Rapid Hemostatic Biomaterial from a Natural Bath Sponge Skeleton
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of SX, SFM and SR
2.2. FTIR Spectra of the Spongin Materials
2.3. Morphology, Fluid Absorption Capacity and Porosity
2.4. Hemostatic Performance In Vitro
2.4.1. Clotting Performance on Whole Blood
2.4.2. Clotting Performance in PDB
2.4.3. Clotting Performance in DSB
2.5. Hemostatic Performance In Vivo
2.6. Hemostatic Mechanism of SFM
2.6.1. APTT and PT Test
2.6.2. Platelet, RBC and Fibrin Affinity
2.7. Biocompatibility of SFM
3. Materials and Methods
3.1. Materials and Methods
3.2. Preparation of SX, SFM and SR
3.2.1. Pretreatment of Sponge Skeleton
3.2.2. Preparation of SFM and SX
3.2.3. Preparation of SR
3.3. Characterization
3.3.1. Hydroxyproline Content Detection
3.3.2. Microscope Analysis
3.3.3. Fourier Transform Infrared (FTIR) Spectroscopy Characterization
3.3.4. Fluid Absorption Capacity (FAC) Measurement
3.3.5. Porosity Measurement
3.4. Hemostatic Properties
3.4.1. Preparation of Platelet-Deficient Blood (PDB)
3.4.2. Hemostasis In Vitro
3.4.3. Rat Tail Amputation
3.4.4. Rabbit′s Common Carotid Artery Incision
3.5. Hemostatic Mechanism
3.5.1. APTT and PT Test
3.5.2. Platelet Adhesion and Morphology
3.5.3. Red Blood Cell (RBC) Aggregation and Morphology
3.6. Biocompatibility
3.6.1. Hemolytic Potential of Materials
3.6.2. Cytotoxicity
3.6.3. Acute Systemic Toxicity Test
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, D.; Bates, S.; Nukalo, S.; Staub, A.; Hines, A.; Leishman, T.; Michel, J.; Sikes, D.; Gegel, B.; Burgert, J. The effects of QuikClot Combat Gauze on Hemorrhage Control in the Presence of Hemodilution and Hypothermia. Ann. Med. Surg. 2014, 3, 21–25. [Google Scholar] [CrossRef]
- Troup, S. Clinical Hematology and Oncology: Presentation, Diagnosis, and Treatment. J. Am. Med. Assoc. 2004, 291, 2024–2025. [Google Scholar] [CrossRef]
- Hickman, D.A.; Pawlowski, C.L.; Sekhon, U.D.S.; Marks, J.; Gupta, A.S. Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding. Adv. Mater. 2018, 30, 1700859. [Google Scholar] [CrossRef] [PubMed]
- Chiara, O.; Cimbanassi, S.; Bellanova, G.; Chiarugi, M.; Mingoli, A.; Olivero, G.; Ribaldi, S.; Tugnoli, G.; Basilico, S.; Bindi, F.; et al. A Systematic Review on the Use of Topical Hemostats in Trauma and Emergency Surgery. BMC Surg. 2018, 18, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, N.C.; Ardehali, A.; Bruckner, B.A.; Parrino, P.E.; Gillen, D.L.; Hoffman, R.W.; Spotnitz, R.; Cavoores, S.; Shorn, I.J.; Manson, R.J.; et al. Prospective, Multicenter, Randomized, Controlled Trial Evaluating the Performance of a Novel Combination Powder vs Hemostatic Matrix in Cardiothoracic Operations. J. Card. Surg. 2020, 35, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Ardehali, A.; Spotnitz, W.D.; Hoffman, R.W.; Olson, S.A.; Bochicchio, G.V.; Hermann, M.C.; Lakshman, S.; Dang, N.C.; Centis, V.; Gillen, D.L. Evaluation of the Safety and Efficacy of a New Hemostatic Powder Using a Quantitative Surface Bleeding Severity Scale. J. Card. Surg. 2019, 34, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvatore, L.; Gallo, N.; Natali, M.L.; Campa, L.; Lunetti, P.; Madaghiele, M.; Blasi, F.S.; Corallo, A.; Capobianco, L.; Sannino, A. Marine Collagen and its Derivatives: Versatile and Sustainable Bio-Resources for Healthcare. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 113, 110963. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.-S.; Ok, Y.-J.; Hwang, S.-Y.; Kwak, J.-Y.; Yoon, S. Marine Collagen as A Promising Biomaterial for Biomedical Applications. Mar. Drugs 2019, 17, 467. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Shao, Z.; Li, C.; Yu, L.; Raja, M.A.; Liu, C. Isolation, Characterization and Evaluation of Collagen from Jellyfish Rhopilema Esculentum Kishinouye for use in Hemostatic Applications. PLoS ONE 2017, 12, e0169731. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Li, B.; Jiang, D.; Hou, H. Nile Tilapia Skin Collagen Sponge Modified with Chemical Cross-Linkers as a Biomedical Hemostatic Material. Collold Surf. B 2017, 159, 89–96. [Google Scholar] [CrossRef]
- Cheng, Y.; Lu, S.; Hu, Z.; Zhang, B.; Li, S.; Hong, P. Marine Collagen Peptide Grafted Carboxymethyl Chitosan: Optimization Preparation and Coagulation Evaluation. Int. J. Biol. Macromol. 2020, 164, 3953–3964. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, H.; Maldonado, M.; Hanke, T.; Meissner, H.; Born, R.; Scharnweber, D.; Worch, H.; Vdi, V.D.I. Spongins: Nanostructural Investigations and Development of Biominimetic Material Model. In Nanofair 2003: New Ideas for Industry; Max-Bergmann-Center of Biomaterials; Institute of Material Science, Dresden University of Technology: Dresden, Germany, 2003; Volume 1803, pp. 287–290. [Google Scholar]
- Gross, J.; Sokal, Z.; Rougvie, M. Structural and chemical studies on the connective tissue of marine sponges. J. Histochem. Cytochem. 1956, 4, 227–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tziveleka, L.A.; Ioannou, E.; Tsiourvas, D.; Berillis, P.; Foufa, E.; Roussis, V. Collagen from the Marine Sponges Axinella cannabina and Suberites carnosus: Isolation and Morphological, Biochemical, and Biophysical Characterization. Mar. Drugs 2017, 15, 152. [Google Scholar] [CrossRef] [Green Version]
- Jesionowski, T.; Norman, M.; Zoltowska-Aksamitowska, S.; Petrenko, I.; Joseph, Y.; Ehrlich, H. Marine Spongin: Naturally Prefabricated 3D Scaffold-Based Biomaterial. Mar. Drugs 2018, 16, 88. [Google Scholar] [CrossRef] [Green Version]
- Szatkowski, T.; Jesionowski, T. Extreme Biomimetics Hydrothermal Synthesis of Spongin-Based Materials; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; Volume 10, pp. 251–274. [Google Scholar] [CrossRef]
- Green, D.; Howard, D.; Yang, X.; Kelly, M.; Oreffo, R.O.C. Natural Marine Sponge Fiber Skeleton: A Biomimetic Scaffold for Human Osteoprogenitor Cell Attachment, Growth, and Differentiation. Tissue Eng. 2003, 9, 1159–1166. [Google Scholar] [CrossRef]
- Nandi, S.K.; Kundu, B.; Mahato, A.; Thakur, N.L.; Joardar, S.N.; Mandal, B.B. In vitro and in Vivo Evaluation of the Marine Sponge Skeleton as a Bone Mimicking Biomaterial. Integr. Biol. 2015, 7, 250–262. [Google Scholar] [CrossRef]
- Zirk, M.; Fienitz, T.; Edel, R.; Kreppel, M.; Dreiseidler, T.; Rothamel, D. Prevention of Post-Operative Bleeding in Hemostatic Compromised Patients Using Native Porcine Collagen Fleeces-Retrospective Study of a Consecutive Case Series. Oral Maxillofac. Surg. 2016, 20, 249–254. [Google Scholar] [CrossRef]
- Granito, R.N.; Custodio, M.R.; Renno, A.C.M. Natural Marine Sponges for Bone Tissue Engineering: The State of art and Future Perspectives. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1717–1727. [Google Scholar] [CrossRef]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; de Pascale, D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef] [Green Version]
- Szatkowski, T.; Jesionowski, T. Hydrothermal Synthesis of Spongin-Based Materials. In Extreme Biomimetics; Ehrlich, H., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 251–274. [Google Scholar]
- Ehrlich, H.; Wysokowski, M.; Zółtowska-Aksamitowska, S.; Petrenko, I.; Jesionowski, T. Collagens of Poriferan Origin. Mar. Drugs 2018, 16, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, A.A.; Aroso, I.M.; Silva, T.H.; Mano, J.F.; Duarte, A.R.C.; Reis, R.L. Water and Carbon Dioxide: Green Solvents for the Extraction of Collagen/Gelatin from Marine Sponges. ACS Sustain. Chem. Eng. 2015, 3, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Payne, K.J.; Veis, A. Fourier Transform ir Spectroscopy of Collagen and Gelatin Solutions: Deconvolution of the Amide I Band for Conformational Studies. Biopolymers 1988, 27, 1749–1760. [Google Scholar] [CrossRef]
- Bryan, M.A.; Brauner, J.W.; Anderle, G.; Flach, C.R.; Brodsky, B.; Mendelsohn, R. FTIR Studies of Collagen Model Peptides: Complementary Experimental and Simulation Approaches to Conformation and Unfolding. J. Am. Chem. Soc. 2007, 129, 7877–7884. [Google Scholar] [CrossRef] [Green Version]
- Ganim, Z.; Chung, H.S.; Smith, A.W.; Deflores, L.P.; Tokmakoff, A. Amide I Two-Dimensional Infrared Spectroscopy of Proteins. Acc. Chem. Res. 2008, 41, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Plepis, A.; Goissis, G.; DasGupta, D.K. Dielectric and Pyroelectric Characterization of Anionic and Native Collagen. Polym. Eng. Sci. 1996, 36, 2932–2938. [Google Scholar] [CrossRef]
- Gustafson, S.B.; Fulkerson, P.; Bildfell, R.; Aguilera, L.; Hazzard, T.M. Chitosan Dressing Provides Hemostasis in Swine Femoral Arterial Injury Model. Prehosp. Emerg. Care 2007, 11, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, X.; Liu, C.; Wang, N.; Chen, H.; Yao, W.; Sun, G.; Song, Q.; Qiao, W. A Highly Efficient, in Situ Wet-Adhesive Dextran Derivative Sponge for Rapid Hemostasis. Biomaterials 2019, 205, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.V.; Prevost, N. Thrombin Production and Human Neutrophil Elastase Sequestration by Modified Cellulosic Dressings and their Electrokinetic Analysis. J. Funct. Biomater. 2011, 2, 391–413. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.V.; Graves, E.; Prevost, N.; Condon, B.; Yager, D.; Dacorta, J.; Bopp, A. Development of a Nonwoven Hemostatic Dressing Based on Unbleached Cotton: A De Novo Design Approach. Pharmaceutics 2020, 12, 609. [Google Scholar] [CrossRef] [PubMed]
- Stassen, J.M.; Arnout, J.; Deckmyn, H. The Hemostatic System. Curr. Med. Chem. 2004, 11, 2245–2260. [Google Scholar] [CrossRef]
- Savage, B.; Almus-Jacobs, F.; Ruggeri, Z.M. Specific Synergy of Multiple Substrate-Receptor Interactions in Platelet Thrombus Formation under Flow. Cell 1998, 94, 657–666. [Google Scholar] [CrossRef] [Green Version]
- Farndale, R.W.; Sixma, J.J.; Barnes, M.J.; de Groot, P.G. The Role of Collagen in Thrombosis and Hemostasis. J. Thromb. Haemost. 2004, 2, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Solomon, K.L.; Zhang, X.; Pavlos, N.J.; Abel, T.; Willers, C.; Dai, K.; Xu, J.; Zheng, Q.; Zheng, M. In vitro Evaluation of Natural Marine Sponge Collagen as a Scaffold for Bone Tissue Engineering. Int. J. Biol. Sci. 2011, 7, 968–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.M.; Mendis, E.; Rajapakse, N.; Lee, S.H.; Kim, S.K. Effect of Spongin Derived from Hymeniacidon Sinapium on Bone Mineralization. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Ji, Z.; Xu, M.; Liu, C.; Ye, X.; Zhang, W.; Li, S.; Wang, D.; Zhang, W.; Chen, J.; et al. Microspheres of Carboxymethyl Chitosan, Sodium Alginate, and Collagen as a Hemostatic Agent in Vivo. ACS Biomater. Sci. Eng. 2018, 4, 2541–2551. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, W.; Shi, Y.; Xi, G.; Wang, M.; Liang, B.; Feng, Y.; Ren, X.; Shi, C. Peptide-immobilized Starch/PEG Sponge with Rapid Shape Recovery and Dual-Function for both Uncontrolled and Noncompressible Hemorrhage. Acta Biomater. 2019, 99, 220–235. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhang, J.; Ou, H.; Chen, J.; Mitragotri, S.; Chen, M. Skin Delivery of siRNA Using Sponge Spicules in Combination with Cationic Flexible Liposomes. Mol. Nucl. Acids 2020, 20, 639–648. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Chen, J.; Wang, D.; Shen, M.; Ou, H.; Zhao, J.; Chen, M.; Yan, G.; Chen, J. Rapid Hemostatic Biomaterial from a Natural Bath Sponge Skeleton. Mar. Drugs 2021, 19, 220. https://doi.org/10.3390/md19040220
Wang Q, Chen J, Wang D, Shen M, Ou H, Zhao J, Chen M, Yan G, Chen J. Rapid Hemostatic Biomaterial from a Natural Bath Sponge Skeleton. Marine Drugs. 2021; 19(4):220. https://doi.org/10.3390/md19040220
Chicago/Turabian StyleWang, Qinghua, Jingwei Chen, Dexiang Wang, Minghui Shen, Huilong Ou, Jing Zhao, Ming Chen, Guoliang Yan, and Jun Chen. 2021. "Rapid Hemostatic Biomaterial from a Natural Bath Sponge Skeleton" Marine Drugs 19, no. 4: 220. https://doi.org/10.3390/md19040220
APA StyleWang, Q., Chen, J., Wang, D., Shen, M., Ou, H., Zhao, J., Chen, M., Yan, G., & Chen, J. (2021). Rapid Hemostatic Biomaterial from a Natural Bath Sponge Skeleton. Marine Drugs, 19(4), 220. https://doi.org/10.3390/md19040220