Secondary Metabolites from the Marine Sponges of the Genus Petrosia: A Literature Review of 43 Years of Research
Abstract
:1. Introduction
2. Petrosia Metabolites
2.1. Polyacetylenes
2.1.1. Polyacetylenes Isolated from Temperate Petrosia Sponges
2.1.2. Polyacetylenes Isolated from Tropical Petrosia Sponges
2.2. Terpenoids and Related Compounds
2.2.1. Sterols Isolated from Tropical Petrosia Sponges
2.2.2. Sterols Isolated from Temperate Petrosia Sponges
2.2.3. Meroterpeonids Isolated from Tropical Petrosia Sponges
2.2.4. Saponins Isolated from Indonesian Petrosia sp.
2.3. Alkaloids and Peptides
2.3.1. Alkaloids Isolated from Tropical Petrosia Sponges
2.3.2. Peptides Isolated from a Korean Petrosia sp.
2.4. Fatty Acid Derivatives
3. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Lindequist, U. Marine-derived pharmaceuticals—Challenges and opportunities. Biomol. Ther. 2016, 24, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2019, 36, 122–173. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef] [PubMed]
- Grosberg, R.K.; Vermeij, G.J.; Wainwright, P.C. Biodiversity in water and on land. Curr. Biol. 2012, 22, R900–R903. [Google Scholar] [CrossRef] [Green Version]
- Proksch, P. Chemical defence in marine ecosystems (From APR Volume 3). Annu. Plant Rev. Online 2018, 3, 138–157. [Google Scholar] [CrossRef]
- Hay, M.E. Marine chemical ecology: What’s known and what’s next? J. Exp. Mar. Biol. Ecol. 1996, 200, 103–134. [Google Scholar] [CrossRef]
- Hentschel, U.; Hopke, J.; Horn, M.; Friedrich, A.B.; Wagner, M.; Hacker, J.; Moore, B.S. Molecular evidence for a uniform microbial community in sponges from different cceans. Appl. Environ. Microbiol. 2002, 68, 4431–4440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol. 2006, 33, 545–551. [Google Scholar] [CrossRef]
- Hardoim, C.C.P.; Costa, R.; Araújo, F.V.; Hajdu, E.; Peixoto, R.; Lins, U.; Rosado, A.S.; Van Elsas, J.D. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters. Appl. Environ. Microbiol. 2009, 75, 3331–3343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proksch, P.; Edrada, R.; Ebel, R. Drugs from the seas—current status and microbiological implications. Appl. Microbiol. Biotechnol. 2002, 59, 125–134. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, J.; Hu, G.; Yu, J.; Zhu, X.; Lin, Y.; Chen, S.; Yuan, J. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar. Drugs 2015, 13, 202–221. [Google Scholar] [CrossRef]
- Leal, M.C.; Puga, J.; Serôdio, J.; Gomes, N.C.M.; Calado, R. Trends in the discovery of new marine natural products from invertebrates over the last two decades—where and what are we bioprospecting? PLoS ONE 2012, 7, e30580. [Google Scholar] [CrossRef] [Green Version]
- Proksch, P. Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon 1994, 32, 639–655. [Google Scholar] [CrossRef]
- Ruzicka, R.; Gleason, D.F. Latitudinal variation in spongivorous fishes and the effectiveness of sponge chemical defenses. Oecologia 2008, 154, 785–794. [Google Scholar] [CrossRef]
- Pawlik, J.R.; Loh, T.-L.; McMurray, S.E.; Finelli, C.M. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up. PLoS ONE 2013, 8, e62573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poore, A.G.B.; Campbell, A.H.; Coleman, R.A.; Edgar, G.J.; Jormalainen, V.; Reynolds, P.L.; Sotka, E.E.; Stachowicz, J.J.; Taylor, R.B.; Vanderklift, M.A.; et al. Global patterns in the impact of marine herbivores on benthic primary producers. Ecol. Lett. 2012, 15, 912–922. [Google Scholar] [CrossRef]
- Floeter, S.R.; Behrens, M.D.; Ferreira, C.E.L.; Paddack, M.J.; Horn, M.H. Geographical gradients of marine herbivorous fishes: Patterns and processes. Mar. Biol. 2005, 147, 1435–1447. [Google Scholar] [CrossRef] [Green Version]
- Bakus, G.J.; Green, G. Toxicity in sponges and holothurians: A geographic pattern. Science 1974, 185, 951–953. [Google Scholar] [CrossRef]
- Pawlik, J.; Chanas, B.; Toonen, R.; Fenical, W. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar. Ecol. Prog. Ser. 1995, 127, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Burns, E.; Ifrach, I.; Carmeli, S.; Pawlik, J.; Ilan, M. Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. I. Chemical defense. Mar. Ecol. Prog. Ser. 2003, 252, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Becerro, M.A.; Thacker, R.W.; Turon, X.; Uriz, M.J.; Paul, V.J. Biogeography of sponge chemical ecology: Comparisons of tropical and temperate defenses. Oecologia 2003, 135, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Sacristan-Soriano, O.; Banaigs, B.; Becerro, M.A. Relevant spatial scales of chemical variation in Aplysina aerophoba. Mar. Drugs 2011, 9, 2499–2513. [Google Scholar] [CrossRef] [Green Version]
- Rohde, S.; Gochfeld, D.J.; Ankisetty, S.; Avula, B.; Schupp, P.J.; Slattery, M. Spatial variability in secondary metabolites of the Indo-Pacific sponge Stylissa massa. J. Chem. Ecol. 2012, 38, 463–475. [Google Scholar] [CrossRef]
- Bayona, L.M.; Van Leeuwen, G.; Erol, Ö.; Swierts, T.; Van Der Ent, E.; De Voogd, N.J.; Choi, Y.H. Influence of geographical location on the metabolic production of giant barrel sponges (Xestospongia spp.) revealed by metabolomics tools. ACS Omega 2020, 5, 12398–12408. [Google Scholar] [CrossRef] [PubMed]
- Castiello, D.; Cimino, G.; De Rosa, S.; De Stefano, S.; Sodano, G. High molecular weight polyacetylenes from the nudibranch Peltodoris actromaculata and the sponge Petrosia ficiformis. Tetrahedron Lett. 1980, 21, 5047–5050. [Google Scholar] [CrossRef]
- Cimino, G.; De Giulio, A.; De Rosa, S.; De Stefano, S.; Sodano, G. Further high molecular weight polyacetylenes from the sponge Petrosia ficiformis. J. Nat. Prod. 1985, 48, 22–27. [Google Scholar] [CrossRef]
- Cimino, G.; Crispino, A.; De Rosa, S.; De Stefano, S.; Sodano, G. Polyacetylenes from the sponge Petrosia ficiformis found in dark caves. Cell. Mol. Life Sci. 1981, 37, 924–926. [Google Scholar] [CrossRef]
- Cimino, G.; De Giulio, A.; De Rosa, S.; Di Marzo, V. High molecular weight polyacetylenes from Petrosia ficiformis: Further structural analysis and biological activity. Tetrahedron Lett. 1989, 30, 3563–3566. [Google Scholar] [CrossRef]
- Guo, Y.; Gavagnin, M.; Trivellone, E.; Cimino, G. Absolute stereochemistry of petroformynes, high molecular polyacetylenes from the marine sponge Petrosia ficiformis. Tetrahedron 1994, 50, 13261–13268. [Google Scholar] [CrossRef]
- Cimino, G.; De Giulio, A.; De Rosa, S.; Di Marzo, V. Minor bioactive polyacetylenes from Petrosia ficiformis. J. Nat. Prod. 1990, 53, 345–353. [Google Scholar] [CrossRef]
- Guo, Y.; Gavagnin, M.; Trivellone, E.; Cimino, G. Further structural studies on the petroformynes. J. Nat. Prod. 1995, 58, 712–722. [Google Scholar] [CrossRef]
- Guo, Y.; Gavagnin, M.; Salierno, C.; Cimino, G. Further petroformynes from both Atlantic and Mediterranean populations of the sponge Petrosia ficiformis. J. Nat. Prod. 1998, 61, 333–337. [Google Scholar] [CrossRef]
- Fusetani, N.; Kato, Y.; Matsunaga, S.; Hashimoto, K. Bioactive marine metabolites III. A novel polyacetylene alcohol, inhibitor of cell division in fertilized sea urchin eggs, from the marine sponge Petrosia sp. Tetrahedron Lett. 1983, 24, 2771–2774. [Google Scholar] [CrossRef]
- Fusetani, N.; Shiragaki, T.; Matsunaga, S.; Hashimoto, K. Bioactive marine metabolites. 20. Petrosynol and petrosynone, antimicrobial C30 polyacetylenes from the marine sponge Petrosia sp.: Determination of the absolute configuration. Tetrahedron Lett. 1987, 28, 4313–4314. [Google Scholar] [CrossRef]
- Ochi, M.; Ariki, S.; Tatsukawa, A.; Kotsuki, H.; Fukuyama, Y.; Shibata, K. Bioactive polyacetylenes from the marine sponge Petrosia sp. Chem. Lett. 1994, 89–92. [Google Scholar] [CrossRef]
- Ohta, S.; Ogawa, T.; Ohta, E.; Ikeuchi, T.; Kamemura, K.; Ikegami, S. Petroacetylene, a new polyacetylene from the marine sponge Petrosia solida that inhibits blastulation of starfish embryos. Nat. Prod. Res. 2013, 27, 1842–1847. [Google Scholar] [CrossRef]
- Okamoto, C.; Nakao, Y.; Fujita, T.; Iwashita, T.; Van Soest, R.W.M.; Fusetani, N.; Matsunaga, S. Cytotoxic C47-polyacetylene carboxylic acids from a marine sponge Pertrosia sp. J. Nat. Prod. 2007, 70, 1816–1819. [Google Scholar] [CrossRef] [PubMed]
- Ueoka, R.; Ise, Y.; Matsunaga, S. Cytotoxic polyacetylenes related to petroformyne-1 from the marine sponge Petrosia sp. Tetrahedron 2009, 65, 5204–5208. [Google Scholar] [CrossRef]
- Hitora, Y.; Takada, K.; Okada, S.; Ise, Y.; Matsunaga, S. (−)-Duryne and its homologues, cytotoxic acetylenes from a marine sponge Petrosia sp. J. Nat. Prod. 2011, 74, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.E.; McConnell, O.J.; Kohmoto, S.; Lui, M.S.; Thompson, W.; Snader, K.M. Duryne, a new cytotoxic agent from the marine sponge Cribrochalinadura. Tetrahedron Lett. 1987, 28, 1377–1380. [Google Scholar] [CrossRef]
- Gung, B.W.; Omollo, A.O. Total synthesis of (+)- and (−)-duryne: A potent anticancer agent from the marine sponge cribrochalina Dura. Establishment of the central double bond geometry and the absolute configuration of the chiral centers. J. Org. Chem. 2008, 73, 1067–1070. [Google Scholar] [CrossRef]
- Hitora, Y.; Takada, K.; Okada, S.; Matsunaga, S. Miyakosynes A–F, cytotoxic methyl branched acetylenes from a marine sponge Petrosia sp. Tetrahedron 2011, 67, 4530–4534. [Google Scholar] [CrossRef]
- Iguchi, K.; Kitade, M.; Kashiwagi, T.; Yamada, Y. Structure and synthesis of petrosynes, new acetylenic enol ether glycerides from the Okinawan marine sponge of the genus Petrosia. J. Org. Chem. 1993, 58, 5690–5698. [Google Scholar] [CrossRef]
- Li, H.-Y.; Matsunaga, S.; Fusteani, N. Bioactive marine metabolites. corticatic acids A-C, antifungal acetylenic acids from the marine sponge, Petrosia corticata. J. Nat. Prod. 1994, 57, 1464–1467. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, S.; Matsunaga, S.; Shibazaki, M.; Suzuki, K.; Harada, N.; Naoki, H.; Fusetani, N. Corticatic Acids D and E, polyacetylenic geranylgeranyltransferase type I inhibitors, from the marine sponge Petrosia corticata. J. Nat. Prod. 2002, 65, 1353–1356. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Cho, K.W.; Rho, J.-R.; Shin, J.; Sim, C.J. Petrocortynes and petrosiacetylenes, novel polyacetylenes from a sponge of the genus Petrosia. Tetrahedron 1998, 54, 447–462. [Google Scholar] [CrossRef]
- Shin, J.; Seo, Y.; Cho, K.W. Five new polyacetylenes from a sponge of the genus Petrosia. J. Nat. Prod. 1998, 61, 1268–1273. [Google Scholar] [CrossRef]
- Kim, J.S.; Lim, Y.J.; Im, K.S.; Jung, J.H.; Shim, C.J.; Lee, C.O.; Hong, J.; Lee, H. Cytotoxic polyacetylenes from the marine sponge Petrosia sp. J. Nat. Prod. 1999, 62, 554–559. [Google Scholar] [CrossRef]
- Lim, Y.J.; Kim, J.S.; Im, K.S.; Jung, J.H.; Lee, C.-O.; Hong, J.; Kim, D.-K. New Cytotoxic polyacetylenes from the marine sponge Petrosia. J. Nat. Prod. 1999, 62, 1215–1217. [Google Scholar] [CrossRef]
- Lim, Y.J.; Park, H.S.; Im, K.S.; Lee, C.-O.; Hong, J.; Lee, M.-Y.; Kim, D.-K.; Jung, J.H. Additional cytotoxic polyacetylenes from the marine sponge Petrosia species. J. Nat. Prod. 2001, 64, 46–53. [Google Scholar] [CrossRef]
- Lim, Y.J.; Lee, C.-O.; Hong, J.; Kim, D.-K.; Im, K.S.; Jung, J.H. Cytotoxic polyacetylenic alcohols from the marine sponge Petrosia species. J. Nat. Prod. 2001, 64, 1565–1567. [Google Scholar] [CrossRef]
- Kim, J.S.; Im, K.S.; Jung, J.H.; Kim, Y.-L.; Kim, J.; Shim, C.J.; Lee, C.-O. New bioactive polyacetylenes from the marine sponge Petrosia sp. Tetrahedron 1998, 54, 3151–3158. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Yoo, S.-J.; Kang, J.S.; Yun, J.; Shin, H.J.; Lee, J.S.; Lee, H.-S. Cytotoxic petrosiacetylenes from the marine sponge Petrosia sp. Lipids 2013, 48, 87–91. [Google Scholar] [CrossRef]
- Seo, Y.; Cho, K.W.; Lee, H.-S.; Rho, J.-R.; Shin, J. New acetylenic enol ethers of glycerol from the sponge Petrosia sp. J. Nat. Prod. 1999, 62, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Guella, G.; Mancini, I.; Pietra, F. Raspailynes, novel long-chain acetylenic enol ethers of glycerol from the marine sponges Raspailia pumila and Raspailia ramosa. Helv. Chim. Acta 1987, 70, 1050–1062. [Google Scholar] [CrossRef]
- Watanabe, K.; Tsuda, Y.; Yamane, Y.; Takahashi, H.; Iguchi, K.; Naoki, H.; Fujita, T.; Van Soest, R.W. Strongylodiols A, B and C, new cytotoxic acetylenic alcohols isolated from the Okinawan marine sponge of the genus Strongylophora as each enantiomeric mixture with a different ratio. Tetrahedron Lett. 2000, 41, 9271–9276. [Google Scholar] [CrossRef]
- Watanabe, K.; Tsuda, Y.; Hamada, M.; Omori, M.; Mori, G.; Iguchi, K.; Naoki, H.; Fujita, T.; Van Soest, R.W.M. Acetylenic strongylodiols from a Petrosia (Strongylophora) Okinawan marine sponge. J. Nat. Prod. 2005, 68, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, A.F.; Li, Z.; Kusuda, R.; Tanaka, C.; Miyamoto, T. Six new polyacetylenic alcohols from the marine sponges Petrosia sp. and Halichondria sp. Chem. Pharm. Bull. 2015, 63, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, K.; Yagyu, T.; Yoshioka, Y.; Fujiwara, T.; Kanamoto, A.; Okamoto, T.; Ojika, M. Petrosiols A–E, neurotrophic diyne tetraols isolated from the Okinawan sponge Petrosia strongylata. Tetrahedron 2013, 69, 101–106. [Google Scholar] [CrossRef]
- Higashibayashi, S.; Czechtizky, W.; Kobayashi, Y.; Kishi, Y. Universal NMR databases for contiguous polyols. J. Am. Chem. Soc. 2003, 125, 14379–14393. [Google Scholar] [CrossRef]
- Watanabe, K.; Mori, G.; Iguchi, K.; Suzuki, M.; Van Soest, R.W.M. Nine acetylenic alcohols isolated from the Okinawan marine sponge of the genus Petrosia (Strongylophora). Nat. Prod. Res. 2007, 21, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-C.; Prakash, C.V.S. Two new acetylenic derivatives and a new meroditerpenoid from a Taiwanese marine sponge Strongylophora durissima. J. Nat. Prod. 2000, 63, 1686–1688. [Google Scholar] [CrossRef] [PubMed]
- Mejia, E.J.; Magranet, L.B.; De Voogd, N.J.; TenDyke, K.; Qiu, D.; Shen, Y.Y.; Zhou, Z.; Crews, P. Structures and cytotoxic evaluation of new and known acyclic ene-ynes from an American Samoa Petrosia sp. sponge. J. Nat. Prod. 2012, 76, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Guerriero, A.; Debitus, C.; Laurent, D.; D’Ambrosio, M.; Pietra, F. Aztequynol A, the first clearly defined, C-branched polyacetylene and the analog aztequynol B. Isolation from the tropical marine sponge Petrosia sp. Tetrahedron Lett. 1998, 39, 6395–6398. [Google Scholar] [CrossRef]
- Bortolotto, M.; Braekman, J.C.; Daloze, D.; Tursch, B. Chemical studies of marine invertebrates. XXXVI. Strongylosterol, a novel C-30 sterol from the sponge Strongylophora durissima Dendy. Bull. Soc. Chim. Belg. 1978, 87, 539–543. [Google Scholar] [CrossRef]
- Theobald, N.; Djerassi, C. Determination of the absolute configuration of stelliferasterol and strongylosterol—Two marine sterols with “extended” side chains. Tetrahedron Lett. 1978, 19, 4369–4372. [Google Scholar] [CrossRef]
- Li, L.N.; Djerassi, C. Minor and trace sterols in marine invertebrates. 23. Xestospongesterol and isoxestospongesterol—First examples of quadruple biomethylation of the sterol side chain. J. Am. Chem. Soc. 1981, 103, 3606–3608. [Google Scholar] [CrossRef]
- Li, L.N.; Djerassi, C. Minor and trace sterols in marine invertebrates. 30. Isolation, structure elucidation, and partial synthesis of 26-methylstrongylosterol and 28-methylxestosterol, two marine sterols arising by a novel quadrupole biomethylation sequence. Tetrahedron Lett. 1981, 22, 4639–4642. [Google Scholar] [CrossRef]
- Abdel-Lateff, A.; Alarif, W.M.; Asfour, H.Z.; Ayyad, S.-E.N.; Khedr, A.; Badria, F.A.; Al-Lihaibi, S.S. Cytotoxic effects of three new metabolites from Red Sea marine sponge, Petrosia sp. Environ. Toxicol. Pharmacol. 2014, 37, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Pailee, P.; Mahidol, C.; Ruchirawat, S.; Prachyawarakorn, V. Sterols from Thai marine sponge Petrosia (Strongylophora) sp. and their cytotoxicity. Mar. Drugs 2017, 15, 54–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperry, S.; Crews, P. Dihydrotubastrines: Phenethylguanidine analogs from the Indo-Pacific marine sponge Petrosia cf. contignata. J. Nat. Prod. 1998, 61, 859–861. [Google Scholar] [CrossRef] [PubMed]
- Burgoyne, D.L.; Andersen, R.J.; Allen, T.M. Contignasterol, a highly oxygenated steroid with the unnatural 14β configuration from the marine sponge Petrosia contignata Thiele, 1899. J. Org. Chem. 1992, 57, 525–528. [Google Scholar] [CrossRef]
- Corgiat, J.M.; Scheuer, P.J.; Steiner, J.L.R.; Clardy, J. Three pregnane-10,2-carbolactones from a sponge, Strongylophora sp. Tetrahedron 1993, 49, 1557–1562. [Google Scholar] [CrossRef]
- Koehn, F.E.; Gunasekera, M.; Cross, S.S. New antiviral sterol disulfate ortho esters from the marine sponge Petrosia weinbergi. J. Org. Chem. 1991, 56, 1322–1325. [Google Scholar] [CrossRef]
- Sun, H.H.; Gross, S.S.; Gunasekera, M.; Koehn, F.E. Weinbersterol disulfates A and B, antiviral steroid sulfates from the sponge petrosia weinbergi. Tetrahedron 1991, 47, 1185–1190. [Google Scholar] [CrossRef]
- Aoki, S.; Naka, Y.; Itoh, T.; Furukawa, T.; Rachmat, R.; Akiyama, S.-I.; Kobayashi, M. Lembehsterols A and B, novel sulfated sterols inhibiting thymidine phosphorylase, from the marine sponge Petrosia strongylata. Chem. Pharm. Bull. 2002, 50, 827–830. [Google Scholar] [CrossRef] [Green Version]
- Sica, D.; Zollo, F. Petrosterol, the major sterol with a cyclopropane side chain in the sponge Petrosia ficiformis. Tetrahedron Lett. 1978, 19, 837–838. [Google Scholar] [CrossRef]
- Mattia, C.; Mazzarella, L.; Puliti, R.; Sica, D.; Zollo, F. X-ray crystal structure determination of petrosterol p-bromobenzoate. A revision. Tetrahedron Lett. 1978, 19, 3953–3954. [Google Scholar] [CrossRef]
- Khalil, M.W.; Durham, L.J.; Djerassi, C.; Sica, D. Minor and trace sterols in marine invertebrates. 15. Ficisterol (23-ethyl-24-methyl-27-norcholesta-5,25-dien-3.beta.-ol). A biosynthetically unprecedented sterol from the marine sponge Petrosia ficiformis. J. Am. Chem. Soc. 1980, 102, 2133–2134. [Google Scholar] [CrossRef]
- Umeyama, A.; Ito, S.; Yoshigaki, A.; Arihara, S. Two new 26,27-cyclosterols from the marine sponge Strongylophora corticata. J. Nat. Prod. 2000, 63, 1540–1542. [Google Scholar] [CrossRef]
- Li, L.N.; Li, H.T.; Lang, R.W.; Itoh, T.; Sica, D.; Djerassi, C. Minor and trace sterols in marine invertebrates. 31. Isolation and structure elucidation of 23H-isocalysterol, a naturally occurring cyclopropene. Some comparative observations on the course of hydrogenolytic ring opening of steroidal cyclopropenes and cyclopropanes. J. Am. Chem. Soc. 1982, 104, 6726–6732. [Google Scholar] [CrossRef]
- Menna, M.; Imperatore, C.; D’Aniello, F.; Aiello, A. Meroterpenes from marine invertebrates: Structures, occurrence, and ecological implications. Mar. Drugs 2013, 11, 1602–1643. [Google Scholar] [CrossRef] [Green Version]
- Braekman, J.C.; Daloze, D.; Hulot, G.; Tursch, B.; Declercq, J.P.; Germain, G.; Van Meerssche, M. Chemical studies of marine invertebrates. XXXVII. Three novel meroditerpenoids from the sponge Strongylophora durissima. Bull. Soc. Chim. Belg. 1978, 87, 917. [Google Scholar] [CrossRef]
- Salva, J.; Faulkner, D.J. Metabolites of the sponge Strongylophora durissima from Maricaban Island, Philippines. J. Org. Chem. 1990, 55, 1941–1943. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Hung, M.-C.; Prakash, C.V.S.; Wang, J.-J. New meroditerpenoids from a Taiwanese marine sponge Strongylophora durissima. J. Chin. Chem. Soc. 2000, 47, 567–570. [Google Scholar] [CrossRef]
- Hoshino, A.; Mitome, H.; Miyaoka, H.; Shintani, A.; Yamada, Y.; Van Soest, R.W.M. New strongylophorines from the Okinawan marine sponge Petrosia (Strongylophora) corticata. J. Nat. Prod. 2003, 66, 1600–1605. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Namikoshi, M.; Akano, K.; Kobayashi, H.; Nagai, H.; Yao, X. Seven new meroditerpenoids, from the marine sponge Strongylophora strongylata, that inhibited the maturation of starfish oocytes. J. Asian Nat. Prod. Res. 2005, 7, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Abdjul, D.B.; Yamazaki, H.; Takahashi, O.; Kirikoshi, R.; Ukai, K.; Namikoshi, M. Strongylophorines, new protein tyrosine phosphatase 1B inhibitors, from the marine sponge Strongylophora strongilata collected at Iriomote Island. Bioorganic Med. Chem. Lett. 2015, 25, 3900–3902. [Google Scholar] [CrossRef]
- Noda, A.; Sakai, E.; Kato, H.; Losung, F.; Mangindaan, R.E.; De Voogd, N.J.; Yokosawa, H.; Tsukamoto, S. Strongylophorines, meroditerpenoids from the marine sponge Petrosia corticata, function as proteasome inhibitors. Bioorg. Med. Chem. Lett. 2015, 25, 2650–2653. [Google Scholar] [CrossRef]
- Warabi, K.; McHardy, L.M.; Matainaho, L.; Van, S.R.; Roskelley, C.D.; Roberge, M.; Andersen, R.J. Strongylophorine-26, a new meroditerpenoid isolated from the marine sponge Petrosia (Strongylophora) corticata that exhibits anti-invasion activity. J. Nat. Prod. 2004, 67, 1387–1389. [Google Scholar] [CrossRef]
- Balbin-Oliveros, M.; Edrada, R.A.; Proksch, P.; Wray, V.; Witte, L.; Van Soest, R.W.M. A new meroditerpenoid dimer from an undescribed Philippine marine sponge of the genus Strongylophora. J. Nat. Prod. 1998, 61, 948–952. [Google Scholar] [CrossRef] [PubMed]
- Roll, D.M.; Scheuer, P.J.; Matsumoto, G.K.; Clardy, J. Halenaquinone, a pentacyclic polyketide from a marine sponge. J. Am. Chem. Soc. 1983, 105, 6177–6178. [Google Scholar] [CrossRef]
- Nakamura, H.; Kobayashi, J.i.; Kobayashi, M.; Ohizumi, Y.; Hirata, Y. Physiologically active marine natural products from Porifera. VII. Xestoquinone. A novel cardiotonic marine natural product isolated from the Okinawan sea sponge Xestospongia sapra. Chem. Lett. 1985, 713. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, F.J.; Bloor, S.J. Xesto- and halenaquinone derivatives from a sponge, Adocia sp., from Truk lagoon. J. Org. Chem. 1988, 53, 3922–3925. [Google Scholar] [CrossRef]
- Tanokashira, N.; Kukita, S.; Kato, H.; Nehira, T.; Angkouw, E.D.; Mangindaan, R.E.; de Voogd, N.J.; Tsukamoto, S. Petroquinones: Trimeric and dimeric xestoquinone derivatives isolated from the marine sponge Petrosia alfiani. Tetrahedron 2016, 72, 5530–5540. [Google Scholar] [CrossRef]
- Du, L.; Mahdi, F.; Datta, S.; Jekabsons, M.B.; Zhou, Y.-D.; Nagle, D.G. Structures and mechanisms of antitumor agents: Xestoquinones uncouple cellular respiration and disrupt HIF signaling in human breast tumor cells. J. Nat. Prod. 2012, 75, 1553–1559. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.C.; Prakash, C.V.S.; Guh, J.-H. New pentacyclic polyketide dimeric peroxides from a Taiwanese marine sponge Petrosia elastica. Tetrahedron Lett. 2004, 45, 2463–2466. [Google Scholar] [CrossRef]
- Kohmoto, S.; McConnell, O.J.; Wright, A.; Koehn, F.; Thompson, W.; Lui, M.; Snader, K.M. Puupehenone, a cytotoxic metabolite from a deep water marine sponge, Stronglyophora hartmani. J. Nat. Prod. 1987, 50, 336. [Google Scholar] [CrossRef]
- Ravi, B.N.; Perzanowski, H.P.; Ross, R.A.; Erdman, T.R.; Scheuer, P.J.; Finer, J.; Clardy, J. Recent research in marine natural products: The puupehenones. Pure Appl. Chem. 1979, 51, 1893–1900. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.E.; Rueth, S.A.; Cross, S.S. An antiviral sesquiterpene hydroquinone from the marine sponge Strongylophora hartmani. J. Nat. Prod. 1991, 54, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Maarisit, W.; Yamazaki, H.; Kanno, S.-I.; Tomizawa, A.; Rotinsulu, H.; Wewengkang, D.S.; Sumilat, D.A.; Ukai, K.; Kapojos, M.M.; Namikoshi, M. A tetramic acid derivative with protein tyrosine phosphatase 1B inhibitory activity and a new nortriterpene glycoside from the Indonesian marine sponge Petrosia sp. Bioorganic Med. Chem. Lett. 2017, 27, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Espada, A.; Jiménez, C.; Rodriguez, J.; Crews, P.; Riguera, R. Sarasinosides D-G: Four new triterpenoid saponins from the sponge asteropus sarasinosum. Tetrahedron 1992, 48, 8685–8696. [Google Scholar] [CrossRef]
- Santalova, E.A.; Denisenko, V.A.; Dmitrenok, P.S.; Berdyshev, D.V.; Stonik, V.A. Two new sarasinosides from the sponge Melophlus Sarasinorum. Nat. Prod. Commun. 2006, 1. 1934578X0600100401. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jeon, J.-E.; Lee, Y.-J.; Lee, H.-S.; Sim, C.J.; Oh, K.-B.; Shin, J. Nortriterpene glycosides of the sarasinoside class from the sponge Lipastrotethya sp. J. Nat. Prod. 2012, 75, 1365–1372. [Google Scholar] [CrossRef]
- Braekman, J.C.; Daloze, D.; Macedo de Abreu, P.; Piccinni-Leopardi, C.; Germain, G.; Van Meerssche, M. A novel type of bisquinolizidine alkaloid from the sponge Petrosia seriata. Tetrahedron Lett. 1982, 23, 4277–4280. [Google Scholar] [CrossRef]
- Kobayashi, M.; Rao, S.R.; Chavakula, R.; Sarma, N.S. Mimosamycin, 4-aminomimosamycin and 7-amino-7-demethoxymimosamycin from the Petrosia sp. of sponge. J. Chem. Res. Synop. 1994, 25, 282–283. [Google Scholar] [CrossRef]
- Ramesh, P.; Reddy, N.S.; Venkateswarlu, Y. A new 1,2-dihydroisoquinoline from the sponge Petrosia similis. J. Nat. Prod. 1999, 62, 780–781. [Google Scholar] [CrossRef]
- Sandoval, I.T.; Davis, R.A.; Bugni, T.S.; Concepcion, G.P.; Harper, M.K.; Ireland, C.M. Cytotoxic isoquinoline quinones from sponges of the genus Petrosia. Nat. Prod. Res. 2004, 18, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Molinski, T.F.; Fahy, E.; Faulkner, D.J.; Van Duyne, G.D.; Clardy, J. Petrosamine, a novel pigment from the marine sponge Petrosia sp. J. Org. Chem. 1988, 53, 1340–1341. [Google Scholar] [CrossRef]
- Nukoolkarn, V.S.; Saen-Oon, S.; Rungrotmongkol, T.; Hannongbua, S.; Ingkaninan, K.; Suwanborirux, K. Petrosamine, a potent anticholinesterase pyridoacridine alkaloid from a Thai marine sponge Petrosia sp. Bioorg. Med. Chem. 2008, 16, 6560–6567. [Google Scholar] [CrossRef]
- Ashour, M.; Edrada-Ebel, R.; Ebel, R.; Wray, V.; Van Soest, R.; Proksch, P. New purine derivatives from the marine sponge Petrosia nigricans. Nat. Prod. Commun. 2008, 3, 1889–1894. [Google Scholar] [CrossRef]
- Ryuichi, S.; Tatsuo, H. Tubastrine, a new guanidinostyrene from the coral Tubastrea aurea. Chem. Lett. 1987, 16, 127–128. [Google Scholar] [CrossRef] [Green Version]
- Hahn, D.; Kim, H.; Yang, I.; Chin, J.; Hwang, H.; Won, D.H.; Lee, B.; Nam, S.-J.; Ekins, M.; Choi, H.; et al. The halicylindramides, farnesoid X receptor antagonizing depsipeptides from a Petrosia sp. marine sponge collected in Korea. J. Nat. Prod. 2015, 79, 499–506. [Google Scholar] [CrossRef]
- Kim, D.-K.; Lim, Y.J.; Kim, J.S.; Park, J.H.; Kim, N.D.; Im, K.S.; Hong, J.; Jung, J.H. A cyclitol derivative as a replication inhibitor from the marine sponge Petrosia sp. J. Nat. Prod. 1999, 62, 773–776. [Google Scholar] [CrossRef]
- Carballeira, N.M.; Shalabi, F. Novel brominated phospholipid fatty acids from the Caribbean sponge Petrosia sp. J. Nat. Prod. 1993, 56, 739–746. [Google Scholar] [CrossRef]
- Burgsdorf, I.; Haber, M.; Steindler, L.; Erwin, P.M.; Lopez-Legentil, S.; Cerrano, C.; Frenk, S. Biogeography rather than association with cyanobacteria structures symbiotic microbial communities in the marine sponge Petrosia ficiformis. Front. Microbiol. 2014, 5, 529–539. [Google Scholar] [CrossRef]
Compound | Examined Biological Activity | Species | Reference |
---|---|---|---|
Polyacetylenes | |||
petroformynes | |||
1–4 | toxicity (fertilized sea urchin eggs, A. salina) | P. ficiformis | [28,29] |
1–15, 18–20, 22–24 | brine shrimp lethality | P. ficiformis | [30,31] |
16, 17, 21, 25 | not reported | P. ficiformis | [32] |
petrosynol and petrosynone | |||
26, 27 | toxicity (fertilized sea urchin eggs) | Petrosia sp. | [33,34] |
28–31 | toxicity (fertilized ascidan eggs), brine shrimp lethality | Petrosia sp. | [35] |
petroacetylene | |||
32 | inhibition of the blastulation of starfish embryo | Petrosia sp. | [36] |
petroformynes and neopetroformynes | |||
1, 4, 33–36 | cytotoxicity (P388) | Petrosia sp. | [38] |
durynes and miyakosynes | |||
37–42 | cytotoxicity (HeLa) | Petrosia sp. | [39] |
43–48 | cytotoxicity (HeLa) | Petrosia sp. | [42] |
petrosynes | |||
49–50 | not reported | Petrosia sp. | [43] |
corticatic acids | |||
51–53 | antifungal activity (M. ramanniana) | P. corticata | [44] |
54–55 | inhibition of GGTase I from C. albicans | P. corticata | [45] |
petroformynes and petroformynic acids | |||
1, 4, 56, 57 | cytotoxicity (P388) | P. corticata | [37] |
petrocortynes and petrosiacetylenes | |||
58–60, 84–87 | brine shrimp lethality, RNA-cleaving activity | Petrosia sp. | [46] |
61–65 | cytotoxicity (K562) | Petrosia sp. | [47] |
66–83, 89, 90 | cytotoxicity (A549, SK-OV-3, SK-MEL-2, XF498, HCT-15) | Petrosia sp. | [48,49,50,51] |
84–86, 88 | cytotoxicity (A549, SK-OV-3, SK-MEL-2, XF498, HCT-15) | Petrosia sp. | [52] |
84–86, 91 | cytotoxicity (NCI-H23, PC-3, ACHN, NUGC-3, HCT-15) | Petrosia sp. | [53] |
petroraspailynes, raspailynes and petrosynol | |||
92–102 | cytotoxicity (K562) | Petrosia sp. | [54] |
Sterols | |||
187–188 | not reported | P. ficiformis | [77,78,79] |
187–191 | not reported | P. corticata | [80] |
Peptides | |||
halicylindramides | |||
266–270 | antagonistic activity against human farnesoid X receptor | Petrosia sp. | [113] |
Fatty acid derivatives | |||
271 | cytotoxicity (A549, SK-OC-3, SK-MEL-2, XF498, HCT-15) | Petrosia sp. | [114] |
272 | cytotoxicity (MCF7, HepG2) | Petrosia sp. | [69] |
Compound | Examined Biological Activity | Species | Reference |
---|---|---|---|
Polyacetylenes | |||
strongylodiols | |||
103–105 | cytotoxicity (MOLT-4, IMR-90, DLD-1) | Petrosia sp. | [56] |
106–112 | not reported | Petrosia sp. | [57] |
strongylotriols and pellynols | |||
113–117 | cytotoxicity (HeLa, K-562) | Petrosia sp. | [58] |
strongylodiols and petrosiols | |||
105, 106, 118–122 | induction of neuronal differentiation (PC-12) | P. strongylata | [59] |
123–131 | not reported | Petrosia sp. | [61] |
132–136 | cytotoxicity (NUGC) | P. durissima | [62] |
pellynols and petrosynoic acids | |||
115, 137–144 | cytotoxicity (A2058, H522-T1, H460, IMR-90) | Petrosia sp. | [63] |
aztèquynols | |||
145–146 | cytotoxicity (KB) | Petrosia sp. | [64] |
Sterols | |||
strongylosterol | |||
147 | not reported | P. durissima | [65,66] |
148–151 | not reported | P. durissima | [67,68] |
152–158 | cytotoxicity (HepG2, MCF7) | Petrosia sp. | [69] |
159–174 | cytotoxicity (MOLT-3, HepG2, A549, HuCCA-1, HeLa, MDA-MB-231, MRC-5) | Petrosia sp. | [70] |
xestobergsterol A | |||
175 | not reported | P. cf. cotignata | [71] |
cotignasterol | |||
176 | not reported | P. cotignata | [72] |
177–179 | cytotoxicity (KB, LoVo) | Petrosia sp. | [73] |
orthoesterols | |||
180–182 | antiviral activity (FELV, PR8, A59) | P. weinbergi | [74] |
weinbersterols | |||
183, 184 | antiviral activity (FELV, HIV) | P. weinbergi | [75] |
lembehsterols | |||
185, 186 | inhibition of thymidine phosphorylase | P. strongylata | [76] |
Meroterpenoids | |||
strongylophorines | |||
192–194 | not reported | P. durissima | [83] |
195-199 | antimicrobial activity (B. subtilis, S. aureus) | P. durissima | [84] |
192–194, 196, 200–202 | cytotoxicity (NUGC) | P. durissima | [62,85] |
192–195, 199, 203–205, 209, 210 | cytotoxicity (HeLa) | P. corticata | [86] |
193–195, 199, 207–213 | inhibition of the maturation of starfish oocytes | P. strongylata | [87] |
193, 194, 199, 209, 211, 214, 215 | inhibition of protein tyrosine phosphatase 1B | P. strongylata | [88] |
193-195, 199, 203, 207, 208, 214, 215 | chymotrypsin-like activity of proteasome | P. corticata | [89] |
199, 216 | cytotoxicity (MDA-231) | P. corticata | [90] |
193–195, 217 | antimicrobial activity (M. lueus, S. typhi, C. cucumerinum), brine shrimp lethality | Petrosia sp. | [91] |
218, 222–236 | inhibition of ubiquitin-specific protease 7 | P. alfiani | [95] |
219–221, 237–240 | inhibition of iron chelator-induced HIF-1, cytotoxicity (T47D, MDA-MB-231) | P. alfiani | [96] |
dihalenaquinolides | |||
241, 242 | cytotoxicity (Hep3B) | P. elastica | [97] |
puupehenone | |||
243 | cytotoxicity (P388, A549, MCF7) | P. hartmani | [98] |
strongylin A | |||
244 | cytotoxicity (P388), antiviral activity (PR8) | P. hartmani | [100] |
Saponins | |||
sarasinosides | |||
245–248 | Cytotoxicity (Huh-7, A549) | Petrosia sp. | [101] |
Alkaloids | |||
petrosin | |||
249 | not reported | P. seriata | [105] |
250–253 | not reported | Petrosia sp. | [106] |
254 | not reported | P. similis | [107] |
255–257 | cytotoxicity (HCT116) | Petrosia sp. | [108] |
petrosamine | |||
258 | not reported | Petrosia sp. | [109] |
258, 259 | inhibition of acetylcholinesterase | Petrosia sp. | [110] |
Nigricines | |||
260–263 | cytotoxicity (L5178Y) | P. nigricans | [111] |
264, 265 | not reported | P. cf. contignata | [71] |
Fatty acid derivatives | |||
273–277 | not reported | Petrosia sp. | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-J.; Cho, Y.; Tran, H.N.K. Secondary Metabolites from the Marine Sponges of the Genus Petrosia: A Literature Review of 43 Years of Research. Mar. Drugs 2021, 19, 122. https://doi.org/10.3390/md19030122
Lee Y-J, Cho Y, Tran HNK. Secondary Metabolites from the Marine Sponges of the Genus Petrosia: A Literature Review of 43 Years of Research. Marine Drugs. 2021; 19(3):122. https://doi.org/10.3390/md19030122
Chicago/Turabian StyleLee, Yeon-Ju, Yeonwoo Cho, and Huynh Nguyen Khanh Tran. 2021. "Secondary Metabolites from the Marine Sponges of the Genus Petrosia: A Literature Review of 43 Years of Research" Marine Drugs 19, no. 3: 122. https://doi.org/10.3390/md19030122
APA StyleLee, Y. -J., Cho, Y., & Tran, H. N. K. (2021). Secondary Metabolites from the Marine Sponges of the Genus Petrosia: A Literature Review of 43 Years of Research. Marine Drugs, 19(3), 122. https://doi.org/10.3390/md19030122