library of hemocytes from the RLO-challenged oyster, Crassostrea ariakensis Gould with special functional implication of three complement-related fragments (CaC1q1, CaC1q2 and CaC3). Fish Shellfish Immunol. 2012, 32, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Leite, R.B.; Milan, M.; Coppe, A.; Bortoluzzi, S.; dos Anjos, A.; Reinhardt, R.; Saavedra, C.; Patarnello, T.; Cancela, M.; Bargelloni, L. mRNA-Seq and microarray development for the Grooved carpet shell clam, Ruditapes decussatus: A functional approach to unravel host -parasite interaction. BMC Genomics 2013, 14, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grinchenko, A.V.; Sokolnikova, Y.N.; Ilyaskina, D.V.; Kumeiko, V.V. Seasonal Changes in Hemolymph Parameters of the Bivalve Modiolus kurilensis Bernard, 1983 from Vostok Bay, Sea of Japan. Russ. J. Mar. Biol. 2021, 47, 300–311. [Google Scholar] [CrossRef]
- Liu, H.-H.; Xiang, L.-X.; Shao, J.-Z. A novel C1q-domain-containing (C1qDC) protein from Mytilus coruscus with the transcriptional analysis against marine pathogens and heavy metals. Dev. Comp. Immunol. 2014, 44, 70–75. [Google Scholar] [CrossRef]
- Sokolnikova, Y.; Magarlamov, T.; Stenkova, A.; Kumeiko, V. Permanent culture and parasitic impact of the microalga Coccomyxa parasitica, isolated from horse mussel Modiolus kurilensis. J. Invertebr. Pathol. 2016, 140, 25–34. [Google Scholar] [CrossRef]
- Baudelet, P.-H.; Ricochon, G.; Linder, M.; Muniglia, L. A new insight into cell walls of Chlorophyta. Algal Res. 2017, 25, 333–371. [Google Scholar] [CrossRef]
- Chatterjee, B.P.; Adhya, M. Lectins with Varying Specificity and Biological Activity from Marine Bivalves. In Marine Proteins and Peptides; John Wiley & Sons, Ltd.: Chichester, UK, 2013; pp. 41–68. [Google Scholar]
- Kobayashi, Y.; Tateno, H.; Ogawa, H.; Yamamoto, K.; Hirabayashi, J. Comprehensive List of Lectins: Origins, Natures, and Carbohydrate Specificities. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2014; Volume 1200, pp. 555–577. [Google Scholar]
- Iobst, S.T.; Wormald, M.R.; Weis, W.I.; Dwek, R.A.; Drickamer, K. Binding of sugar ligands to Ca(2+)-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR. J. Biol. Chem. 1994, 269, 15505–15511. [Google Scholar] [CrossRef]
- Iobst, S.T.; Drickamer, K. Binding of sugar ligands to Ca(2+)-dependent animal lectins. II. Generation of high-affinity galactose binding by site-directed mutagenesis. J. Biol. Chem. 1994, 269, 15512–15519. [Google Scholar] [CrossRef]
- Yabe, R.; Suzuki, R.; Kuno, A.; Fujimoto, Z.; Jigami, Y.; Hirabayashi, J. Tailoring a Novel Sialic Acid-Binding Lectin from a Ricin-B Chain-like Galactose-Binding Protein by Natural Evolution-Mimicry. J. Biochem. 2006, 141, 389–399. [Google Scholar] [CrossRef]
- Dennis, J.W.; Laferte, S.; Fucuda, M.; Dell, A.; Carver, J.P. Asn-linked oligosaccharides in lectin-resistant tumor-cell mutants with varying metastatic potential. Eur. J. Biochem. 1986, 161, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Dennis, J.W.; Laferte, S. Tumor cell surface carbohydrate and the metastatic phenotype. Cancer Metastasis Rev. 1987, 5, 185–204. [Google Scholar] [CrossRef]
- Yang, X.; Wu, L.; Duan, X.; Cui, L.; Luo, J.; Li, G. Adenovirus Carrying Gene Encoding Haliotis discus discus Sialic Acid Binding Lectin Induces Cancer Cell Apoptosis. Mar. Drugs 2014, 12, 3994–4004. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Mei, S.; Cui, L.; Zhao, Z.; Chen, J.; Wu, T.; Li, G. Marine Lectins DlFBL and HddSBL Fused with Soluble Coxsackie-Adenovirus Receptor Facilitate Adenovirus Infection in Cancer Cells BUT Have Different Effects on Cell Survival. Mar. Drugs 2017, 15, 73. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Mei, S.; Cheng, J.; Wu, T.; Luo, J. Haliotis discus discus Sialic Acid-Binding Lectin Reduces the Oncolytic Vaccinia Virus Induced Toxicity in a Glioblastoma Mouse Model. Mar. Drugs 2018, 16, 141. [Google Scholar] [CrossRef] [Green Version]
- Stavenhagen, K.; Laan, L.C.; Gao, C.; Mehta, A.Y.; Heimburg-Molinaro, J.; Glickman, J.N.; van Die, I.; Cummings, R.D. Tumor cells express pauci- and oligomannosidic N-glycans in glycoproteins recognized by the mannose receptor (CD206). Cell. Mol. Life Sci. 2021, 78, 5569–5585. [Google Scholar] [CrossRef]
- Sugahara, T.; Ohama, Y.; Fukuda, A.; Hayashi, M.; Kawakubo, A.; Kato, K. The cytotoxic effect of Eucheuma serra agglutinin (ESA) on cancer cells and its application to molecular probe for drug delivery system using lipid vesicles. Cytotechnology 2001, 36, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Omokawa, Y.; Miyazaki, T.; Walde, P.; Akiyama, K.; Sugahara, T.; Masuda, S.; Inada, A.; Ohnishi, Y.; Saeki, T.; Kato, K. In vitro and in vivo anti-tumor effects of novel Span 80 vesicles containing immobilized Eucheuma serra agglutinin. Int. J. Pharm. 2010, 389, 157–167. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, T.; Shortreed, M.R.; Alexander, C.; Smith, L.M. Analysis of Cell Surface Carbohydrate Expression Patterns in Normal and Tumorigenic Human Breast Cell Lines Using Lectin Arrays. Anal. Chem. 2007, 79, 5698–5702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.; Patwa, T.H.; Xu, L.; Shedden, K.; Misek, D.E.; Tuck, M.; Jin, G.; Ruffin, M.T.; Turgeon, D.K.; Synal, S.; et al. Plasma Glycoprotein Profiling for Colorectal Cancer Biomarker Identification by Lectin Glycoarray and Lectin Blot. J. Proteome Res. 2008, 7, 1693–1703. [Google Scholar] [CrossRef] [Green Version]
- Wingfield, P. Protein Precipitation Using Ammonium Sulfate. In Current Protocols in Protein Science; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998; pp. A.3F.1–A.3F.8. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Edman, P.; Begg, G. A Protein Sequenator. Eur. J. Biochem. 1967, 1, 80–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turriziani, B.; Garcia-Munoz, A.; Pilkington, R.; Raso, C.; Kolch, W.; von Kriegsheim, A. On-Beads Digestion in Conjunction with Data-Dependent Mass Spectrometry: A Shortcut to Quantitative and Dynamic Interaction Proteomics. Biology 2014, 3, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grinchenko, A.; Sokolnikova, Y.; Korneiko, D.; Kumeiko, V. Dynamics of the Immune Response of the Horse Mussel Modiolus kurilensis (Bernard, 1983) Following Challenge with Heat-Inactivated Bacteria. J. Shellfish. Res. 2015, 34, 909–917. [Google Scholar] [CrossRef]
- Yoshimizu, M.; Kimura, T. Study on the Intestinal Microflora of Salmonids. Fish Pathol. 1976, 10, 243–259. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.-Q.; Gan, H.R.; Kanost, M. Immulectin, an inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenol oxidase. Insect Biochem. Mol. Biol. 1999, 29, 585–597. [Google Scholar] [CrossRef]
- Cooper, H.M.; Paterson, Y. Production of Polyclonal Antisera. Curr. Protoc. Immunol. 1995, 13. [Google Scholar] [CrossRef] [PubMed]
- Grodzki, A.C.; Berenstein, E. Antibody Purification: Ammonium Sulfate Fractionation or Gel Filtration. In Methods in Molecular Biology (Clifton, N.J.); Humana Press Inc.: Totowa, NJ, USA, 2010; Volume 588, pp. 15–26. [Google Scholar]
- Lin, A.V. Indirect ELISA. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2015; Volume 1318, pp. 51–59. [Google Scholar]
Carbohydrates | IC50s | |
---|---|---|
Polysaccharides | alginate | <0.30 μg/mL |
κ-carrageenan | <0.66 μg/mL | |
fucoidan | <0.62 μg/mL | |
pectin | 1.6 μg/mL | |
mannan | 101 μg/mL | |
LPS | 125 μg/mL | |
PDG | 250 μg/mL | |
mucin type II | 493 μg/mL | |
hyaluronic acid | ― | |
chitosan | ― | |
agarose | ― | |
dextran | ― | |
Oligosaccharides | d-lactose | 15 mM, 5.13 mg/mL |
2α- mannobiose | 30 mM, 10.26 mg/mL | |
n-acetyl-d-lactosamine | ― | |
d-melibiose | ― | |
d-maltose | ― | |
d-raffinose | ― | |
Monosaccharides | N-acetylneuraminic (sialic) acid | 3.75 mM, 1.16 mg/mL |
d-galacturonic acid | 7.5 mM, 1.46 mg/mL | |
d-glucuronic acid | 7.5 mM, 1.46 mg/mL | |
l-gulose | 7.5 mM, 1.35 mg/mL | |
2-deoxy-d-galactose | 15 mM, 2.46 mg/mL | |
d-galactose | 30 mM, 5.40 mg/mL | |
d-mannose | ― | |
d-glucose | ― | |
d-fucose | ― | |
l-fucose | ― | |
N-acetyl-d-galactosamine | ― | |
N-acetyl-d-glucosamine | ― | |
N-acetyl-d-mannosamine | ― | |
d-glucosamine | ― | |
α-methyl-d-glucopyranose | ― | |
l-rhamnose | ― | |
d-ribose | ― | |
myo-inositol | ― | |
dl-arabinose | ― | |
d-xylose | ― | |
l-sorbose | ― | |
methyl-β-xylopyranose | ― | |
d-glucurono-6,3-lactone | ― |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grinchenko, A.V.; von Kriegsheim, A.; Shved, N.A.; Egorova, A.E.; Ilyaskina, D.V.; Karp, T.D.; Goncharov, N.V.; Petrova, I.Y.; Kumeiko, V.V. A Novel C1q Domain-Containing Protein Isolated from the Mollusk Modiolus kurilensis Recognizing Glycans Enriched with Acidic Galactans and Mannans. Mar. Drugs 2021, 19, 668. https://doi.org/10.3390/md19120668
Grinchenko AV, von Kriegsheim A, Shved NA, Egorova AE, Ilyaskina DV, Karp TD, Goncharov NV, Petrova IY, Kumeiko VV. A Novel C1q Domain-Containing Protein Isolated from the Mollusk Modiolus kurilensis Recognizing Glycans Enriched with Acidic Galactans and Mannans. Marine Drugs. 2021; 19(12):668. https://doi.org/10.3390/md19120668
Chicago/Turabian StyleGrinchenko, Andrei V., Alex von Kriegsheim, Nikita A. Shved, Anna E. Egorova, Diana V. Ilyaskina, Tatiana D. Karp, Nikolay V. Goncharov, Irina Y. Petrova, and Vadim V. Kumeiko. 2021. "A Novel C1q Domain-Containing Protein Isolated from the Mollusk Modiolus kurilensis Recognizing Glycans Enriched with Acidic Galactans and Mannans" Marine Drugs 19, no. 12: 668. https://doi.org/10.3390/md19120668
APA StyleGrinchenko, A. V., von Kriegsheim, A., Shved, N. A., Egorova, A. E., Ilyaskina, D. V., Karp, T. D., Goncharov, N. V., Petrova, I. Y., & Kumeiko, V. V. (2021). A Novel C1q Domain-Containing Protein Isolated from the Mollusk Modiolus kurilensis Recognizing Glycans Enriched with Acidic Galactans and Mannans. Marine Drugs, 19(12), 668. https://doi.org/10.3390/md19120668