Marine-Derived Macrolides 1990–2020: An Overview of Chemical and Biological Diversity
Abstract
:1. Introduction
2. Chemical and Biological Diversity of Marine-Derived Macrolides
2.1. Macrolides Extracted from Marine Organisms
2.1.1. Sponges
2.1.2. Microorganisms and Zooplankton
Fungi
Bacteria
Cyanobacteria
Dinoflagellates
2.1.3. Red algae
2.1.4. Cnidarians
2.1.5. Bryozoans
2.1.6. Mollusks
2.1.7. Tunicates
2.2. Bioactivities of Marine-Derived Macrolides
Drug Class | Compounds | Pharmacology | Activities | Ref. |
---|---|---|---|---|
Cytotoxic a | swinholides A–C (1–3) | KB cells | IC50: 0.041, 0,052, 1.1 μg/mL | [16] |
miyakolide (13) | P388 cells | IC50: 17.5 μg/mL | [21] | |
spongiastatin 1 (18) | HL-60, NCI-116, DMS 114 et al. | GI50: 2.5–3.5 × 10−11 M | [26] | |
dictyostatin 1 (33) | P388 cells | undetermined | [32] | |
superstolide B (37) | KB, P388, NSCLC-N6-L16 cells | IC50: 0.005, 0.003, 0.039 μg/mL | [38] | |
lasonolide A (38) | A-549, P388 cells | IC50: 40, 2 ng/mL | [40] | |
latrunculin S (44), neolaulimalide (45) | P388, A549, HT29, MEL28 cells | IC50: 0.5–1.2 μg/mL, IC50: 0.01–0.05 μg/mL | [46] | |
leucascandrolide A (48) | KB, P388 cells | undetermined | [48] | |
altohyrtins B–C (51–52) 5-desacetylaltohytrin A (53) | KB cell;L1210 cells | IC50: 0.02, 0.4; 0.3 ng/mL; IC50: 0.03, 1.3, 2.3 ng/mL | [53] | |
swinholide H (54) | P388 cells | undetermined | [13] | |
neonorhalichondrin B (55), neohomohalichondrin B (56), 55-methoxyisohomohalichon-drin (57), 53-methoxyneoisohomohalichondrin B (58a) | P388 cells | IC50: 0.4, 0.8, 10, 0.1 ng/mL | [55] | |
salicylihalamides A (59), B (60) | NCI 60 cells | GI50: 7 ± 2 nM; 60 ± 25 nM | [56] | |
callipeltoside B (61), C (62) | NSCLC-N6 cells | IC50: 15.1, 30.0 μg/mL | [60] | |
arenolide (67) | HCT-116, A2780 cells | IC50: 21, 9.8 mM | [62] | |
30-hydroxymycalolide A (68), 32-hydroxymycalolide A (69), 38-hydroxymycalolide B (70) | L1210 cells | IC50: 0.019, 0.013, 0.015 μg/mL | [63] | |
NA (76), NB (77), NC (78), ND (79) and NE (80) | P388, P388dox, KB tumor cells | undetermined | [66] | |
spongidepsin (87) | J774.A1, HEK-392, WEHI-164 cells | IC50: 0.56, 0.66, 0.42 μg/mL | [71] | |
dactylolide (88) | L1210,SK-OV-3 cells | IC50: 3.2 μg/mL | [72] | |
neohalichondramide (101), (19Z)-halichondramide (102) | K562 cells | LC50: 4.9 μg/mL | [81] | |
lasonolides C–E (106–108) | A-549,PANE-1 cells | IC50: 0.13, 4.5, 0.31 μM; 0.38. 4.89, 0.57, 15.6 μM | [83] | |
leiodolides A (112) and B (113) | HCT-116 cells | IC50: 1.4, 3.8 μg/mL | [86,87] | |
tedanolide C (114) | HCT-116 cells | IC50: 0.057 μg/mL | [88] | |
kabiramide F–I (115–118) | NCI cells | undetermined | [89] | |
swinholide I (120), hurghadolide A (121) | HCT-116 cells | IC50: 5.6, 365 nM | [91] | |
oxalatrunculin B (122) | HepG2, HCT-116,1301 cells | undetermined | [92] | |
neopeltolide (123) | A-549, NCI-ADR-RES, P388 cell lines | IC50: 1.2, 5.1, 0.56 μg/mL | [93] | |
phorbaside C (134) | HCT-116 cells | IC50: 2 μM | [97] | |
tausalarin C (147) | K562 cells | IC50: 1 μg/mL | [102] | |
enigmazole A (153) | IC-2 | IC50: 0.37 μg/mL | [105] | |
callyspongiolide (168) | Jurkat J16 T, Ramos B lymphocytes | IC50: 70, 60 nM | [111] | |
phormidolides B (169), C (170) | A-549, HT-29, MDA-MB-231 cells | undetermined | [112] | |
poecillastrins E (171), F (172), G (173) | 3Y1 cells | IC50: 6.7, 1.2, 5.0 ng/mL | [113] | |
macrosphelide M (180) | HL-60 cell | IC50: 33.2 μM | [120] | |
12,13-deoxyroridin E (191) | HL-60, L1210 cells | IC50: 25, 15 μg/mL | [126] | |
myrothecines H, I (270–271) | HepG-2 cells | IC50: 8, 0.4 μM | [156] | |
marinomycins A–D (283–286) | 60 cell line panel | LC50: 0.005–50 μM | [165] | |
arenicolide A (287) | KB cells | IC50: 30 μg/mL | [166] | |
halichoblelide B (293) | P388 cell line | ED50 0.63 | [169] | |
juvenimicin C (303) | Hepa 1c1c7 cells | undetermined | [173] | |
astolides A (311), B (312) | K-562, Pgp-positive MDR subline K-562/4 | IC50: 1.2–1.4 μM | [179] | |
biselyngbyolide A (330), | HeLa S3, HL60 cells | IC50: 0.22, 0.027 μM | [190] | |
biselyngbyolide B (331) | IC50: 3.5, 0.82 μM | [191] | ||
amphidinolide E (339) | L1210, L5178Y cells | undetermined | [194] | |
amphidinolide G,H (341–342) | L1210, KB cells | IC50: 0.0054, 0.00048 μg/mL; 0.0059, 0.00052 μg/mL | [197] | |
amphidinolides O (351), P (352) | L1210, KB cells | IC50: 1.7, 1.6 μg/mL; IC50: 3.6, 5.8 μg/mL. | [208] | |
amphidinolide Q (353) | L1210 cells | IC50: 6.4 μg/mL | [210] | |
amphidinolides R (354), S (355) | L1210, KB cells | IC50: 1.4, 4.0 μg/mL; IC50: 0.67, 6.5 μg/mL | [213] | |
amphidinolide C3 (357) | P388, L1210, KB cells | undetermined | [215] | |
amphidinolide X (371) | L1210, KB cells | IC50: 0.6, 7.5 μg/mL | [226] | |
amphidinolides B6 (374), B7 (375) | DG-75 cells | IC50: 0.02, 0.4 μg/mL | [227] | |
amphidinolide C2 (376) | L1210, KB cells | IC50: 0.8, 3 μg/mL | [228] | |
caribenolide I (377) | HCT-116, HCT 116/VM 46,P388 | IC50: 1.6 nM, 1.6 nM, 0.03 mg/kg | [229] | |
iriomoteolide-2a (387) | DG-75, cells | IC50: 0.006, 0.03 μg/mL | [238] | |
iriomoteolide-3a (388) | DG-75 cells | IC50: 0.08 μg/mL | [239] | |
iriomoteolide-4a (389), -5a (390) | DG-75 cells | IC50: 0.8, 1.0 μg/mL | [240] | |
iriomoteolide-9a (391), -11a (392) | HeLa cells | IC50: 15, 2 μM | [241] | |
iriomoteolide-10a (393) | HeLa, DG-75, MH134 cells | IC50: 1.5, 1.2, 3.3 μM | [242] | |
iriomoteolide-12a (394) | DG-75 cells | IC50: 50 μM | [242] | |
bromophycolide A (411) | A2780 cells | IC50: 6.7 μM | [258] | |
bromophycolide H (419) | DU4475 cell line | IC50: 3.88 μM | [259] | |
bromophycolides J–Q (421–428) | BT-549, DU4475, MDA-MD-468 et al. | IC50: 2.1–7.2 μM | [260] | |
bromophycolide K (425) | DU4475 cell line | IC50: 1.5 μM | [260] | |
bryostatin 10 (458) | P388 cell line | ED50: 0.33 μg/mL | [277] | |
bryostatins 16 (459), 17 (460), 18 (461) | P388 cell line | ED50: 0.0093, 0.019, 0.033 μg/mL | [282] | |
aplyronines D–H (469–473) | HeLa S3 cells | IC50: 0.075, 0.18, 0.19, 0.12, 9.8 nM | [286] | |
dolabelide A (474), dolabelide B (475) | HeLa S3 cells | IC50: 6.3, 1.3 μg/mL | [287] | |
dolabelides C (476), D (477) | HeLa S3 cells | IC50: 1.9, 1.5 μg/mL | [288,289] | |
iejimalides C (487) and D (488) | KB, L1210 cells | IC50: 4.7, 0.2 μg/mL; 10, 0.58 μg/mL | [298] | |
lobatamides A–F (489–494) | NCT’S 60 cells | mean panel GI50’s 1.6 nM | [301,302] | |
biselides A (496), C (497) | NCI-H460, MDA-MB-231 cells | IC50: 3.53, 3.72 μM; IC50: 18.0, 25.5 μM | [303] | |
palmerolide A (501) | HCC-2998, RXF 393 | LC50: 18, 6.5, 6.5 μM | [305] | |
Antibacteria a | curvulone A (221) | B. subtilis, Microbotryum, violaceum, Septoria tritici, Chlorella fusca | undetermined | [139] |
thiocladospolides F–J (264–268) | Edwardsiella tarda | MIC: 4 μg/mL | [154] | |
marinomycins A–D (283–286) | MRSA, VREF | MIC: 0.1–0.6 μM | [165] | |
11′,12′-dehydroelaiophylin (305) | MRSA, vancomycin-resistant Enterococci pathogens | MIC: 1–4 μg/mL | [175] | |
anthracimycin (308) | Bacillus anthracis (strain UM23C1–1) | MIC: 0.031 μg/mL | [177] | |
bromophycolides A (411), B (412) | MRSA and VREF | MIC: 5.9, 5.9 μM; 5.9, 3.0 μM | [258] | |
bromophycolides P–Q (427–428) | MRSA and VREF | MIC: 1.4, 13 μM; 1.8, 5.8 μM | [260] | |
Antifugal a | leucascandrolide A (48) | C. albicans | undetermined | [48] |
neohalichondramide (101), (19Z)-halichondramide (102) | C. albicans | 12.5 mm at 25 μg/disk | [81] | |
neopeltolide (123) | C. albicans | MIC: 0.62 μg/mL | [93] | |
BK223-A (181) BK223-B (182), BK223-C (183) | Botrytis cinerea, Phoma lingam, Phoma bataem, Pyrenophora teres, Sclerotinia sclerotiorum, Moilinia fructigena, Ascochyta pisi and Alternaria alternata | undetermined | [121] | |
15G256ɩ (197),15G256w; (198) | Neuropora crassa OS-1 | undetermined | [128] | |
Astolides A (311), B (312) | C. albicans, A. niger 219, C. tropicales | MIC: 4, 8 μg/mL | [179] | |
bromophycolides A (411), B (412) | C. albicans | MIC: 6.7, 27.7 μM | [258] | |
bromophycolides F, I (417, 420) | amphotericin B-resistant C. albicans | undetermined | [259] | |
Antimitotic | halistatin 1, 2 (15–16) | Inhibition of tubulin polymerization | undetermined | [23,24] |
spirastrellolide A (94) | accelerating the entry of cells into mitosis | IC50: 100 ng/mL | [79] | |
Antiviral | bromophycolides A (411) | HIV strains 96USHIPS7 and UG/92/029 inhibition | IC50: 9.1,9.8 μg/mL | [258] |
Antiplasmodial | kabiramide L (119) | Against P. flaciparum K1 | IC50: 2.6 μM | [90] |
Antiparasite | bromophycolides R–U (429–432) | Against Pla. falciparum. | IC50: 0.9–8.4 μM | [261] |
VCAM b inhibition | halichlorine (47) | Inhibition to VCAM-1 | IC50: 7 μg/mL | [47] |
Prevent fertilization | exiguolide (111) | Inhibited fertilization of sea urchin gametes | IC50: 21 μM | [84] |
NFκB inhibition | fijiolides A (309) | Reducing TNF-α-inducing NFκB activation | IC50: 0.57 μM | [178] |
Prevent fertilization | oscillariolide (321) | Inhibited fertilization of echinoderm eggs | IC50: 0.5 μg/mL | [182] |
Molluscicidal activity | cyanolide A (329) | Against the snail vector B. glabrata | LC50: 1.2 μM | [189] |
Vasoconstrict-ors | zooxanthellatoxins A (380), B (381) | undetermined | [232,233] | |
Fast-acting toxin | prorocentrolide B (382) | Rapid toxic response in the mouse bioassay | undetermined | [234] |
symbiodinolide (395) | Voltage-dependent N-type Ca2+ channel-opening activity | IC50: 7 nM | [14] | |
acuminolide A (396) | IC50: 10−6 M | [246] | ||
Prevent fertilizatoin | haterumalide B (495) | Inhibited fertilization of sea urchin eggs | IC50: 0.01 μg/mL | [302] |
3. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Woodward, R.B. Struktur und biogenese der makrolide. Angew. Chem. 1957, 69, 50–58. [Google Scholar] [CrossRef]
- Oliynyk, M.; Samborskyy, M.; Lester, J.B.; Mironenko, T.; Scott, N.; Dickens, S.; Haydock, S.F.; Leadlay, P.F. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat. Biotechnol. 2007, 25, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Arsic, B.; Barber, J.; Čikoš, A.; Mladenovic, M.; Stankovic, N.; Novak, P. 16-Membered macrolide antibiotics: A review. Int. J. Antimicrob. Agents 2018, 51, 283–298. [Google Scholar] [CrossRef]
- Butler, M.S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat. Prod. Rep. 2008, 25, 475–516. [Google Scholar] [CrossRef]
- Lysenkova, L.N.; Turchin, K.F.; Korolev, A.M.; Dezhenkova, L.G.; Bekker, O.B.; Shtil, A.A.; Danilenko, V.N.; Preobrazhenskaya, M.N. Synthesis and cytotoxicity of oligomycin a derivatives modified in the side chain. Bioorgan. Med. Chem. 2013, 21, 2918–2924. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.A.; Tan, L.; Huang, X.C.; Cho, K.J.; Lacey, E.; Hancock, J.F.; Capon, R.J. Oligomycins as inhibitors of K-Ras plasma membrane localisation. Org. Biomol. Chem. 2016, 14, 711–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, A.F.U.H.; Su, J.; Ouyang, S. Marine-derived drugs: Recent advances in cancer therapy and immune signaling. Biomed. Pharmacother. 2021, 134, 111091. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kubota, T.; Kobayashi, J. Amphidinolactone B, a new 26-membered macrolide from dinoflagellate Amphidinium sp. J. Antibiot. 2007, 60, 376–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janas, A.; Przybylski, P. 14- and 15-membered lactone macrolides and their analogues and hybrids: Structure, molecular mechanism of action and biological activity. Eur. J. Med. Chem. 2019, 182, 111662. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, Y.; Zhou, Y.; Liu, Z.F.; Meng, Q.; Feng, X.S. A review of pretreatment and analysis of macrolides in food (update since 2010). J. Chromatogr. A 2020, 1634, 461662. [Google Scholar] [CrossRef]
- Olano, C.; Mendez, C.; Salas, J.A. Antitumor compounds from marine actionmycetes. Mar. Drugs 2019, 7, 210. [Google Scholar] [CrossRef] [Green Version]
- Karpiński, T.M. Marine macrolides with antibacterial and/or antifungal activity. Mar. Drugs 2019, 17, 241. [Google Scholar] [CrossRef] [Green Version]
- Dumdei, E.J.; Blunt, J.W.; Munro, M.H.G.; Pannell, L.K. Isolation of calyculins, calyculinamides, and swinholide H from the new zealand deep-water marine sponge Lamellomorpha strongylata. J. Org. Chem. 1997, 62, 2636–2639. [Google Scholar] [CrossRef] [PubMed]
- Kita, M.; Ohishi, N.; Konishi, K.; Kondo, M.; Koyama, T.; Kitamura, M.; Yamada, K.; Uemura, D. Symbiodinolide, a novel polyol macrolide that activates N-type Ca2+ channel, from the symbiotic marine dinoflagellate Symbiodinium sp. Tetrahedron 2007, 63, 6241–6251. [Google Scholar] [CrossRef]
- Alejandro, M.S.; Aimee, J.G.; Abimael, D.R.; Orazio, T.S.; Fumiaki, N.; Nobuhiro, F. Marine pharmacology in 2014–2015: Marine compounds with antibacterial, antidiabetic, antifungal, anti-Inflammatory, antiprotozoal, antituberculosis, antiviral, and anthelmintic activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2020, 18, 5. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Tanaka, J.; Katori, T.; Matsuura, M.; Yamashita, M.; Kitagawa, I. Marine natural products. XXII. the absolute sereostructure of swinholide A, a potent cytotoxic dimeric macrolide from the okinawan marine sponge Theonella swinhoei. Chem. Pharm. Bull. 1990, 38, 2409–2418. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, I.; Kobayashi, M.; Katori, T.; Yamashita, M. Absolute stereostructure of swinholide A, a potent cytotoxic macrolide from the okinawan marine sponge Theonella swinhoei. J. Am. Chem. Soc. 1990, 112, 3710–3712. [Google Scholar] [CrossRef]
- Kobayashi, M.; Tanaka, J.; Katori, T.; Kitagawa, I. Marine natural products. XXIII. three new cytotoxic dimeric macrolides, swinholides B and C and isoswinholide A, congeners of swinholide A, from the okinawan marine sponge Theonella swinhoei. Chem. Pharm. Bull. 1990, 38, 2960–2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukamoto, S.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. New congeners of swinholides from the okinawan marine sponge Theonella sp. J. Chem. Soc. 1991, 23, 3185–3188. [Google Scholar] [CrossRef]
- Kobayashi, J.; Tsukamoto, S.; Island, I.; Island, Z. New congeners of bistheonellides from okinawan marine sponges of the genus Theonella. J. Chem. Soc. Chem. 1991, 2379–2383. [Google Scholar] [CrossRef]
- Higa, T.; Tanaka, J.; Komesu, M. Miyakolide: A bryostatin-like macrolide from a spongge Polyfibrospongia sp. J. Am. Chem. Soc. 1992, 114, 7587–7588. [Google Scholar] [CrossRef]
- Fusetani, N.; Sugawara, T.; Matsunaga, S.; Hirota, H. Cytotoxic metabolites of the marine sponge Mycale adhaerens lambe. J. Org. Chem. 1991, 56, 4971–4974. [Google Scholar] [CrossRef]
- Pettit, G.R.; Gao, F.; Doubek, D.L.; Boyd, M.R.; Hamel, E.; Bai, R.; Schmide, J.M.; Tackett, L.P.; Ruetzier, K. ChemInform abstract: Antineoplastic agents. part 252. isolation and structure of halistatin 2 from the comoros marine sponge Axinella carteri. ChemInform 2010, 24, 371–377. [Google Scholar] [CrossRef]
- Pettit, G.R.; Tan, R.; Gao, F.; Williams, M.D.; Doubek, D.L.; Boyd, M.R.; Schmidt, J.M.; Chapuis, J.; Hamel, E.; Bai, R.; et al. Isolation and structure of halistatin 1 from the eastern indian ocean marine sponge phakellia carteri. J. Org. Chem. 1993, 58, 2538–2543. [Google Scholar] [CrossRef]
- Pettit, G.R.; Ichihara, Y.; Wurzel, G.; Williams, M.D.; Schmidt, J.M. Isolation and structure of halistatin 3 from the western pacific (chuuk) marine sponge Phakellia sp. J. Chem. Soc. Chem. Commun. 1995, 3, 383–385. [Google Scholar] [CrossRef]
- Pettit, G.R.; Chicacz, Z.A.; Gao, F.; Herald, C.L.; Boyd, M.R.; Schmidt, J.M.; Hooper, J.N.A. Antineoplastic agents. 257. isolation and structure of spongistatin 1. J. Org. Chem. 1993, 58, 1302–1304. [Google Scholar] [CrossRef]
- Pettit, G.R.; Cichacz, Z.A.; Gao, F.; Herald, C.L.; Boyd, M.R. Antineoplastic agents. part 282. isolation and structure of the remarkable human cancer cell growth iinhibitors spongistatins 2 (Ia) and 3 (Ib) from an eastern Indian ocean Spongia sp. J. Chem. Soc. 1993, 14, 1166–1168. [Google Scholar]
- Pettit, G.R.; Herald, C.L.; Cichacz, Z.A.; Gao, F.; Schmidt, J.M.; Boyd, M.R.; Christie, N.D.; Boettner, F.E. Isolation and structure of the powerful human cancer cell growth inhibitors spongistatins 4 and 5 from an African Spirastrella spinispirulifera (Porifera). J. Chem. Soc. Chem. Commun. 1993, 3, 1805–1807. [Google Scholar] [CrossRef]
- Pettit, G.; Herald, C.; Cichacz, Z.; Gao, F.; Boyd, M.; Christie, N.; Schmidt, J. Antineoplastic agents 293. the exceptional human cancer cell growth inhibitors spongistatins 6 and 7. Nat. Prod. Lett. 1993, 3, 239–244. [Google Scholar] [CrossRef]
- D’Auria, M.V.; Paloma, L.G.; Minale, L.; Zampella, A.; Verbist, J.F.; Roussakis, C.; Debitus, C. Three new potent cytotoxic macrolides closely related to sphinxolide from the new caledonian sponge Neosiphonia superstes. Tetrahedron 1993, 49, 8657–8664. [Google Scholar] [CrossRef]
- Kobayashi, J.; Murata, O.; Shigemori, H.; Sasaki, T. Jaspisamides A–C, new cytotoxic macrolides from the okinawan sponge Jaspis sp. J. Nat. Prod. 1993, 56, 787–791. [Google Scholar] [CrossRef]
- Pettit, G.R.; Cichacz, Z.A.; Gao, F.; Boyd, M.R.; Schmidt, J.M. Isolation and structure of the cancer cell growth inhibitor dictyostatin 1. J. Chem. Soc. Chem. Commun. 1994, 9, 1111–1112. [Google Scholar] [CrossRef]
- Paterson, I.; Britton, R.; Delgado, O.; Wright, A.E. Stereochemical determination of dictyostatin, a novel microtubule-stabilizing macrolide from the marine sponge Corallistidae sp. Chem. Commun. 2004, 6, 632–633. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, M.V.; Paloma, L.G.; Minale, L.; Zampella, A.; Verbist, J.F.; Roussakis, C.; Debitus, C.; Patissou, J. Reidispongiolide A and B, two new potent cytotoxic macrolides from the new caledonian sponge Reidispongia coerulea. Tetrahedron 1994, 50, 4829–4834. [Google Scholar] [CrossRef]
- Zampella, A.; Sepe, V.; D’Orsi, R.; Bifulco, G.; Bassarello, C.; D’Auria, M.V. Stereochemical assignment of the C23–C35 portion of sphinxolide/reidispongiolide class of natural products by asymmetric synthesis. Tetrahedron Asymmetry 2003, 14, 1787–1798. [Google Scholar] [CrossRef]
- Paterson, I.; Ashton, K.; Britton, R.; Cecere, G.; Chouraqui, G.; Florence, G.J.; Stafford, J. Total synthesis of (-)-reidispongiolide A, an actin-targeting marine macrolide. Angew. Chem. Int. Ed. 2007, 46, 6167–6171. [Google Scholar] [CrossRef]
- Paterson, I.; Britton, R.; Ashton, K.; Knust, H.; Stafford, J. Synthesis of antimicrofilament marine macrolides: Synthesis and configurational assignment of a C5–C16 degradation fragment of reidispongiolide A. Proc. Natl. Acad. Sci. USA 2004, 101, 11986–11991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valeria, M.; A, D.; Gomez, L.; Minu, L.; Zampella, A. A novel cytotoxic macrolide, superstolide B, related to superstolide A, from the new caledonian marine sponge Neosiphonia superstes. J. Nat. Prod. 1994, 57, 1595–1597. [Google Scholar]
- D’Auria, M.V.; Paloma, L.G.; Zampella, A.; Debiti, C.; Minale, L. Superstolide A: A potent cytotoxic macrolide of a new type from the new caledonian deep water marine sponge Neosiphonia superstes. J. Am. Chem. Soc. 1994, 116, 6658–6663. [Google Scholar] [CrossRef]
- Horton, P.A.; Koehn, F.E.; Longley, R.E.; McConnell, O.J. Lasonolide A, a new cytotoxic macrolide from the marine sponge Forcepia sp. J. Am. Chem. Soc. 1994, 116, 6015–6016. [Google Scholar] [CrossRef]
- Litaudon, M.; Hart, J.B.; Blunt, J.W.; Lake, R.J.; Munro, M. Isohomohalichondrin B, a new antitumour polyether macrolide from the new zealand deep-water sponge Lissodendoryx sp. Tetrahedron Lett. 1994, 35, 9435–9438. [Google Scholar] [CrossRef]
- Searle, P.A.; Molinski, T.F. Phorboxazoles A and B: Potent cytostatic macrolides from marine sponge Phorbas sp. J. Am. Chem. Soc. 1995, 117, 8126–8131. [Google Scholar] [CrossRef]
- Molinski, T.F. Absolute configuration of phorboxazoles A and B from the marine sponge, Phorbas sp. 2. C43 and complete stereochemistry. Tetrahedron Lett. 1996, 37, 7879–7880. [Google Scholar] [CrossRef]
- Jefford, C.W.; Bernardinelli, G.; Tanaka, J.I.; Higa, T. Structures and absolute configurations of the marine toxins, latrunculin A and laulimalide. Tetrahedron Lett. 1996, 37, 159–162. [Google Scholar] [CrossRef]
- Tanaka, J.I.; Higa, T. Zampanolide, a new cytotoxic macrolide from a marine sponge. Tetrahedron Lett. 1996, 37, 5535–5538. [Google Scholar] [CrossRef]
- Tanaka, J.; Higa, T.; Bernardinelli, G.; Jefford, C.W. New cytotoxic macrolides from the sponge Fasciospongia rimosa. Chem. Lett. 1995, 25, 255–256. [Google Scholar] [CrossRef]
- Kuramoto, M.; Tong, C.; Yamada, K.; Chiba, T.; Hayashi, Y.; Uemura, D. Halichlorine, an inhibitor of VCAM-1 induction from the marine sponge Halichondria okadai kadota. Tetrahedron Lett. 1996, 37, 3867–3870. [Google Scholar] [CrossRef]
- D’Ambrosio, M.; Guerriero, A.; Debitus, C.; Pietra, F. Leucascandrolide A, a new type of macrolide: The first powerfully bioactive metabolite of calcareous sponges (Leucascandra caveolata, a new genus from the coral sea). Helv. Chim. Acta 1996, 79, 51–60. [Google Scholar] [CrossRef]
- Zampella, A.; D’Auria, M.V.; Minale, L.; Debitus, C.; Roussakis, C. Callipeltoside A: A cytotoxic aminodeoxy sugar-containing macrolide of a new type from the marine lithistida sponge Callipelta sp. J. Am. Chem. Soc. 1996, 118, 11085–11088. [Google Scholar] [CrossRef]
- Trost, B.M.; Dirat, O.; Gunzner, J.L. Callipeltoside A: Assignment of absolute and relative configuration by total synthesis (p 841–843). Angew. Chem. Int. Ed. 2002, 41, 841–843. [Google Scholar] [CrossRef]
- Evans, D.A.; Hu, E.; Burch, J.D.; Jaeschke, G. Enantioselective total synthesis of callipeltoside A. J. Am. Chem. Soc. 2002, 124, 5654–5655. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Gunzner, J.L.; Dirat, O.; Rhee, Y.H. Callipeltoside A: Total synthesis, assignment of the absolute and relative configuration, and evaluation of synthetic analogues. J. Am. Chem. Soc. 2002, 124, 10396–10415. [Google Scholar] [CrossRef] [PubMed]
- Kobayash, M.; Sasaki, T.; Aok, S.; Saka, H.; Kihara, N.; Kitagawa, I. Altohyrtins B and C and 5-desacetylaltohyrtin A, potent cytotoxic macrolide congeners of altohyrtin A, from the okinawan marine sponge Hyrtios altum. Chem. Pharm. Bull. 1993, 41, 989–991. [Google Scholar] [CrossRef]
- Kobayashi, M.; Aoki, S.; Gato, K.; Kitagawa, I. Marine natural products. XXXVIII. absolute stereostructures of altohyrtins A, B, and C and 5-desacetylaltohyrtin A, potent cytotoxic macrolides, from the okinawan marine sponge Hyrtios altum. Chem. Pharm. Bull. 1996, 44, 2142–2149. [Google Scholar] [CrossRef] [Green Version]
- Litaudon, M.; Hickford, S.J.H.; Lill, R.E.; Lake, R.J.; Blunt, J.W.; Munro, M.H.G. Antitumor polyether macrolides: New and hemisynthetic halichondrins from the new zealand deep-water sponge Lissodendoryx sp. J. Org. Chem. 1997, 62, 1868–1871. [Google Scholar] [CrossRef]
- Erickson, K.L.; Beutler, J.A.; Ii, J.H.C.; Boyd, M.R. Salicylihalamides A and B, novel cytotoxic macrolides from the marine sponge Haliclona sp. Clin. Trials 1997, 3263, 8188–8192. [Google Scholar]
- Labrecque, D.; Charron, S.; Rej, R.; Blais, C.; Lamothe, S. Enantioselective total synthesis of salicylihalamides A and B. Tetrahedron Lett. 2001, 42, 2645–2648. [Google Scholar] [CrossRef]
- Snider, B.B.; Song, F. Total synthesis of (−) -salicylihalamide A. Org. Lett. 2001, 3, 1817–1820. [Google Scholar] [CrossRef]
- Alois, F.; Dierkes, T.; Thiel, O.R.; Blanda, G. Total synthesis of (–) -salicylihalamide. Chem. Eur. J. 2001, 24, 5286–5298. [Google Scholar]
- Zampella, A.; D’Auria, M.V.; Minale, L.; Debitus, C. Callipeltosides B and C, two novel cyotoxic glycoside macrolides from a marine lithistida sponge Callipelta sp. Tetrahedron 1997, 53, 3243–3248. [Google Scholar] [CrossRef]
- Kobayashi, J.; Tsuda, M.; Fuse, H.; Sasaki, T.; Mikami, Y. Halishigamides A–D, new cytotoxic oxazole-containing metabolites from okinawan sponge Halichondria sp. J. Nat. Prod. 1997, 60, 150–154. [Google Scholar] [CrossRef]
- Lu, Q.; Faulkner, D.J. Three dolabellanes and a macrolide from the sponge Dysidea sp. from Palau. J. Nat. Prod. 1998, 61, 1096–1100. [Google Scholar] [CrossRef]
- Matsunaga, S.; Sugawara, T.; Fusetani, N. New mycalolides from the marine sponge Mycale magellanica and their interconversion. J. Nat. Prod. 1998, 61, 1164–1167. [Google Scholar] [CrossRef]
- Northcote, P.T.; Blunt, J.W.; Munro, M.H.G. Pateamine: A potent cytotoxin from the new zealand marine sponge, Mycale sp. Tetrahedron Lett. 1991, 32, 6411–6414. [Google Scholar] [CrossRef]
- Ovenden, S.P.B.; Capon, R.J.; Lacey, E.; Gill, J.H.; Friedel, T.; Wadsworth, D. Amphilactams A–D: Novel nematocides from southern australian marine sponges of the genus Amphimedon. J. Org. Chem. 1999, 64, 1140–1144. [Google Scholar] [CrossRef]
- Takada, N.; Sato, H.; Suenaga, K.; Arimoto, H.; Yamada, K.; Ueda, K.; Uemura, D. Isolation and structures of haterumalides NA, NB, NC, ND, and NE, novel macrolides from an okinawan sponge Ircinia sp. Tetrahedron Lett. 1999, 40, 6309–6312. [Google Scholar] [CrossRef]
- Carbonelli, S.; Zampella, A.; Randazzo, A.; Debitus, C.; Gomez-Paloma, L. Sphinxolides E–G and reidispongiolide C: Four new cytotoxic macrolides from the new caledonian lithistida sponges N. superstes and R. coerulea. Tetrahedron 1999, 55, 14665–14674. [Google Scholar] [CrossRef]
- D’Ambrosio, M.; Tatò, M.; Pocsfalvi, G.; Debitus, C.; Pietra, F. Leucascandrolide B, a new 16-membered, extensively methyl-branched polyoxygenated macrolide from the calcareous sponge Leucascandra caveolata from northeastern waters of new caledonia. Helv. Chim. Acta 1999, 82, 347–353. [Google Scholar] [CrossRef]
- West, L.M.; Northcote, P.T.; Battershill, C.N. Peloruside A: A potent cytotoxic macrolide isolated from the new zealand marine sponge Mycale sp. J. Org. Chem. 2000, 65, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Wu, Y.; Brabander, J. Total synthesis and absolute configuration of the novel microtubule-stabilizing agent peloruside A**. Angew. Chem. Int. Ed. 2003, 42, 1648–1652. [Google Scholar] [CrossRef] [PubMed]
- Grassia, A.; Bruno, I.; Debitus, C.; Marzocco, S.; Pinto, A.; Gomez-Paloma, L.; Riccio, R. Spongidepsin, a new cytotoxic macrolide from Spongia sp. Tetrahedron 2001, 57, 6257–6260. [Google Scholar] [CrossRef]
- Cutignano, A.; Bruno, I.; Bifulco, G.; Casapullo, A.; Debitus, C.; Gomez-Paloma, L.; Riccio, R. Dactylolide, a new cytotoxic macrolide from the Vanuatu sponge Dactylospongia sp. European J. Org. Chem. 2001, 775–778. [Google Scholar] [CrossRef]
- Randazzo, A.; Debitus, C.; Gomez-Paloma, L. Haliclamide, a novel cyclic metabolite from the Vanuatu marine sponge Haliclona sp. Tetrahedron 2001, 57, 4443–4446. [Google Scholar] [CrossRef]
- Rao, M.R.; Faulkner, D.J. Clavosolides A and B, dimeric macrolides from the philippines sponge Myriastra clavosa. J. Nat. Prod. 2002, 65, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.L.; Gustafson, K.R.; Pannell, L.K.; Beutler, J.A.; Boyd, M.R. New dimeric macrolide glycosides from the marine sponge Myriastra clavosa. J. Nat. Prod. 2002, 65, 1303–1306. [Google Scholar] [CrossRef] [PubMed]
- Son, J.B.; Hwang, M.; Lee, W.; Lee, D. Enantioselective total synthesis of (−) -clavosolide B. Org. Lett. 2007, 9, 3898–3900. [Google Scholar] [CrossRef]
- Williams, D.E.; Lapawa, M.; Feng, X.; Tarling, T.; Roberge, M.; Andersen, R.J. Spirastrellolide A: Revised structure, progress toward the relative configuration, and inhibition of protein phosphatase 2A. Org. Lett. 2004, 6, 2607–2610. [Google Scholar] [CrossRef]
- Warabi, K.; Williams, D.E.; Patrick, B.O.; Roberge, M.; Andersen, R.J. Spirastrellolide B reveals the absolute configuration of the spirastrellolide macrolide core. J. Am. Chem. Soc. 2007, 129, 508–509. [Google Scholar] [CrossRef]
- Williams, D.E.; Roberge, M.; Van Soest, R.; Andersen, R.J. Spirastrellolide A, an antimitotic macrolide isolated from the caribbean marine sponge Spirastrella coccinea. J. Am. Chem. Soc. 2003, 125, 5296–5297. [Google Scholar] [CrossRef]
- Williams, D.E.; Keyzers, R.A.; Warabi, K.; Desjardine, K.; Riffell, J.L.; Roberge, M.; Andersen, R.J. Spirastrellolides C to G: Macrolides obtained from the marine sponge Spirastrella coccinea. J. Org. Chem. 2007, 72, 9842–9845. [Google Scholar] [CrossRef]
- Shin, J.; Lee, H.S.; Kim, J.Y.; Hee, J.S.; Ahn, J.W.; Paul, V.J. New macrolides from the sponge Chondrosia corticata. J. Nat. Prod. 2004, 67, 1889–1892. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, S.; Fusetani, N. Utilization of marine invertebrates as resource for bioactive metabolites: Isolation of new mycalolides and calyculins. Dev. Food Sci. 2004, 131–138. [Google Scholar]
- Wright, A.E.; Chen, Y.; Winder, P.L.; Pitts, T.P.; Pomponi, S.A.; Longley, R.E. Lasonolides C-G, five new lasonolide compounds from the sponge Forcepia sp. J. Nat. Prod. 2004, 67, 1351–1355. [Google Scholar] [CrossRef] [PubMed]
- Ohta, S.; Uy, M.M.; Yanai, M.; Ohta, E.; Hirata, T.; Ikegami, S. Exiguolide, a new macrolide from the marine sponge Geodia exigua. Tetrahedron Lett. 2006, 47, 1957–1960. [Google Scholar] [CrossRef] [Green Version]
- Fuwa, H.; Suzuki, T.; Kubo, H.; Yamori, T.; Sasaki, M. Total synthesis and biological assessment of (−)-exiguolide and analogues. Chem. Eur. J. 2011, 17, 2678–2688. [Google Scholar] [CrossRef] [PubMed]
- Sandler, J.S.; Colin, P.L.; Kelly, M. Cytotoxic macrolides from a new spexies of the deep-water marine sponge Leiodermatium. J. Org. Chem. 2006, 71, 8684. [Google Scholar] [CrossRef] [Green Version]
- Sandler, J.S.; Colin, P.L.; Kelly, M.; Fenical, W. Cytotoxic macrolides from a new species of the deep-water marine sponge Leiodermatium. J. Org. Chem. 2006, 71, 7245–7251. [Google Scholar] [CrossRef] [PubMed]
- Chevallier, C.; Bugni, T.S.; Feng, X.; Harper, M.K.; Orendt, A.M.; Ireland, C.M. Tedanolide C: A potent new 18-membered ring cytotoxic macrolide isolated from the Papua new guinea marine sponge Ircinia sp. ChemInform 2006, 37, 2510–2513. [Google Scholar] [CrossRef] [Green Version]
- Petchprayoon, C.; Asato, Y.; Higa, T.; Garcia-Fernandez, L.F.; Pedpradab, S.; Marriott, G.; Suwanborirux, K.; Tanaka, J. Four new kabiramides from the thai sponge Pachastrissa nux. Heterocycles 2006, 69, 447–456. [Google Scholar] [CrossRef]
- Sirirak, T.; Brecker, L.; Plubrukarn, A. Kabiramide L, a new antiplasmodial trisoxazole macrolide from the sponge Pachastrissa nux. Nat. Prod. Res. 2013, 27, 1213–1219. [Google Scholar] [CrossRef]
- Youssef, D.T.A.; Mooberry, S.L. Hurghadolide A and swinholide I, potent actin-microfilament disrupters from the red sea sponge Theonella swinhoei. J. Nat. Prod. 2006, 69, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Odde, S.; Daga, P.R.; Bowling, J.J.; Mesbah, M.K.; Youssef, D.T.; Khalifa, S.I.; Doerksen, R.J.; Hamann, M.T. Latrunculin with a highly oxidized thiazolidinone ring: Structure assignment and actin docking. Org. Lett. 2007, 9, 4773–4776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.E.; Botelho, J.C.; Guzmán, E.; Harmody, D.; Linley, P.; McCarthy, P.J.; Pitts, T.P.; Pomponi, S.A.; Reed, J.K. Neopeltolide, a macrolide from a lithistid sponge of the family neopeltidae. J. Nat. Prod. 2007, 70, 412–416. [Google Scholar] [CrossRef]
- Meragelman, T.L.; Willis, R.H.; Woldemichael, G.M.; Heaton, A.; Murphy, P.T.; Snader, K.M.; Newman, D.J.; Van Soest, R.; Boyd, M.R.; Cardellina, J.H.; et al. Candidaspongiolides, distinctive analogues of tedanolide from sponges of the genus Candidaspongia. J. Nat. Prod. 2007, 70, 1133–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, T.A.; Tenney, K.; Cichewicz, R.H.; Morinaka, B.I.; White, K.N.; Amagata, T.; Subramanian, B.; Media, J.; Mooberry, S.L.; Valeriote, F.A.; et al. Sponge-derived fijianolide polyketide class: Further evaluation of their structural and cytotoxicity properties. J. Med. Chem. 2007, 50, 3795–3803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skepper, C.K.; MacMillan, J.B.; Zhou, G.X.; Masuno, M.N.; Molinski, T.F. Chlorocyclopropane macrolides from the marine sponge Phorbas sp. assignment of the configurations of phorbasides A and B by quantitative CD. J. Am. Chem. Soc. 2007, 129, 4150–4151. [Google Scholar] [CrossRef]
- MacMillan, J.B.; Guang, X.Z.; Skepper, C.K.; Molinski, T.F. Phorbasides A-E, cytotoxic chlorocyclopropane macrolide glycosides from the marine sponge Phorbas sp. CD determination of C-methyl sugar configurations. J. Org. Chem. 2008, 73, 3699–3706. [Google Scholar] [CrossRef]
- Amagata, T.; Johnson, T.A.; Cichewicz, R.H.; Tenney, K.; Mooberry, S.L.; Media, J.; Edelstein, M.; Valeriote, F.A.; Crews, P. Interrogating the bioactive pharmacophore of the latrunculin chemotype by investigating the metabolites of two taxonomically unrelated sponges. J. Med. Chem. 2008, 51, 7234–7242. [Google Scholar] [CrossRef] [Green Version]
- Bishara, A.; Rudi, A.; Aknin, M.; Neumann, D.; Ben-Califa, N.; Kashman, Y. Salarins A and B and tulearin A: New cytotoxic sponge-derived macrolides. Org. Lett. 2008, 10, 153–156. [Google Scholar] [CrossRef]
- Bishara, A.; Rudi, A.; Aknin, M.; Neumann, D.; Ben-Califa, N.; Kashman, Y. Salarin C, a new cytotoxic sponge-derived nitrogenous macrolide. Tetrahedron Lett. 2008, 49, 4355–4358. [Google Scholar] [CrossRef]
- Plaza, A.; Baker, H.L.; Bewley, C.A. Mirabilin, an antitumor macrolide lactam from the marine sponge Siliquariaspongia mirabilis. J. Nat. Prod. 2008, 71, 473–477. [Google Scholar] [CrossRef]
- Bishara, A.; Rudi, A.; Goldberg, I.; Aknin, M.; Neumann, D.; Ben-Califa, N.; Kashman, Y. Tausalarin C: A new bioactive marine sponge-derived nitrogenous bismacrolide. Org. Lett. 2009, 11, 3538–3541. [Google Scholar] [CrossRef]
- Dalisay, D.S.; Morinaka, B.I.; Skepper, C.K.; Molinski, T.F. A tetrachloro polyketide hexahydro-1H-isoindolone, muironolide A, from the marine sponge Phorbas sp. natural products at the nanomole scale. J. Am. Chem. Soc. 2009, 131, 7552–7553. [Google Scholar] [CrossRef] [PubMed]
- Hickford, S.J.H.; Blunt, J.W.; Munro, M.H.G. Antitumour polyether macrolides: Four new halichondrins from the new zealand deep-water marine sponge Lissodendoryx sp. Bioorganic Med. Chem. 2009, 17, 2199–2203. [Google Scholar] [CrossRef]
- Oku, N.; Takada, K.; Fuller, R.W.; Wilson, J.A.; Peach, M.L.; Pannell, L.K.; McMahon, J.B.; Gustafson, K.R. Isolation, structural elucidation, and absolute stereochemistry of enigmazole A, a cytotoxic phosphomacrolide from the Papua new guinea marine sponge Cinachyrella enigmatica. J. Am. Chem. Soc. 2010, 132, 10278–10285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skepper, C.K.; Quach, T.; Molinski, T.F. Total synthesis of enigmazole a from Cinachyrella enigmatica. bidirectional bond constructions with an ambident 2,4-disubstituted oxazole synthon. J. Am. Chem. Soc. 2010, 132, 10286–10292. [Google Scholar] [CrossRef]
- Bishara, A.; Rudi, A.; Aknin, M.; Neumann, D.; Ben-Califa, N.; Kashman, Y. Salarins D-J, seven new nitrogenous macrolides from the madagascar sponge Fascaplysinopsis sp. Tetrahedron 2010, 66, 4339–4345. [Google Scholar] [CrossRef]
- Kondo, K.; Ishibashi, M.; Kobayashi, J. Isolation and structures of theonezolides B and C from the okinawan marine sponge Theonella sp. Tetrahedron 1994, 50, 8355–8362. [Google Scholar] [CrossRef]
- Nozawa, K.; Tsuda, M.; Tanaka, N.; Kubota, T.; Fukushi, E.; Kawabata, J.; Kobayashi, J. Stereochemistry of theonezolides A-C. Tetrahedron Lett. 2013, 54, 783–787. [Google Scholar] [CrossRef]
- Sinisi, A.; Calcinai, B.; Cerrano, C.; Dien, H.A.; Zampella, A.; D’Amore, C.; Renga, B.; Fiorucci, S.; Taglialatela-Scafati, O. Isoswinholide B and swinholide K, potently cytotoxic dimeric macrolides from Theonella swinhoei. Bioorganic Med. Chem. 2013, 21, 5332–5338. [Google Scholar] [CrossRef]
- Pham, C.D.; Hartmann, R.; Böhler, P.; Stork, B.; Wesselborg, S.; Lin, W.; Lai, D.; Proksch, P. Callyspongiolide, a cytotoxic macrolide from the marine sponge Callyspongia sp. Org. Lett. 2014, 16, 266–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorente, A.; Gil, A.; Fernández, R.; Cuevas, C.; Albericio, F.; Álvarez, M. Phormidolides B and C, cytotoxic agents from the sea: Enantioselective synthesis of the macrocyclic core. Chem. Eur. J. 2015, 21, 150–156. [Google Scholar] [CrossRef]
- Irie, R.; Hitora, Y.; Ise, Y.; Okada, S.; Takada, K.; Matsunaga, S. Poecillastrin E, F, and G, cytotoxic chondropsin-type macrolides from a marine sponge Poecillastra sp. Tetrahedron 2018, 74, 1430–1434. [Google Scholar] [CrossRef]
- Numata, A.; Iritani, M.; Yamada, T.; Minoura, K.; Matsumura, E.; Yamori, T.; Tsuruo, T. Novel antitumour metabolites produced by a fungal strain from a sea hare. Tetrahedron Lett. 1997, 38, 8215–8218. [Google Scholar] [CrossRef]
- Yamada, T.; Iritani, M.; Doi, M.; Minoura, K.; Ito, T.; Numata, A. Absolute stereostructures of cell-adhesion inhibitors, macrosphelides C, E–G and I, produced by a periconia species separated from an Aplysia sea hare. J. Chem. Soc. 2001, 1, 3046–3053. [Google Scholar] [CrossRef]
- Nakamura, H.; Ono, M.; Yamada, T.; Numata, A.; Akita, H. Determination of the absolute stereostructure of seco-macrosphelide E produced by a fungal stain from a sea hare. Chem. Pharm. Bull. 2002, 50, 303–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, Y.; Wang, Y. Synthesis of macrosphelides H and G. Tetrahedron Lett. 2002, 43, 4381–4384. [Google Scholar] [CrossRef]
- Nakamura, H.; Ono, M.; Shida, Y.; Akita, H. New total syntheses of (+)-macrosphelides C, F and G. Tetrahedron Asymmetry 2002, 13, 705–713. [Google Scholar] [CrossRef]
- Yamada, T.; Iritani, M.; Minoura, K.; Numata, A. Absolute stereostructures of cell adhension inhibitors, macrosphelides H and L, from Periconia byssoides OUPS-N133. J. Antibiot. 2002, 55, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Minoura, K.; Tanaka, R.; Numata, A. Cell-adhesion inhibitors produced by a sea hare-derived Periconia sp.: III absolute stereostructures of peribysin J and macrosphelide M. J. Antibiot. (Tokyo) 2007, 60, 370–375. [Google Scholar] [CrossRef]
- Breinholt, J.; Jensen, G.W.; Nielsen, R.I.; Olsen, C.E.; Frisvad, J.C. Antifungal macrocyclic polylactones from Penicillium verruculosum. J. Antibiot. 1993, 46, 1101–1108. [Google Scholar] [CrossRef] [Green Version]
- Höller, U.; König, G.M.; Wright, A.D. A new tyrosine kinase inhibitor from a marine isolate of ulocladium botrytis and new metabolites from the marine fungi Asteromyces cruciatus and Varicosporina ramulosa. European J. Org. Chem. 1999, 49, 2949–2955. [Google Scholar] [CrossRef]
- Ohta, K.; Miyagawa, O.; Tsutsui, H.; Mitsunobu, O. Total synthesis of grahamimycin A1. Bull. Chem. Soc. Jpn. 1993, 66, 523–535. [Google Scholar] [CrossRef]
- Smith, C.J.; Abbanat, D.; Bernan, V.S.; Maiese, W.M.; Greenstein, M.; Jompa, J.; Tahir, A.; Ireland, C.M. Novel polyketide metabolites from a species of marine fungi. J. Nat. Prod. 2000, 63, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Jadulco, R.; Proksch, P.; Wray, V.; Sudarsono; Berg, A.; Gräfe, U. New macrolides and furan carboxylic acid derivative from the sponge-derived fungus Cladosporium herbarum. J. Nat. Prod. 2001, 64, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Namikoshi, M.; Akano, K.; Meguro, S.; Kasuga, I.; Mine, Y.; Takahashi, T.; Kobayashi, H. A new macrocyclic trichothecene, 12,13-deoxyroridin E, produced by the marine-derived fungus Myrothecium roridum collected in palau. J. Nat. Prod. 2001, 64, 396–398. [Google Scholar] [CrossRef]
- Isaka, M.; Suyarnsestakorn, C.; Tanticharoen, M.; Kongsaeree, P.; Thebtaranonth, Y. Aigialomycins A-E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J. Org. Chem. 2002, 67, 1561–1566. [Google Scholar] [CrossRef]
- Schlingmann, G.; Milne, L.; Carter, G.T. Isolation and identification of antifungal polyesters from the marine fungus Hypoxylon oceanicum LL-15G256. Tetrahedron 2002, 58, 6825–6835. [Google Scholar] [CrossRef]
- Shigemori, H.; Kasai, Y.; Komatsu, K.; Tsuda, M.; Mikami, Y.; Kobayashi, J. Sporiolides A and B, new cytotoxic twelve-membered macrolides from a marine-derived fungus Cladosporium species. Mar. Drugs 2004, 2, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.Y.; Li, C.Y.; Lin, Y.C.; Peng, G.T.; She, Z.G.; Zhou, S.N. Lactones from a brown alga endophytic fungus (No. ZZF36) from the south China sea and their antimicrobial activities. Bioorg. Med. Chem. Lett. 2006, 16, 4205–4208. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Takasaki, A.; Kobayashi, H.; Oda, T.; Yamada, J.; Mangindaan, R.E.P.; Ukai, K.; Nagai, H.; Namikoshi, M. Four new macrocyclic trichothecenes from two strains of marine-derived fungi of the genus Myrothecium. J. Antibiot. (Tokyo) 2006, 59, 451–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Su, Y.; Jiang, T.; Xu, Y.; Huo, X.; She, X.; Pan, X. Asymmetric total synthesis and revision of the absolute configuration of 4-keto-clonostachydiol. J. Org. Chem. 2009, 74, 3930–3932. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Khong, T.T.; Chen, L.; Choi, H.D.; Kang, J.S.; Son, B.W. 8′-Hydroxyzearalanone and 2′-hydroxyzearalanol: Resorcyclic acid lactone derivatives from the marine-derived fungus Penicillium sp. Chem. Pharm. Bull. 2008, 56, 1355–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.L.; Gai, Y.; Kobayashi, H.; Hu, C.Q.; Zhang, H.P. 5′-Hydroxyzearalenol, a new β-resorcylic macrolide from Fusarium sp. 05ABR26. Chinese Chem. Lett. 2008, 19, 1089–1092. [Google Scholar] [CrossRef]
- Kito, K.; Ookura, R.; Yoshida, S.; Namikoshi, M.; Ooi, T.; Kusumi, T. New cytotoxic 14-membered macrolides from marine-derived fungus Aspergillus ostianus. Org. Lett. 2008, 10, 225–228. [Google Scholar] [CrossRef]
- Bao, J.; Xu, X.Y.; Zhang, X.Y.; Qi, S.H. A new macrolide from a marine-derived fungus Aspergillus sp. Nat. Prod. Commun. 2013, 8, 1127–1128. [Google Scholar] [CrossRef] [Green Version]
- Munro, H.D.; Musgrave, O.C.; Templeton, R. Curvularin. part V. the compound C16H18O5, αβ-dehydrocurvularin. Org. Lett. 1964, 947–948. [Google Scholar] [CrossRef]
- Lai, S.; Shizuri, Y.; Yamamura, S.; Kawai, L.; Furukawa, H. New curvalarin-type metabolites from the hybrid strain ME 0005 derived from Penicillium citreo-viride B. IFP 4692 and 6200. Chem. Soc. 1991, 3, 1048–1050. [Google Scholar]
- Dai, J.; Krohn, K.; Flörke, U.; Pescitelli, G.; Kerti, G.; Papp, T.; Kövér, K.E.; Bényei, A.C.; Draeger, S.; Schulz, B.; et al. Curvularin-type metabolites from the fungus Curvularia sp. isolated from a marine alga. European J. Org. Chem. 2010, 6928–6937. [Google Scholar] [CrossRef]
- Ebrahim, W.; Aly, A.H.; Mándi, A.; Totzke, F.; Kubbutat, M.H.G.; Wray, V.; Lin, W.H.; Dai, H.; Proksch, P.; Kurtán, T.; et al. Decalactone derivatives from corynespora cassiicola, an endophytic fungus of the mangrove plant Laguncularia racemosa. European J. Org. Chem. 2012, 3476–3484. [Google Scholar] [CrossRef] [Green Version]
- Rukachaisirikul, V.; Rodglin, A.; Phongpaichit, S.; Buatong, J.; Sakayaroj, J. α-Pyrone and seiricuprolide derivatives from the mangrove-derived fungi Pestalotiopsis spp. PSU-MA92 and PSU-MA119. Phytochem. Lett. 2012, 5, 13–17. [Google Scholar] [CrossRef]
- Silber, J.; Ohlendorf, B.; Labes, A.; Erhard, A.; Imhoff, J.F. Calcarides A-E, antibacterial macrocyclic and linear polyesters from a Calcarisporium strain. Mar. Drugs 2013, 11, 3309–3323. [Google Scholar] [CrossRef]
- Sun, P.; Xu, D.X.; Mándi, A.; Kurtán, T.; Li, T.J.; Schulz, B.; Zhang, W. Structure, absolute configuration, and conformational study of 12-membered macrolides from the fungus Dendrodochium sp. associated with the sea cucumber holothuria nobilis selenka. J. Org. Chem. 2013, 78, 7030–7047. [Google Scholar] [CrossRef]
- Mohapatra, D.K.; Pulluri, K.; Gajula, S.; Yadav, J.S. 13-Step total synthesis of dendrodolide K following iterative bartlett-smith iodocarbonate cyclization. Tetrahedron Lett. 2015, 56, 6377–6380. [Google Scholar] [CrossRef]
- Mohapatra, D.K.; Reddy, D.P.; Gajula, S.; Pulluri, K.; Yadav, J.S. A unified synthetic strategy for dendrodolides E, F, G, I, J, and L. Asian J. Org. Chem. 2015, 4, 452–461. [Google Scholar] [CrossRef]
- Shao, C.L.; Wu, H.X.; Wang, C.Y.; Liu, Q.A.; Xu, Y.; Wei, M.Y.; Qian, P.Y.; Gu, Y.C.; Zheng, C.J.; She, Z.G.; et al. Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. J. Nat. Prod. 2011, 74, 629–633. [Google Scholar] [CrossRef]
- Shao, C.L.; Wu, H.X.; Wang, C.Y.; Liu, Q.A.; Xu, Y.; Wei, M.Y.; Qian, P.Y.; Gu, Y.C.; Zheng, C.J.; She, Z.G.; et al. Correction to potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus Lunatus. J. Nat. Prod. 2013, 76, 302. [Google Scholar] [CrossRef]
- Meng, L.H.; Li, X.M.; Lv, C.T.; Li, C.S.; Xu, G.M.; Huang, C.G.; Wang, B.G. Sulfur-containing cytotoxic curvularin macrolides from Penicillium sumatrense MA-92, a fungus obtained from the rhizosphere of the mangrove Lumnitzera racemosa. J. Nat. Prod. 2013, 76, 2145–2149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shao, C.L.; Chen, M.; Liu, Q.A.; Wang, C.Y. Brominated resorcylic acid lactones from the marine-derived fungus Cochliobolus lunatus induced by histone deacetylase inhibitors. Tetrahedron Lett. 2014, 55, 4888–4891. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X.P.; Li, L.C.; Zhong, B.L.; Liao, X.J.; Liu, Y.H.; Xu, S.H. Gliomasolides A-E, unusual macrolides from a sponge-derived fungus Gliomastix sp. ZSDS1-F7-2. RSC Adv. 2015, 5, 54645–54648. [Google Scholar] [CrossRef]
- Okabe, M.; Sugita, T.; Kinoshita, K.; Koyama, K. Macrolides from a marine-derived fungus, Penicillium meleagrinum var. viridiflavum, showing synergistic effects with fluconazole against azole-resistant candida albicans. J. Nat. Prod. 2016, 79, 1208–1212. [Google Scholar] [PubMed]
- De Castro, M.V.; Ióca, L.P.; Williams, D.E.; Costa, B.Z.; Mizuno, C.M.; Santos, M.F.C.; De Jesus, K.; Ferreira, É.L.F.; Seleghim, M.H.R.; Sette, L.D.; et al. Condensation of macrocyclic polyketides produced by Penicillium sp. DRF2 with mercaptopyruvate represents a new fungal detoxification pathway. J. Nat. Prod. 2016, 79, 1668–1678. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chen, T.; Yan, Z.; Guo, H.; Hou, X.; Jiang, L.; Long, Y. Thiocladospolide E and cladospamide A, novel 12-membered macrolide and macrolide lactam from mangrove endophytic fungus Cladosporium sp. SCNU-F0001. Fitoterapia 2019, 137, 104246. [Google Scholar] [CrossRef]
- Wang, W.; Feng, H.; Sun, C.; Che, Q.; Zhang, G.; Zhu, T.; Li, D. Thiocladospolides F-J, antibacterial sulfur containing 12-membered macrolides from the mangrove endophytic fungus Cladosporium oxysporum HDN13-314. Phytochemistry 2020, 178, 112462. [Google Scholar] [CrossRef]
- Gao, Y.; Stuhldreier, F.; Schmitt, L.; Wesselborg, S.; Wang, L.; Müller, W.E.G.; Kalscheuer, R.; Guo, Z.; Zou, K.; Liu, Z.; et al. Sesterterpenes and macrolide derivatives from the endophytic fungus Aplosporella javeedii. Fitoterapia 2020, 146, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, Y.; Li, S.; Zhang, W.; Liu, Z.; Tan, H.; Zhang, W. Trichothecene macrolides from the endophytic fungus Paramyrothecium roridum and their cytotoxic activity. Fitoterapia 2020, 147, 104768. [Google Scholar] [CrossRef]
- Pathirana, C.; Tapiolas, D.; Jensen, P.R.; Dwight, R.; Fenical, W. Structure determination of maduralide: A new 24-membered ring macrolide glycoside produced by a marine bacterium (actinomycetales). Tetrahedron Lett. 1991, 32, 2323–2326. [Google Scholar] [CrossRef]
- Takahaahi, C.; Takada, T.; Yamada, T.; Mlnoura, K. Halichomycin, a new class of potent cytotoxic macrolide produced by an actionmycete from a marine fish. Tetrahedron Lett. 1994, 35, 5013–5014. [Google Scholar] [CrossRef]
- Jaruchoktaweechai, C.; Suwanborirux, K.; Tanasupawatt, S.; Kittakoop, P.; Menasveta, P. New macrolactins from a marine Bacillus sp. Sc026. J. Nat. Prod. 2000, 63, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Chimeno, R.I.; Cañedo, L.; Espliego, F.; Grávalos, D.; De la Calle, F.; Fernández-Puentes, J.L.; Romero, F. IB-96212, a novel cytotoxic macrolide produced by a marine Micromonospora. I. taxonomy, fermentation, isolation and biological activities. J. Antibiot. (Tokyo) 2000, 53, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Asolkar, R.N.; Maskey, R.P.; Helmke, E.; Laatsch, H. Chalcomycin B, a new macrolide antibiotic from the marine isolate strptomtces sp. B7064. J. Antibiot. 2002, 55, 893–898. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.D.; Jensen, P.R.; Fenical, W. Lobophorins A and B, new antiinflammatory macrolides produced by a tropical marine bacterium. Bioorganic Med. Chem. Lett. 1999, 9, 2003–2006. [Google Scholar] [CrossRef]
- Ohta, E.; Kubota, N.K.; Ohta, S.; Suzuki, M.; Ogawa, T.; Yamasaki, A.; Ikegami, S. Micromonospolides A-C, new macrolides from Micromonospora sp. Tetrahedron 2001, 57, 8463–8467. [Google Scholar] [CrossRef]
- Ohta, E.; Ohta, S.; Kubota, N.K.; Suzuki, M.; Ogawa, T.; Yamasaki, A.; Ikegami, S. Micromonospolide A, a new macrolide from Micromonospora sp. Tetrahedron Lett. 2001, 25, 4179–4181. [Google Scholar] [CrossRef]
- Kwon, H.C.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Erratum: Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “ Marinispora”. J. Am. Chem. Soc. 2006, 128, 16410. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.G.; Miller, E.D.; Asolkar, R.N.; Jensen, P.R.; Fenical, W. Arenicolides A-C, 26-membered ring macrolides from the marine actinomycete Salinispora arenicola. J. Org. Chem. 2007, 72, 5025–5034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.L.; Xu, Q.Z.; Shen, Y.H.; Liu, X.Y.; Jiao, B.H.; Zhang, W.D.; Ni, K.Y. Macrolactin S, a novel macrolactin antibiotic from marine Bacillus sp. Nat. Prod. Res. 2008, 22, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.C.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Marinisporolides, polyene-polyol macrolides from a marine actinomycete of the new genus Marinispora. J. Org. Chem. 2009, 74, 675–684. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Kikuchi, T.; Tanaka, R.; Numata, A. Halichoblelides B and C, potent cytotoxic macrolides from a Streptomyces species separated from a marine fish. Tetrahedron Lett. 2012, 53, 2842–2846. [Google Scholar] [CrossRef]
- Kim, D.G.; Moon, K.; Kim, S.H.; Park, S.H.; Park, S.; Lee, S.K.; Oh, K.B.; Shin, J.; Oh, D.C. Bahamaolides A and B, antifungal polyene polyol macrolides from the marine actinomycete Streptomyces sp. J. Nat. Prod. 2012, 75, 959–967. [Google Scholar] [CrossRef]
- Shin, H.J.; Tareq, F.S.; Kim, J.H.; Lee, M.A.; Lee, H.S.; Lee, Y.J.; Lee, J.S. Glycosylated methoxy-macrolactins from a marine sediment bacterium Bacillus subtilis. Heterocycles 2013, 87, 307–318. [Google Scholar] [CrossRef]
- Mondol, M.A.M.; Tareq, F.S.; Kim, J.H.; Lee, M.A.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Shin, H.J. Cyclic ether-containing macrolactins, antimicrobial 24-membered isomeric macrolactones from a marine Bacillus sp. J. Nat. Prod. 2011, 74, 2582–2587. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.; Marler, L.; Nam, S.J.; Santarsiero, B.D.; Pezzuto, J.M.; Murphy, B.T. Potential chemopreventive activity of a new macrolide antibiotic from a marine-derived Micromonospora sp. Mar. Drugs 2013, 11, 1152–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, P.; Wang, C.X.; Yang, X.; Jiang, H.L.; Chen, L.J.; Uribe, P.; Bull, A.T.; Goodfellow, M.; Hong, J.; Lian, Y.Y. A new 20-membered macrolide produced by a marine-derived Micromonospora strain. Nat. Prod. Res. 2013, 27, 1366–1371. [Google Scholar] [CrossRef]
- Wu, C.; Tan, Y.; Gan, M.; Wang, Y.; Guan, Y.; Hu, X.; Zhou, H.; Shang, X.; You, X.; Yang, Z.; et al. Identification of elaiophylin derivatives from the marine-derived actinomycete Streptomyces sp. 7-145 using PCR-based screening. J. Nat. Prod. 2013, 76, 2153–2157. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Vanner, S.; Wang, W.; Li, Y.; Gallardo, V.A.; Magarvey, N.A. Macplocimine A, a new 18-membered macrolide isolated from the filamentous sulfur bacteria Thioploca sp. J. Antibiot. (Tokyo) 2013, 66, 443–446. [Google Scholar] [CrossRef]
- Jang, K.H.; Nam, S.J.; Locke, J.B.; Kauffman, C.A.; Beatty, D.S.; Paul, L.A.; Fenical, W. Anthracimycin, a potent anthrax antibiotic from a marine-derived actinomycete. Angew. Chem. Int. Ed. 2013, 52, 7822–7824. [Google Scholar] [CrossRef]
- Nam, S.J.; Gaudêncio, S.P.; Kauffman, C.A.; Jensen, P.R.; Kondratyuk, T.P.; Marler, L.E.; Pezzuto, J.M.; Fenical, W. Fijiolides A and B, inhibitors of TNF-α-induced NFκB activation, from a marine-derived sediment bacterium of the genus Nocardiopsis. J. Nat. Prod. 2010, 73, 1080–1086. [Google Scholar] [CrossRef] [Green Version]
- Alferova, V.A.; Novikov, R.A.; Bychkova, O.P.; Rogozhin, E.A.; Shuvalov, M.V.; Prokhorenko, I.A.; Sadykova, V.S.; Kulko, A.B.; Dezhenkova, L.G.; Stepashkina, E.A.; et al. Astolides A and B, antifungal and cytotoxic naphthoquinone-derived polyol macrolactones from Streptomyces hygroscopicus. Tetrahedron 2018, 74, 7442–7449. [Google Scholar] [CrossRef]
- Son, S.; Jang, M.; Lee, B.; Lee, J.S.; Hong, Y.S.; Kim, B.Y.; Ko, S.K.; Jang, J.H.; Ahn, J.S. Catenulisporidins A and B, 16-membered macrolides of the hygrolidin family produced by the chemically underexplored actinobacterium Catenulispora species. Bioorganic Med. Chem. Lett. 2020, 30, 127005. [Google Scholar] [CrossRef]
- Carmeli, S.; Moore, R.E.; Patterson, G.M.L. Tolytoxin and new scytophycins from three species of scytonema. J. Nat. Prod. 1990, 53, 1533–1542. [Google Scholar] [CrossRef]
- Murakami, M.; Matsuda, H.; Makabe, K.; Yamaguchi, K. Oscillariolide, a nocel macrolide from a blue-green alga Oscillatoria sp. Tetrahedron Lett. 1991, 32, 2391–2394. [Google Scholar] [CrossRef]
- Klein, D.; Braekman, J.C.; Daloze, D.; Hoffmann, L.; Demoulin, V. Lyngbyaloside, a novel 2,3,4-tri-O-methyl-6-deoxy-α-mannopyranoside macrolide from Lyngbya bouillonii (Cyanobacteria). J. Nat. Prod. 1997, 60, 1057–1059. [Google Scholar] [CrossRef]
- Klein, D.; Braekman, J.C.; Daloze, D.; Hoffmann, L.; Demoulin, V. Laingolide, a novel 15-membered macrolide from Lyngbya bouillonii (Cyanophyceae). Tetrahedron Lett. 1996, 37, 7519–7520. [Google Scholar] [CrossRef]
- Klein, D.; Braekman, J.C.; Daloze, D.; Hoffmann, L.; Castillo, G.; Demoulin, V. Madangolide and laingolide A, two novel macrolides from Lyngbya bouillonii (Cyanobacteria). J. Nat. Prod. 1999, 62, 934–936. [Google Scholar] [CrossRef] [PubMed]
- Elmarrouni, A.; Lebeuf, R.; Gebauer, J.; Heras, M.; Arseniyadis, S.; Cossy, J. Total synthesis of nominal lyngbouilloside aglycon. Org. Lett. 2012, 14, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.T.; Márquez, B.L.; Gerwick, W.H. Lyngbouilloside, a novel glycosidic macrolide from the marine cyanobacterium Lyngbya bouillonii. J. Nat. Prod. 2002, 65, 925–928. [Google Scholar] [CrossRef]
- Andrianasolo, E.H.; Gross, H.; Goeger, D.; Musafija-Girt, M.; McPhail, K.; Leal, R.M.; Mooberry, S.L.; Gerwick, W.H. Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Org. Lett. 2005, 7, 1375–1378. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.R.; McCue, C.F.; Gerwick, W.H. Cyanolide A, a glycosidic macrolide with potent molluscicidal activity from the papua new guinea cyanobacterium Lyngbya bouillonii. J. Nat. Prod. 2010, 73, 217–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, M.; Ohno, O.; Suenaga, K. Biselyngbyolide A, a novel cytotoxic macrolide from the marine cyanobacterium Lyngbya sp. Chem. Lett. 2012, 41, 165–167. [Google Scholar] [CrossRef]
- Morita, M.; Ohno, O.; Teruya, T.; Yamori, T.; Inuzuka, T.; Suenaga, K. Isolation and structures of biselyngbyasides B, C, and D from the marine cyanobacterium Lyngbya sp., and the biological activities of biselyngbyasides. Tetrahedron 2012, 68, 5984–5990. [Google Scholar] [CrossRef]
- Navarro, G.; Cummings, S.; Lee, J.; Moss, N.; Glukhov, E.; Valeriote, F.A.; Gerwick, L.; Gerwick, W.H. Isolation of polycavernoside D from a marine cyanobacterium. Environ. Sci. Technol. Lett. 2015, 2, 166–170. [Google Scholar] [CrossRef]
- Cui, J.; Morita, M.; Ohno, O.; Kimura, T.; Teruya, T.; Watanabe, T.; Suenaga, K.; Shibasaki, M. Leptolyngbyolides, cytotoxic macrolides from the marine cyanobacterium Leptolyngbya sp.: Isolation, biological activity, and catalytic asymmetric total synthesis. Chem. Eur. J. 2017, 23, 8500–8509. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, J.; Ishibashi, M.; Murayama, T.; Takamatsu, M.; Iwamura, M.; Ohizumi, Y.; Sasaki, T. Amphidinolide E, a novel antileukemic 19-membered macrolide from the cultured symbiotic dinoflagellate Amohidinium sp. J. Org. Chem. 1990, 55, 3421–3423. [Google Scholar] [CrossRef]
- Kubota, T.; Tsuda, M.; Kobayashi, J. Absolute stereochemistry of amphidinolide E. J. Org. Chem. 2002, 67, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, M.; Ishibashi, M.; Shigemori, H.; Yamasua, T.; Hohaha, T.H. Amphidinolide F, a new cytotoxic macrolide from the marine dinoflagellate Amphidinium sp. J. Antibiot. 1991, 44, 1259–1261. [Google Scholar]
- Kobayashi, J.; Shigemori, H.; Ishibashi, M.; Yamasu, T.; Hirota, H.; Sasaki, T. Amphidinolides G and H: New potent cytotoxic macrolides from the cultured symbiotic dinoflagellate Amphidinium sp. J. Org. Chem. 1991, 56, 5221–5224. [Google Scholar] [CrossRef]
- Kobayashi, J.; Shimbo, K.; Sato, M.; Shiro, M.; Tsuda, M. Absolute stereochemistry of amphidinolides G and H. Org. Lett. 2000, 2, 2805–2807. [Google Scholar] [CrossRef]
- Ishibashi, M.; Sato, M.; Kobayashi, J. Amphidinolide K, a new 19-membered macrolide from the cultured symbiotic dinoflagellate Amphidinium sp. J. Org. Chem. 1993, 1, 6928–6929. [Google Scholar] [CrossRef]
- Kobayashi, J.; Sato, M.; Ishibashi, M. Amphidinolide J: A cytotoxic macrolide from the marine dinoflagellate Amphidinium sp. determination of the absolute stereochemistry. J. Org. Chem. 1993, 58, 2645. [Google Scholar] [CrossRef]
- Kobayashi, J.; Ishibashi, M.; Nakamura, H.; Ohizumi, Y.; Yamasu, T.; Hirata, Y.; Sasaki, T.; Ohta, T.; Nozoe, S. Cytotoxic macrolides from a cultured marine dinoflagellate of the genus Amphidinium. J. Nat. Prod. 1989, 52, 1036–1041. [Google Scholar] [CrossRef]
- Bauer, I.; Maranda, L.; Shimizu, Y.; Peterson, R.W.; Cornell, L.; Steiner, J.R.; Clardy, J. The Structures of amphidinolide B isomers: Strongly cytotoxic macrolides produced by a free-swimming dinoflagellate, Amphidinium sp. J. Am. Chem. Soc. 1994, 116, 2657–2658. [Google Scholar] [CrossRef]
- Ishibashi, M.; Ishiyama, H.; Kobayashi, J. Absolute stereochemistry of amphidinolide B. Tetrahedron Lett. 1994, 35, 8241–8242. [Google Scholar] [CrossRef]
- Tsuda, M.; Sasaki, T.; Kobayashi, J. Amphidinolide L, a new cytotoxic 27-membered macrolide from the cultured dinoflagellate Amphidinium sp. J. Org. Chem. 1994, 59, 3734–3737. [Google Scholar] [CrossRef]
- Kobayashi, J.; Yamaguchi, N.; Ishibashi, M. Amphidinolide M, a novel 29-menberd macrolide from the cultured marine dinoflagellate Amphidinium sp. J. Org. Chem. 1994, 59, 4698–4700. [Google Scholar] [CrossRef]
- Ishibashi, M.; Yamaguchi, N.; Sasaki, T.; Kobayashi, J. Amphidinolide N, a novel 26-membered macrolide with remarkably potent cytotoxicity from the cultured marine dinoflagellate Amphidinium sp. J. Chem. Soc. Chem. Commun. 1994, 1455–1456. [Google Scholar] [CrossRef]
- Tsuda, M.; Akakabe, M.; Minamida, M.; Kumagai, K.; Tsuda, M.; Konishi, Y.; Tominaga, A.; Fukushi, E.; Kawabata, J. Structure and stereochemistry of amphidinolide N congeners from marine dinoflagellate Amphidinium species. Chem. Pharm. Bull. 2021, 69, 141–149. [Google Scholar] [CrossRef]
- Ishibashi, M.; Takahashi, M.; Kobayashi, J. Amphidinolides O and P, novel 15-membered macrolides from the dinoflagellate Amphidinium sp.: Analysis of the relative stereochemistry and stable solution conformation. J. Org. Chem. 1995, 60, 6062–6066. [Google Scholar] [CrossRef]
- Williams, D.R.; Myers, B.J.; Mi, L. Total synthesis of (−) -amphidinolide P. Org. Lett. 2000, 2, 945–948. [Google Scholar] [CrossRef]
- Kobayashi, J.; Takahshi, M.; Ishibashi, M. Amphidinolide Q, a novel 12-membered macrolide from the cultured marine dinoflagellate Amphidinium sp. Tetrahedron Lett. 1996, 37, 1449–1450. [Google Scholar] [CrossRef]
- Hangyou, M.; Ishiyama, H.; Takahashi, Y.; Kobayashi, J. Total synthesis of amphidinolide Q. Org. Lett. 2009, 11, 5046–5049. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kubota, T.; Fukushi, E.; Kawabata, J. Absolute stereochemistry of amphidinolide Q. Org. Lett. 2008, 10, 3709–3711. [Google Scholar] [CrossRef] [PubMed]
- Feeding, S.; Ishibashi, M.; Takahashi, M.; Kobayashi, J. Studies on the macrolides from marine dinoflagellate Amphidinium sp.:structure of amphidinolides R and S and a succinate feeding experiment. Tetrahedron 1997, 53, 7827–7832. [Google Scholar]
- Tsuda, M.; Endo, T.; Kobayashi, J. Amphidinolide U, novel 20-membered macrolide from marine dinoflagellate Amphidinium sp. Tetrahedron 1999, 55, 14565–14570. [Google Scholar] [CrossRef]
- Kubota, T.; Suzuki, A.; Yamada, M.; Baba, S.; Kobayashi, J. Amphidinolide C3, a new cytotoxic 25-menbered macrolide from marine dinofagellate Amphidinium sp. Heterocycles 2010, 82, 333–338. [Google Scholar]
- Tsuda, M.; Endo, T.; Kobayashi, J. Amphidinolide T, novel 19-membered macrolide from marine dinoflagellate Amphidinium sp., Amphiscolops sp., and isolated a series of cytotoxic. J. Org. Chem. 2000, 65, 1349–1352. [Google Scholar] [CrossRef]
- Kubota, T.; Tsuda, M.; Kobayashi, J. Amphidinolide V, novel 14-membered macrolide from marine dinoflagellate Amphidinium sp. Tetrahedron Lett. 2000, 41, 713–716. [Google Scholar] [CrossRef]
- Furstner, A.; Flugge, S.; Larionov, O.; Takahashi, Y.; Kubota, T.; Kobayashi, J. Total synthesis and biological ecaluation of amphidinolide V and analogues. Chem. Eur. J. 2009, 4011–4029. [Google Scholar] [CrossRef]
- Kobayashi, J.; Kubota, T.; Endo, T.; Tsuda, M. Amphidinolides T2, T3, and T4, new 19-membered macrolides from the dinoflagellate Amphidinium sp. and the biosynthesis of amphidinolide T1. J. Org. Chem. 2001, 66, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Endo, T.; Tsuda, M.; Shiro, M.; Kobayashi, J. Amphidinolide T5, a new 19-membered macrolide from a dinoflagellate and X-ray structure of amphidinolide T1. Tetrahedron 2001, 57, 6175–6179. [Google Scholar] [CrossRef]
- Kobayashi, J.; Shimbo, K.; Sato, M.; Tsuda, M. Amphidinolides H2-H5, G2, and G3, new cytotoxic 26- and 27-membered macrolides from dinoflagellate Amphidinium sp. J. Org. Chem. 2002, 67, 6585–6592. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Luo, J.; Dai, W.M. A concise total synthesis of amphidinolide T2. Chem. Eur. J. 2010, 16, 11530–11534. [Google Scholar] [CrossRef]
- Shimbo, K.; Tsuda, M.; Izui, N.; Kobayashi, J. Amphidinolide W, a new 12-membered macrolide from dinoflagellate Amphidinium sp. J. Org. Chem. 2002, 67, 1020–1023. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Gong, G. Total synthesis and structural revision of (+) -amphidinolide W. J. Am. Chem. Soc. 2004, 126, 3704–3705. [Google Scholar] [CrossRef]
- Tsuda, M.; Izui, N.; Shimbo, K.; Sato, M.; Fukushi, E.; Kawabata, J.; Kobayashi, J. Amphidinolide Y, a novel 17-membered macrolide from dinoflagellate Amphidinium sp.: Plausible biogenetic precursor of amphidinolide X. J. Org. Chem. 2003, 68, 9109–9112. [Google Scholar] [CrossRef]
- Tsuda, M.; Izui, N.; Shimbo, K.; Sato, M.; Fukushi, E.; Kawabata, J.; Katsumata, K.; Horiguchi, T.; Kobayashi, J. Amphidinolide X, a novel 16-membered macrodiolide from dinoflagellate Amphidinium sp. J. Org. Chem. 2003, 68, 5339–5345. [Google Scholar] [CrossRef]
- Oguchi, K.; Tsuda, M.; Iwamoto, R.; Okamoto, Y.; Endo, T.; Kobayashi, J.; Ozawa, T.; Masuda, A. Amphidinolides B6 and B7, cytotoxic macrolides from a symbiotic dinoflagellate Amphidinium species. J. Nat. Prod. 2007, 70, 1676–1679. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Sakuma, Y.; Tsuda, M.; Kobayashi, J. Amphidinolide C2, new macrolide from marine dinoflagellate Amphidinium species. Mar. Drugs 2004, 2, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Bauer, I.; Maranda, L.; Young, K.A.; Shimizu, Y.; Fairchild, C.; Cornell, L.; Macbeth, J.; Huang, S. Isolation and structure of caribenolide I, a highly potent antitumrr macrolide from a cultured free-swimming caribbean dinoflagellate, Amphidinium sp. S1-36-5. J. Org. Chem. 1995, 60, 1084–1086. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kubota, T.; Kobayashi, J. Amphidinolactone A, a new 13-menbered macrolide from dinoflagellate Amphidinium sp. Grad. Sch. Pharm. Sci. 2007, 1, 567–572. [Google Scholar]
- Hangyou, M.; Ishiyama, H.; Takahashi, Y.; Kubota, T.; Kobayashi, J. Total synthesis of amphidinolactone A and its absolute configuration. Tetrahedron Lett. 2009, 50, 1475–1477. [Google Scholar] [CrossRef]
- Nakamura, H.; Asari, T.; Fujimaki, K.; Maruyama, K.; Murai, A.; Ohizumi, Y.; Kan, Y. Zooxanthellatoxin B, vasoconstrictive congener of zooxanthellatoxin-A from a symbiotic dinoflagellate Symbiodinium sp. Tetrahedron Lett. 1995, 36, 7255–7258. [Google Scholar] [CrossRef]
- Nakamura, H.; Asari, T.; Murai, A.; Kan, Y.; Kondo, T.; Yoshida, K.; Ohizumi, Y. Zooxanthellatoxin A, a potent vasoconstrictive 62-membered lactone from a symbiotic dinoflagellate. J. Am. Chem. Soc. 1995, 117, 550–551. [Google Scholar] [CrossRef]
- Hu, T.; DeFreitas, A.S.W.; Curtis, J.M.; Oshima, Y.; Walter, J.A.; Wright, J.L.C. Isolation and structure of prorocentrolide B, a fast-acting toxin from Prorocentrum maculosum. J. Nat. Prod. 1996, 59, 1010–1014. [Google Scholar] [CrossRef]
- Hu, T.; Curtis, J.M.; Walter, J.A.; Wright, J.L.C. Hoffmanniolide: A novel macrolide from Prorocentrum hoffmannianum. Tetrahedron Lett. 1999, 40, 3977–3980. [Google Scholar] [CrossRef]
- Tsuda, M.; Oguchi, K.; Iwamoto, R.; Okamoto, Y.; Fukushi, E.; Kawabata, J.; Ozawa, T.; Masuda, A. Iriomoteolides-1b and -1c, 20-membered macrolides from a marine dinoflagellate Amphidinium species. J. Nat. Prod. 2007, 70, 1661–1663. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, M.; Oguchi, K.; Iwamoto, R.; Okamoto, Y.; Kobayashi, J.; Fukushi, E.; Kawabata, J.; Ozawa, T.; Masuda, A.; Kitaya, Y.; et al. Iriomoteolide-1a, a potent cytotoxic 20-membered macrolide from a benthic dinoflagellate Amphidinium species. J. Org. Chem. 2007, 72, 4469–4474. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, K.; Tsuda, M.; Masuda, A.; Fukushi, E.; Kawabata, J. Iriomoteolide-2a, a cytotoxic 23-membered macrolide from marine benthic dinoflagellate Amphidinium species. Heterocycles 2015, 91, 265–274. [Google Scholar]
- Oguchi, K.; Tsuda, M.; Iwamoto, R.; Okamoto, Y.; Kobayashi, J.; Fukushi, E.; Kawabata, J.; Ozawa, T.; Masuda, A.; Kitaya, Y.; et al. Iriomoteolide-3a, a cytotoxic 15-membered macrolide from a marine dinoflagellate Amphidinium species. J. Org. Chem. 2008, 73, 1567–1570. [Google Scholar] [CrossRef]
- Kumagai, K.; Tsuda, M.; Fukushi, E.; Kawabata, J. Iriomoteolides-4A and -5A, hydrophilic macrolides from marine dinoflagellate Amphidinium species. Heterocycles 2013, 87, 2615–2623. [Google Scholar] [CrossRef]
- Kumagai, K.; Tsuda, M.; Fukushi, E.; Kawabata, J.; Masuda, A.; Tsuda, M. Iriomoteolides-9a and 11a: Two new odd-numbered macrolides from the marine dinoflagellate Amphidinium species. J. Nat. Med. 2017, 71, 506–512. [Google Scholar] [CrossRef]
- Akakabe, M.; Kumagai, K.; Tsuda, M.; Konishi, Y.; Tominaga, A.; Kaneno, D.; Fukushi, E.; Kawabata, J.; Masuda, A.; Tsuda, M. Iriomoteolides-10a and 12a, cytotoxic macrolides from marine dinoflagellate Amphidinium species. Chem. Pharm. Bull. 2016, 64, 1019–1023. [Google Scholar] [CrossRef]
- Takamura, H.; Kadonaga, Y.; Yamano, Y.; Han, C.; Aoyama, Y.; Kadota, I.; Uemura, D. Synthesis and structural determination of the C33–C42 fragment of symbiodinolide. Tetrahedron Lett. 2009, 50, 863–866. [Google Scholar] [CrossRef]
- Takamura, H.; Murata, T.; Asai, T.; Kadota, I.; Uemura, D. Stereoselective synthesis and absolute configuration of the C1’–C25’ fragment of symbiodinolide. J. Org. Chem 2009, 74, 6658–6666. [Google Scholar] [CrossRef]
- Takamura, H.; Kadonaga, Y.; Yamano, Y.; Han, C.; Kadota, I.; Uemura, D. Stereoselective synthesis and absolute configuration of the C33–C42 fragment of symbiodinolide. Tetrahedron 2009, 65, 7449–7456. [Google Scholar] [CrossRef]
- Hwang, B.S.; Kim, H.S.; Yih, W.; Jeong, E.J.; Rho, J.R. Acuminolide a: Structure and bioactivity of a new polyether macrolide from dinoflagellate Dinophysis acuminata. Org. Lett. 2014, 16, 5362–5365. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, H.J.; Napolitano, J.G.; Fernández-Sánchez, M.T.; Cabrera-García, D.; Novelli, A.; Norte, M.; Fernández, J.J.; Daranas, A.H. Belizentrin, a highly bioactive macrocycle from the dinoflagellate Prorocentrum belizeanum. Org. Lett. 2014, 16, 4546–4549. [Google Scholar] [CrossRef]
- Harju, K.; Koskela, H.; Kremp, A.; Suikkanen, S.; De La Iglesia, P.; Miles, C.O.; Krock, B.; Vanninen, P. Identification of gymnodimine D and presence of gymnodimine variants in the dinoflagellate Alexandrium ostenfeldii from the Baltic sea. Toxicon 2016, 112, 68–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurimoto, S.I.; Iinuma, Y.; Kobayashi, J.; Kubota, T. Symbiodinolactone A, a new 12-membered macrolide from symbiotic marine dinoflagellate Symbiodinium sp. Tetrahedron Lett. 2018, 59, 4496–4499. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Haddock, R.L.; Yasumoto, T. Polycavernoside A: A novel glycosidic macrolide from the red alga Polycavernosa tsudai (Gtacilaria edulis). J. Am. Chem. Soc. 1993, 3, 1147–1148. [Google Scholar] [CrossRef]
- Fujiwara, K.; Amano, S.; Oka, T.; Murai, A. Synthesis of the tetrahydropyran ring part of a marine toxin polycavernoside A. Chem. Lett. 1994, 11, 2147–2150. [Google Scholar] [CrossRef]
- Fujiwara, K.; Amano, S.; Oka, T.; Murai, A. Relative configuration of a marine toxin polycavernoside A. Chem. Lett. 1995, 855–856. [Google Scholar] [CrossRef]
- Paquette, L.A.; Barriault, L.; Pissarnitski, D.; Johnston, J.N. Stereocontrolled elaboration of natural (-) -polycavernoside A, a powerfully toxic metabolite of the red alga Polycavernosa tsudai. J. Am. Chem. Soc. 2000, 122, 619–631. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Seki, T.; Paul, V.J.; Naoki, H.; Yasumoto, T. Four new analogs of polycavernoside A. Tetrahedron Lett. 1995, 36, 5563–5566. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Abe, K.; Seki, T.; Fujiwara, K.; Yasumoto, T. Polycavernoside C and C2, the new analogs of the human lethal toxin polycavernoside A, from the red alga, Gracilaria edulis. Tetrahedron Lett. 2007, 48, 2255–2259. [Google Scholar] [CrossRef]
- Nagai, H.; Yasumoto, T.; Hokama, Y. Manauealides, some of the causative agents of a red alga Gracilaria coronopifolia poisoning in Hawaii. J. Nat. Prod. 1997, 60, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Kan, Y.; Fujita, T.; Sakamoto, B.; Hokama, Y. Manauealide C and anhydrodebromoaplysiatoxin, toxic constituents of the hawaiian red alga, Gracilaria coronopifolia. Biosci. Biotechnol. Biochem. 1998, 62, 1011–1013. [Google Scholar] [CrossRef] [Green Version]
- Kubanek, J.; Prusak, A.C.; Snell, T.W.; Giese, R.A.; Hardcastle, K.I.; Fairchild, C.R.; Aalbersberg, W.; Raventos-Suarez, C.; Hay, M.E. Antineoplastic diterpene-benzoate macrolides from the fijian red alga Callophycus serratus. Org. Lett. 2005, 7, 5261–5264. [Google Scholar] [CrossRef] [Green Version]
- Kubanek, J.; Prusak, A.C.; Snell, T.W.; Giese, R.A.; Fairchild, C.R.; Aalbersberg, W.; Hay, M.E. Bromophycolides C-I from the fijian red alga Callophycus serratus. J. Nat. Prod. 2006, 69, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Lane, A.L.; Stout, E.P.; Lin, A.S.; Prudhomme, J.; Le Roch, K.; Fairchild, C.R.; Franzblau, S.G.; Hay, M.E.; Aalbersberg, W.; Kubanek, J. Antimalarial bromophyeolides J-Q from the fijian red alga Callophycus serratus. J. Org. Chem. 2009, 74, 2736–2742. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.S.; Stout, E.P.; Prudhomme, J.; Roch, K.L.; Fairchild, C.R.; Franzblau, S.C.; Aalbersberg, W.; Hay, M.E.; Kubanek, J. Bioactive bromophycolides R-U from the fijian red alga Callophycus serratus. J. Nat. Prod. 2010, 73, 275–278. [Google Scholar] [CrossRef] [Green Version]
- Stout, E.P.; Hasemeyer, A.P.; Lane, A.L.; Davenport, T.M.; Engel, S.; Hay, M.E.; Fairchild, C.R.; Prudhomme, J.; Roch, K.L.; Aalbersberg, W.; et al. Antibacterial neurymenolides from the fijian red alga Neurymenia fraxinifolia. Org. Lett. 2009, 11, 225–228. [Google Scholar] [CrossRef] [Green Version]
- National, T.; Word, K. Ecklonilactoness C-F from the brown alga Ecklonia stolonifera. Phytochemistry 1993, 33, 155–159. [Google Scholar]
- Todd, J.S.; Proteau, P.J.; Gerwick, W.H. The absolute configuration of ecklonialactones A, B, and E, novel oxylipins from brown algae of the genera Ecklonia and Egregia. J. Nat. Prod. 1994, 57, 171–174. [Google Scholar] [CrossRef]
- Kousaka, K.; Ogi, N.; Akazawa, Y.; Fujieda, M.; Yamamoto, Y.; Takada, Y.; Kimura, J. Novel oxylipin metabolites from the brown alga Eisenia bicyclis. J. Nat. Prod. 2003, 66, 1318–1323. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, M.; Schupp, P.J.; Nakano, Y.; Uemura, D. Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae. Tetrahedron Lett. 2009, 50, 6606–6609. [Google Scholar] [CrossRef] [Green Version]
- Maru, N.; Inuzuka, T.; Yamamoto, K.; Kitamura, M.; Schupp, P.J.; Yamada, K.; Uemura, D. Relative configuration of luminaolide. Tetrahedron Lett. 2013, 54, 4385–4387. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; He, B.; Zhang, R.; Xu, M. Two new avermectin derivatives from the beibu gulf gorgonian Anthogorgia caerulea. Chem. Biodivers 2014, 11, 812–818. [Google Scholar]
- Koleck, M.P.; Vatakis, A.M.; Belinda Alvarado, A.; Andrews, P.; Marzo, L.V.; Muschik, G.M.; Roach, J.; Ross, J.T.; Lebherz, W.B.; Reeves, M.P.; et al. The large-scale isolation of bryostatin 1 from Bugula neritina following current good manufacturing practices. J. Nat. Prod. 1991, 54, 1265–1270. [Google Scholar]
- Pettit, G.R.; Sengupta, D.; Herald, C.L.; Sharkey, N.A.; Blumberg, P.M. Synthetic conversion of bryostatin 2 to bryostatin 1 and related bryopyrans. Can. J. Chem. 1991, 69, 856–860. [Google Scholar] [CrossRef]
- Pettit, G.R.; Herald, D.L.; Gao, F.; Sengupta, D.; Herald, C.L. Antineoplastic agents. 200. absolute configuration of the bryostatins. J. Org. Chem. 1991, 56, 1337–1340. [Google Scholar] [CrossRef]
- Daniel, E.S.; Gwendolyn, N.C.; Mary, P.K. 1H and 13C NMR assignments of the antitumor macrolide bryostatin 1. Magn. Reson. Chem. 1991, 29, 366–374. [Google Scholar]
- Schaufelberger, D.E.; John, N.C.; Mary, A.B.; Alvarado, A.B.; Schaufelberger, B.W.; Muschikt, G.M. Revised structure of bryostatin 3 and isolation of the bryostatin 3 26-ketone from Bugula neritina. J. Org. Chem. 1991, 56, 2895–2900. [Google Scholar] [CrossRef]
- Pettit, G.R.; Sengupta, D.; Coll, J.C.; Schmidt, J.H.; Van Camp, J.R.; Rudloe, J.J.; Nieman, R.A. Isolation and structure of bryostatins 14 and 15. Tetrahedron 1991, 47, 3601–3610. [Google Scholar] [CrossRef]
- Pettit, G.R.; Herald, C.L.; Kamano, Y. Structure of the Bugula neritina (marine bryozoa) antineoplastic component bryostatin 3. J. Org. Chem. 1983, 48, 5354–5356. [Google Scholar] [CrossRef]
- Sprinz, J.; Steinhagen, H.; Wiese, B.; Helmchen, G.; Ohmori, K.; Ogawa, Y.; Obitsu, T.; Ishikawa, Y.; Nishiyama, S.; Yamamura, S. Total synthesis of bryostatin 3. Science 2000, 2290–2294. [Google Scholar]
- Kamano, Y.; Zhang, H.P.; Yoshida, M.; Kawamura, M.; Koyano, T.; Takahashi, H.; Itokawa, H.; Pettit, G.R. An improved source of bryostatin 10, Bugula nertina from the gulf of aomori, Japan. J. Nat. Prod. 1995, 58, 1868–1875. [Google Scholar]
- Pettit, G.R.; Gao, F.; Blumberg, P.M.; Herald, C.L.; Coll, J.C.; Kamano, Y.; Lewin, N.E.; Schmidt, J.M.; Chapuis, J. Antineoplastic agents. 340. isolation and structural elucidation of bryostatins 16–18. J. Nat. Prod. 1996, 59, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.W.; Yi, Y.H.; Li, W.L. Bryostatin19: A new antineoplastic component from Bugula neritina in the south China sea. Chin. J. Mar. Drugs 1998, 17, 1. [Google Scholar]
- Lopanik, N.; Gustafson, K.R.; Lindquist, N. Structure of bryostatin 20: A symbiont-produced chemical defense for larvae of the host bryozoan, Bugula neritina. J. Nat. Prod. 2004, 67, 1412–1414. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Gao, F.; Herald, D.L.; Blumberg, P.M.; Lewin, N.E.; Nieman, R.A. Antineoplastic agents. 224. isolation and structure of neristatin 1. J. Am. Chem. Soc. 1991, 113, 6693–6695. [Google Scholar] [CrossRef]
- Kato, Y.; Scheuer, P.J. Aplysiatoxin and debromoaplysiatoxin, constituents of the marine mollusk Styloheilus longicauda. J. Am. Chem. Soc. 1973, 2245–2246. [Google Scholar]
- Okamura, H.; Kuroda, S.; Tomita, K.; Ikegami, S.; Sugimoto, Y.; Sakaguchi, S.; Katsuki, T.; Yamaguchi, M. Synthesis of aplysiatoxin: Stereoselective synthesis of key fragments. Tetrahedron Lett. 1991, 32, 5137–5140. [Google Scholar] [CrossRef]
- Ojika, M.; Kigoshi, H.; Ishigaki, T.; Tsukada, I.; Tsuboi, T.; Ogawa, T.; Yamada, K. Absolute stereochemistry of aplyronine A, a potent antitumor substance of marine origin. J. Am. Chem. Soc. 1994, 116, 7441–7442. [Google Scholar] [CrossRef]
- Kigoshi, H.; Ojika, M.; Ishigaki, T.; Suenaga, K.; Mutou, T.; Sakakura, A.; Ogawa, T.; Yamada, K. Total synthesis of aplyronine A, a potent antitumor substance of marine origin. J. Am. Chem. Soc. 1994, 116, 7443–7444. [Google Scholar] [CrossRef]
- Ojika, M.; Kigoshi, H.; Suenaga, K.; Imamura, Y.; Yoshikawa, K.; Ishigaki, T.; Sakakura, A.; Mutou, T.; Yamada, K. Aplyronines D-H from the sea hare Aplysia kurodai: Isolation, structures, and cytotoxicity. Tetrahedron 2012, 68, 982–987. [Google Scholar] [CrossRef]
- Ojika, M.; Nagoya, T.; Yamada, K. Dolabelides A and B, cytotoxic 22-membered macrolides isolated from the sea hare Dolabella auricularia. Tetrahedron Lett. 1995, 36, 7491–7494. [Google Scholar] [CrossRef]
- Suenaga, K.; Nagoya, T.; Shibata, T.; Kigoshi, H.; Yamada, K. Dolabelides C and D, cytotoxic macrolides isolated from the sea hare Dolabella auricularia. J. Nat. Prod. 1997, 60, 155–157. [Google Scholar] [CrossRef]
- Park, P.K.; O’Malley, S.J.; Schmidt, D.R.; Leighton, J.L. Total synthesis of dolabelide D. J. Am. Chem. Soc. 2006, 128, 2796–2797. [Google Scholar] [CrossRef] [Green Version]
- Spinella, A.; Zubía, E.; Martînez, E.; Ortea, J.; Cimino, G. Structure and stereochemistry of aplyolides A-E, lactonized dihydroxy fatty acids from the skin of the marine mollusk Aplysia depilans. J. Org. Chem. 1997, 62, 5471–5475. [Google Scholar] [CrossRef]
- Hansen, T.V.; Stenstrøm, Y. First total synthesis of (−) -aplyolide A. Tetrahedron 2001, 12, 1407–1409. [Google Scholar] [CrossRef]
- Caruso, T.; Spinella, A. First total synthesis of natural aplyolides C and E, ichthyotoxic macrolides isolated from the skin of the marine mollusc Aplysia. Tetrahedron 2002, 13, 2071–2073. [Google Scholar] [CrossRef]
- Spinella, A.; Caruso, T.; Coluccini, C. First total synthesis of natural aplyolides B and D, ichthyotoxic macrolides isolated from the skin of the marine mollusk Aplysia depilans. Tetrahedron Lett. 2002, 43, 1681–1683. [Google Scholar] [CrossRef]
- Sasaki, K.; Wright, J.L.C.; Yasumoto, T. Identification and characterization of pectenotoxin (PTX) 4 and PTX7 as spiroketal stereoisomers of two previously reported pectenotoxins. J. Org. Chem. 1998, 63, 2475–2480. [Google Scholar] [CrossRef]
- Miles, C.O.; Wilkins, A.L.; Samdal, I.A.; Sandvik, M.; Petersen, D.; Quilliam, M.A.; Naustvoll, L.J.; Rundberget, T.; Torgersen, T.; Hovgaard, P.; et al. A novel pectenotoxin, PTX-12, in Dinophysis spp. and shellfish from Norway. Chem. Res. Toxicol. 2004, 17, 1423–1433. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Xu, J.; Doubek, D.L.; Chapuis, J.-C.; Schmidt, J.M. Isolation and structure of dolastatin 19 from the gulf of caifornia seahare Dolabella auricularia. J. Nat. Prod. 2004, 67, 1252–1255. [Google Scholar] [CrossRef]
- Paterson, I.; Findlay, A.D.; Florence, G.J. Total synthesis and stereochemical reassignment of (+)-dolastatin 19. Org. Lett. 2006, 8, 2131–2134. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. Iejimalides C and D, new antineoplastic 24-membered macrolide sulfates from the okinawan marine tunicate Eudistoma cf. rigida. Tetrahedron Lett. 1991, 32, 797–798. [Google Scholar] [CrossRef]
- Galinis, D.L.; Mckee, T.C.; Pannell, L.K.; Ii, J.H.C.; Boyd, M.R. Lobatamides A and B, novel cytotoxic macrolides from the tunicate Aplidium Lobtum. Mar. Technol. 1997, 3263, 8968–8969. [Google Scholar]
- McKee, T.C.; Galinis, D.L.; Pannell, L.K.; Cardellina, J.H.; Laakso, J.; Ireland, C.M.; Murray, L.; Capon, R.J.; Boyd, M.R. The lobatamides, novel cytotoxic macrolides from southwestern pacific tunicates. J. Org. Chem. 1998, 63, 7805–7810. [Google Scholar] [CrossRef]
- Shen, R.; Lin, C.T.; Porco, J.A. Total synthesis and stereochemical assignment of the salicylate antitumor macrolide lobatamide C1. Cheminform 2002, 23, 5650–5651. [Google Scholar] [CrossRef]
- Ueda, K.; Hu, Y. Haterumalide B: A new cytotoxic macrolide from an okinawan ascidian Lissoclinum sp. Tetrahedron Lett. 1999, 40, 6305–6308. [Google Scholar] [CrossRef]
- Teruya, T.; Shimogawa, H.; Suenaga, K.; Kigoshi, H. Biselides A and B, novel macrolides from the okinawan ascidian Didemnidae sp. Chem. Lett. 2004, 33, 1184–1185. [Google Scholar] [CrossRef]
- Teruya, T.; Suenaga, K.; Maruyama, S.; Kurotaki, M.; Kigoshi, H. Biselides A-E: Novel polyketides from the okinawan ascidian Didemnidae sp. Tetrahedron 2005, 61, 6561–6567. [Google Scholar] [CrossRef]
- Diyabalanage, T.; Amsler, C.D.; McClintock, J.B.; Baker, B.J. Palmerolide A, a cytotoxic macrolide from the antarctic tunicate Synoicum adareanum. J. Am. Chem. Soc. 2006, 128, 5630–5631. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.C.; Guduru, R.; Sun, Y.P.; Banerji, B.; Chen, D.Y.K. Total synthesis of the originally proposed and revised structures of palmerolide A. Angew. Chem. Int. Ed. 2007, 46, 5896–5900. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, B.; Lebreton, S.; De Brabander, J.K. Total synthesis and structure revision of the marine metabolite palmerolide A. J. Am. Chem. Soc. 2007, 129, 6386–6387. [Google Scholar] [CrossRef] [Green Version]
- Sikorska, J.; Hau, A.M.; Anklin, C.; Parker-Nance, S.; Davies-Coleman, M.T.; Ishmael, J.E.; McPhail, K.L. Mandelalides A-D, cytotoxic macrolides from a new Lissoclinum species of south african tunicate. J. Org. Chem. 2012, 77, 6066–6075. [Google Scholar] [CrossRef] [Green Version]
- Inokuma, Y.; Yoshioka, S.; Ariyoshi, J.; Aria, T.; Hitora, Y.; Takada, K.; Matsunaga, S.; Rissanen, K.; Fujita, M. X-ray analysis on the nanogram to microgram scale using porous complexes. Nature 2013, 495, 461–466. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zou, J.; Yan, X.; Chen, J.; Cao, X.; Wu, J.; Liu, Y.; Wang, T. Marine-Derived Macrolides 1990–2020: An Overview of Chemical and Biological Diversity. Mar. Drugs 2021, 19, 180. https://doi.org/10.3390/md19040180
Zhang H, Zou J, Yan X, Chen J, Cao X, Wu J, Liu Y, Wang T. Marine-Derived Macrolides 1990–2020: An Overview of Chemical and Biological Diversity. Marine Drugs. 2021; 19(4):180. https://doi.org/10.3390/md19040180
Chicago/Turabian StyleZhang, Hairong, Jiabin Zou, Xiaoxue Yan, Junlong Chen, Xiujiao Cao, Jialing Wu, Yinghui Liu, and Tingting Wang. 2021. "Marine-Derived Macrolides 1990–2020: An Overview of Chemical and Biological Diversity" Marine Drugs 19, no. 4: 180. https://doi.org/10.3390/md19040180
APA StyleZhang, H., Zou, J., Yan, X., Chen, J., Cao, X., Wu, J., Liu, Y., & Wang, T. (2021). Marine-Derived Macrolides 1990–2020: An Overview of Chemical and Biological Diversity. Marine Drugs, 19(4), 180. https://doi.org/10.3390/md19040180