Next Issue
Volume 19, June
Previous Issue
Volume 19, April
 
 

Mar. Drugs, Volume 19, Issue 5 (May 2021) – 50 articles

Cover Story (view full-size image): An original and efficient route for the synthesis of copper nanoparticles (NPs) using bacterial strains newly isolated from an Antarctic consortium is described. Transmission electron microscopy analysis showed that these NPs are spherical and well segregated, with an average size of 30 nm. X-ray powder diffraction showed characteristic peaks indicating the formation of CuONPs. All CuONPs manifested antimicrobial activity against various types of Gram-negative and Gram-positive bacteria, as well as fungi pathogen microorganisms including Escherichia coli, Staphylococcus aureus, and Candida albicans. The cost-effective and eco-friendly biosynthesis of these CuONPs makes them particularly attractive in several applications from nanotechnology to biomedical science. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 59133 KiB  
Article
Gut Organoid as a New Platform to Study Alginate and Chitosan Mediated PLGA Nanoparticles for Drug Delivery
by Zahra Davoudi, Nathan Peroutka-Bigus, Bryan Bellaire, Albert Jergens, Michael Wannemuehler and Qun Wang
Mar. Drugs 2021, 19(5), 282; https://doi.org/10.3390/md19050282 - 20 May 2021
Cited by 58 | Viewed by 5959
Abstract
Intestinal organoids can be used as an ex vivo epithelial model to study different drug delivery effects on epithelial cells’ luminal surface. In this study, the impact of surface charge on the delivery of 5-ASA loaded PLGA nanoparticles into the lumen of organoids [...] Read more.
Intestinal organoids can be used as an ex vivo epithelial model to study different drug delivery effects on epithelial cells’ luminal surface. In this study, the impact of surface charge on the delivery of 5-ASA loaded PLGA nanoparticles into the lumen of organoids was investigated. Alginate and chitosan were used to coat the nanoparticles and provide negative and positive charges on the particles, respectively. The organoid growth and viability were not affected by the presence of either alginate- or chitosan-coated nanoparticles. It was shown that nanoparticles could be transported from the serosal side of the organoids to the lumen as the dye gradually accumulated in the lumen by day 2–3 after adding the nanoparticles to the Matrigel. By day 5, the dye was eliminated from the lumen of the organoids. It was concluded that the positively charged nanoparticles were more readily transported across the epithelium into the lumen. It may be attributed to the affinity of epithelial cells to the positive charge. Thus, the organoid can be utilized as an appropriate model to mimic the functions of the intestinal epithelium and can be used as a model to evaluate the benefits of nanoparticle-based drug delivery. Full article
Show Figures

Figure 1

14 pages, 3218 KiB  
Article
Neuronal Modulators from the Coral-Associated Fungi Aspergillus candidus
by Gao-Yang Peng, Tibor Kurtán, Attila Mándi, Jing He, Zheng-Yu Cao, Hua Tang, Shui-Chun Mao and Wen Zhang
Mar. Drugs 2021, 19(5), 281; https://doi.org/10.3390/md19050281 - 19 May 2021
Cited by 8 | Viewed by 3039
Abstract
Three new p-terphenyl derivatives, named 4″-O-methyl-prenylterphenyllin B (1) and phenylcandilide A and B (17 and 18), and three new indole-diterpene alkaloids, asperindoles E–G (22-24), were isolated together with eighteen known analogues from [...] Read more.
Three new p-terphenyl derivatives, named 4″-O-methyl-prenylterphenyllin B (1) and phenylcandilide A and B (17 and 18), and three new indole-diterpene alkaloids, asperindoles E–G (22-24), were isolated together with eighteen known analogues from the fungi Aspergillus candidus associated with the South China Sea gorgonian Junceela fragillis. The structures and absolute configurations of the new compounds were elucidated on the basis of spectroscopic analysis, and DFT/NMR and TDDFT/ECD calculations. In a primary cultured cortical neuronal network, the compounds 6, 9, 14, 17, 18 and 24 modulated spontaneous Ca2+ oscillations and 4-aminopyridine hyperexcited neuronal activity. A preliminary structure–activity relationship was discussed. Full article
(This article belongs to the Special Issue Application of Spectroscopic Techniques in Marine Natural Products)
Show Figures

Graphical abstract

16 pages, 13674 KiB  
Article
Ultrasound-Assisted Water Extraction of Mastocarpus stellatus Carrageenan with Adequate Mechanical and Antiproliferative Properties
by Maria Dolores Torres, Noelia Flórez-Fernández and Herminia Dominguez
Mar. Drugs 2021, 19(5), 280; https://doi.org/10.3390/md19050280 - 19 May 2021
Cited by 10 | Viewed by 2881
Abstract
Ultrasound-assisted water extraction was optimized to recover gelling biopolymers and antioxidant compounds from Mastocarpus stellatus. A set of experiments following a Box–Behnken design was proposed to study the influence of extraction time, solid liquid ratio, and ultrasound amplitude on the yield, sulfate [...] Read more.
Ultrasound-assisted water extraction was optimized to recover gelling biopolymers and antioxidant compounds from Mastocarpus stellatus. A set of experiments following a Box–Behnken design was proposed to study the influence of extraction time, solid liquid ratio, and ultrasound amplitude on the yield, sulfate content, and thermo-rheological properties (viscoelasticity and gelling temperature) of the carrageenan fraction, as well as the composition (protein and phenolic content) and antiradical capacity of the soluble extracts. Operating at 80 °C and 80 kHz, the models predicted a compromise optimum extraction conditions at ~35 min, solid liquid ratio of ~2 g/100 g, and ultrasound amplitude of ~79%. Under these conditions, 40.3% carrageenan yield was attained and this product presented 46% sulfate and good mechanical properties, a viscoelastic modulus of 741.4 Pa, with the lowest gelling temperatures of 39.4 °C. The carrageenans also exhibited promising antiproliferative properties on selected human cancer cellular lines, A-549, A-2780, HeLa 229, and HT-29 with EC50 under 51.9 μg/mL. The dried soluble extract contained 20.4 mg protein/g, 11.3 mg gallic acid eq/g, and the antiradical potency was equivalent to 59 mg Trolox/g. Full article
Show Figures

Figure 1

18 pages, 1691 KiB  
Article
Molecular Networking Leveraging the Secondary Metabolomes Space of Halophila stipulaceae (Forsk.) Aschers. and Thalassia hemprichii (Ehrenb. ex Solms) Asch. in Tandem with Their Chemosystematics and Antidiabetic Potentials
by Nesrine M. Hegazi, Hamada H. Saad, Mona M. Marzouk, Mohamed F. Abdel Rahman, Mahitab H. El Bishbishy, Ahmed Zayed, Roland Ulber and Shahira M. Ezzat
Mar. Drugs 2021, 19(5), 279; https://doi.org/10.3390/md19050279 - 18 May 2021
Cited by 17 | Viewed by 3887
Abstract
The Red Sea is one of the most biodiverse aquatic ecosystems. Notably, seagrasses possess a crucial ecological significance. Among them are the two taxa Halophila stipulacea (Forsk.) Aschers., and Thalassia hemprichii (Ehrenb. ex Solms) Asch., which were formally ranked together with the genus [...] Read more.
The Red Sea is one of the most biodiverse aquatic ecosystems. Notably, seagrasses possess a crucial ecological significance. Among them are the two taxa Halophila stipulacea (Forsk.) Aschers., and Thalassia hemprichii (Ehrenb. ex Solms) Asch., which were formally ranked together with the genus Enhalus in three separate families. Nevertheless, they have been recently classified as three subfamilies within Hydrocharitaceae. The interest of this study is to explore their metabolic profiles through ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS/MS) analysis in synergism with molecular networking and to assess their chemosystematics relationship. A total of 144 metabolites were annotated, encompassing phenolic acids, flavonoids, terpenoids, and lipids. Furthermore, three new phenolic acids; methoxy benzoic acid-O-sulphate (16), O-caffeoyl-O-hydroxyl dimethoxy benzoyl tartaric acid (26), dimethoxy benzoic acid-O-sulphate (30), a new flavanone glycoside; hexahydroxy-monomethoxy flavanone-O-glucoside (28), and a new steviol glycoside; rebaudioside-O-acetate (96) were tentatively described. Additionally, the evaluation of the antidiabetic potential of both taxa displayed an inherited higher activity of H. stipulaceae in alleviating the oxidative stress and dyslipidemia associated with diabetes. Hence, the current research significantly suggested Halophila, Thalassia, and Enhalus categorization in three different taxonomic ranks based on their intergeneric and interspecific relationship among them and supported the consideration of seagrasses in natural antidiabetic studies. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Angiosperms)
Show Figures

Graphical abstract

15 pages, 1921 KiB  
Article
Fish Oil Increases Diet-Induced Thermogenesis in Mice
by Tomomi Yamazaki, Dongyang Li and Reina Ikaga
Mar. Drugs 2021, 19(5), 278; https://doi.org/10.3390/md19050278 - 17 May 2021
Cited by 6 | Viewed by 3403
Abstract
Increasing energy expenditure (EE) is beneficial for preventing obesity. Diet-induced thermogenesis (DIT) is one of the components of total EE. Therefore, increasing DIT is effective against obesity. We examined how much fish oil (FO) increased DIT by measuring absolute values of DIT in [...] Read more.
Increasing energy expenditure (EE) is beneficial for preventing obesity. Diet-induced thermogenesis (DIT) is one of the components of total EE. Therefore, increasing DIT is effective against obesity. We examined how much fish oil (FO) increased DIT by measuring absolute values of DIT in mice. C57BL/6J male mice were given diets of 30 energy% fat consisting of FO or safflower oil plus butter as control oil (Con). After administration for 9 days, respiration in mice was monitored, and then the data were used to calculate DIT and EE. DIT increased significantly by 1.2-fold in the FO-fed mice compared with the Con-fed mice. Body weight gain was significantly lower in the FO-fed mice. FO increased the levels of uncoupling protein 1 (Ucp1) mRNA and UCP1 protein in brown adipose tissue (BAT) by 1.5- and 1.2-fold, respectively. In subcutaneous white adipose tissue (subWAT), the levels of Ucp1 mRNA and UCP1 protein were increased by 6.3- and 2.7-fold, respectively, by FO administration. FO also significantly increased the expression of markers of browning in subWAT such as fibroblast growth factor 21 and cell death-inducing DNA fragmentation factor α-like effector a. Thus, dietary FO seems to increase DIT in mice via the increased expressions of Ucp1 in BAT and induced browning of subWAT. FO might be a promising dietary fat in the prevention of obesity by upregulation of energy metabolism. Full article
(This article belongs to the Special Issue Lipids in the Ocean 2021)
Show Figures

Graphical abstract

10 pages, 4713 KiB  
Article
In Vitro and In Vivo Anti-Inflammatory Effects of Sulfated Polysaccharides Isolated from the Edible Brown Seaweed, Sargassum fulvellum
by Lei Wang, Hye-Won Yang, Ginnae Ahn, Xiaoting Fu, Jiachao Xu, Xin Gao and You-Jin Jeon
Mar. Drugs 2021, 19(5), 277; https://doi.org/10.3390/md19050277 - 15 May 2021
Cited by 19 | Viewed by 4061
Abstract
In the present study, the in vitro and in vivo anti-inflammatory effects of the sulfated polysaccharides isolated from Sargassum fulvellum (SFPS) were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish. The results indicated that SFPS improved the viability of LPS-stimulated RAW 264.7 [...] Read more.
In the present study, the in vitro and in vivo anti-inflammatory effects of the sulfated polysaccharides isolated from Sargassum fulvellum (SFPS) were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish. The results indicated that SFPS improved the viability of LPS-stimulated RAW 264.7 macrophages from 80.02 to 86.80, 90.09, and 94.62% at the concentration of 25, 50, and 100 µg/mL, respectively. Also, SFPS remarkably and concentration-dependently decreased the production levels of inflammatory molecules including nitric oxide (NO), tumor necrosis factor-alpha, prostaglandin E2, interleukin-1 beta, and interleukin-6 in LPS-treated RAW 264.7 macrophages. In addition, SFPS significantly inhibited the expression levels of cyclooxygenase-2 and inducible nitric oxide synthase in LPS-treated RAW 264.7 macrophages. Furthermore, the in vivo test results indicated that SFPS improved the survival rate of LPS-treated zebrafish from 53.33 to 56.67, 60.00, and 70.00% at the concentration of 25, 50, and 100 µg/mL, respectively. In addition, SFPS effectively reduced cell death, reactive oxygen species, and NO levels in LPS-stimulated zebrafish. Taken together, these results suggested that SFPS possesses strong in vitro and in vivo anti-inflammatory activities, and could be used as an ingredient to develop anti-inflammatory agents in the functional food and pharmaceutical industries. Full article
(This article belongs to the Special Issue Fucoidans Ⅱ: Immunomodulating Activity of Fucoidans)
Show Figures

Figure 1

11 pages, 9143 KiB  
Communication
Localization and Bioreactivity of Cysteine-Rich Secretions in the Marine Gastropod Nucella lapillus
by Mariaelena D’Ambrosio, Cátia Gonçalves, Mariana Calmão, Maria Rodrigues and Pedro M. Costa
Mar. Drugs 2021, 19(5), 276; https://doi.org/10.3390/md19050276 - 15 May 2021
Cited by 3 | Viewed by 2495
Abstract
Marine biodiversity has been yielding promising novel bioproducts from venomous animals. Despite the auspices of conotoxins, which originated the paradigmatic painkiller Prialt, the biotechnological potential of gastropod venoms remains to be explored. Marine bioprospecting is expanding towards temperate species like the dogwhelk Nucella [...] Read more.
Marine biodiversity has been yielding promising novel bioproducts from venomous animals. Despite the auspices of conotoxins, which originated the paradigmatic painkiller Prialt, the biotechnological potential of gastropod venoms remains to be explored. Marine bioprospecting is expanding towards temperate species like the dogwhelk Nucella lapillus, which is suspected to secrete immobilizing agents through its salivary glands with a relaxing effect on the musculature of its preferential prey, Mytilus sp. This work focused on detecting, localizing, and testing the bioreactivity of cysteine-rich proteins and peptides, whose presence is a signature of animal venoms and poisons. The highest content of thiols was found in crude protein extracts from the digestive gland, which is associated with digestion, followed by the peribuccal mass, where the salivary glands are located. Conversely, the foot and siphon (which the gastropod uses for feeding) are not the main organs involved in toxin secretion. Ex vivo bioassays with Mytilus gill tissue disclosed the differential bioreactivity of crude protein extracts. Secretions from the digestive gland and peribuccal mass caused the most significant molecular damage, with evidence for the induction of apoptosis. These early findings indicate that salivary glands are a promising target for the extraction and characterization of bioactive cysteine-rich proteinaceous toxins from the species. Full article
Show Figures

Figure 1

18 pages, 2428 KiB  
Article
Physicochemical and Antioxidant Properties of Gelatin and Gelatin Hydrolysates Obtained from Extrusion-Pretreated Fish (Oreochromis sp.) Scales
by Wei-Cheng Shiao, Tien-Chiu Wu, Chia-Hung Kuo, Yung-Hsiang Tsai, Mei-Ling Tsai, Yong-Han Hong and Chun-Yung Huang
Mar. Drugs 2021, 19(5), 275; https://doi.org/10.3390/md19050275 - 14 May 2021
Cited by 25 | Viewed by 3825
Abstract
Fish gelatin and its hydrolysates exhibit a variety of biological characteristics, which include antihypertensive and antioxidant properties. In this study, fish gelatins were extracted from extrusion-pretreated tilapia scales, and then subjected to analyses to determine the physicochemical properties and antioxidant activity of the [...] Read more.
Fish gelatin and its hydrolysates exhibit a variety of biological characteristics, which include antihypertensive and antioxidant properties. In this study, fish gelatins were extracted from extrusion-pretreated tilapia scales, and then subjected to analyses to determine the physicochemical properties and antioxidant activity of the extracted gelatins. Our findings indicate that TSG2 (preconditioned with 1.26% citric acid) possessed the greatest extraction yield, as well as higher antioxidant activities compared with the other extracted gelatins. Hence, TSG2 was subjected to further hydrolyzation using different proteases and ultrafiltration conditions, which yielded four gelatin hydrolysates: TSGH1, TSGH2, TSGH3, and TSGH4. The results showed that TSGH4 (Pepsin + Pancreatin and ultrafiltration < 3000 Da) had a higher yield and greater antioxidant activity in comparison with the other gelatin hydrolysates. As such, TSGH4 was subjected to further fractionation using a Superdex peptide column and two-stage reverse-phase column HPLC chromatography, yielding a subfraction TSGH4-6-2-b, which possessed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity compared with the other fractions. Further LC-ESI/MS/MS analysis of TSGH4-6-2-b suggested two novel peptides (GYDEY and EPGKSGEQGAPGEAGAP), which could have potential as naturally-occurring peptides with antioxidant properties. These promising results suggest that these antioxidant peptides could have applications in food products, nutraceuticals, and cosmetics. Full article
Show Figures

Figure 1

10 pages, 1892 KiB  
Article
Carotenoid Nostoxanthin Production by Sphingomonas sp. SG73 Isolated from Deep Sea Sediment
by Hiroshi Kikukawa, Takuma Okaya, Takashi Maoka, Masayuki Miyazaki, Keita Murofushi, Takanari Kato, Yoko Hirono-Hara, Masahiro Katsumata, Shoichi Miyahara and Kiyotaka Y. Hara
Mar. Drugs 2021, 19(5), 274; https://doi.org/10.3390/md19050274 - 14 May 2021
Cited by 17 | Viewed by 3697
Abstract
Carotenoids are used commercially for dietary supplements, cosmetics, and pharmaceuticals because of their antioxidant activity. In this study, colored microorganisms were isolated from deep sea sediment that had been collected from Suruga Bay, Shizuoka, Japan. One strain was found to be a pure [...] Read more.
Carotenoids are used commercially for dietary supplements, cosmetics, and pharmaceuticals because of their antioxidant activity. In this study, colored microorganisms were isolated from deep sea sediment that had been collected from Suruga Bay, Shizuoka, Japan. One strain was found to be a pure yellow carotenoid producer, and the strain was identified as Sphingomonas sp. (Proteobacteria) by 16S rRNA gene sequence analysis; members of this genus are commonly isolated from air, the human body, and marine environments. The carotenoid was identified as nostoxanthin ((2,3,2′,3′)-β,β-carotene-2,3,2′,3′-tetrol) by mass spectrometry (MS), MS/MS, and ultraviolet-visible absorption spectroscopy (UV-Vis). Nostoxanthin is a poly-hydroxy yellow carotenoid isolated from some photosynthetic bacteria, including some species of Cyanobacteria. The strain Sphingomonas sp. SG73 produced highly pure nostoxanthin of approximately 97% (area%) of the total carotenoid production, and the strain was halophilic and tolerant to 1.5-fold higher salt concentration as compared with seawater. When grown in 1.8% artificial sea salt, nostoxanthin production increased by 2.5-fold as compared with production without artificial sea salt. These results indicate that Sphingomonas sp. SG73 is an efficient producer of nostoxanthin, and the strain is ideal for carotenoid production using marine water because of its compatibility with sea salt. Full article
(This article belongs to the Special Issue Marine Carotenoids)
Show Figures

Figure 1

15 pages, 2481 KiB  
Review
Divergent Strategy in Marine Tetracyclic Meroterpenoids Synthesis
by Antonio Rosales Martínez, Ignacio Rodríguez-García and Josefa L. López-Martínez
Mar. Drugs 2021, 19(5), 273; https://doi.org/10.3390/md19050273 - 13 May 2021
Cited by 6 | Viewed by 2795
Abstract
The divergent total synthesis strategy can be successfully applied to the preparation of families of natural products using a common late-stage pluripotent intermediate. This approach is a powerful tool in organic synthesis as it offers opportunities for the efficient preparation of structurally related [...] Read more.
The divergent total synthesis strategy can be successfully applied to the preparation of families of natural products using a common late-stage pluripotent intermediate. This approach is a powerful tool in organic synthesis as it offers opportunities for the efficient preparation of structurally related compounds. This article reviews the synthesis of the marine natural product aureol, as well as its use as a common intermediate in the divergent synthesis of other marine natural and non-natural tetracyclic meroterpenoids. Full article
Show Figures

Graphical abstract

49 pages, 4955 KiB  
Review
Marine Anthraquinones: Pharmacological and Toxicological Issues
by Giulia Greco, Eleonora Turrini, Elena Catanzaro and Carmela Fimognari
Mar. Drugs 2021, 19(5), 272; https://doi.org/10.3390/md19050272 - 13 May 2021
Cited by 23 | Viewed by 3587
Abstract
The marine ecosystem, populated by a myriad of animals, plants, and microorganisms, is an inexhaustible reservoir of pharmacologically active molecules. Among the multiple secondary metabolites produced by marine sources, there are anthraquinones and their derivatives. Besides being mainly known to be produced by [...] Read more.
The marine ecosystem, populated by a myriad of animals, plants, and microorganisms, is an inexhaustible reservoir of pharmacologically active molecules. Among the multiple secondary metabolites produced by marine sources, there are anthraquinones and their derivatives. Besides being mainly known to be produced by terrestrial species, even marine organisms and the uncountable kingdom of marine microorganisms biosynthesize anthraquinones. Anthraquinones possess many different biological activities, including a remarkable antitumor activity. However, due to their peculiar chemical structures, anthraquinones are often associated with toxicological issues, even relevant, such as genotoxicity and mutagenicity. The aim of this review is to critically describe the anticancer potential of anthraquinones derived from marine sources and their genotoxic and mutagenic potential. Marine-derived anthraquinones show a promising anticancer potential, although clinical studies are missing. Additionally, an in-depth investigation of their toxicological profile is needed before advocating anthraquinones as a therapeutic armamentarium in the oncological area. Full article
Show Figures

Figure 1

13 pages, 3792 KiB  
Article
Characterization of Neoagarooligosaccharide Hydrolase BpGH117 from a Human Gut Bacterium Bacteroides plebeius
by Yerin Jin, Sora Yu, Dong Hyun Kim, Eun Ju Yun and Kyoung Heon Kim
Mar. Drugs 2021, 19(5), 271; https://doi.org/10.3390/md19050271 - 13 May 2021
Cited by 9 | Viewed by 3545
Abstract
α-Neoagarobiose (NAB)/neoagarooligosaccharide (NAO) hydrolase plays an important role as an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase in agarose utilization. Agarose is an abundant polysaccharide found in red seaweeds, comprising 3,6-anhydro-L-galactose (AHG) and D-galactose residues. Unlike agarose degradation, which has been reported in marine microbes, recent metagenomic analysis [...] Read more.
α-Neoagarobiose (NAB)/neoagarooligosaccharide (NAO) hydrolase plays an important role as an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase in agarose utilization. Agarose is an abundant polysaccharide found in red seaweeds, comprising 3,6-anhydro-L-galactose (AHG) and D-galactose residues. Unlike agarose degradation, which has been reported in marine microbes, recent metagenomic analysis of Bacteroides plebeius, a human gut bacterium, revealed the presence of genes encoding enzymes involved in agarose degradation, including α-NAB/NAO hydrolase. Among the agarolytic enzymes, BpGH117 has been partially characterized. Here, we characterized the exo-acting α-NAB/NAO hydrolase BpGH117, originating from B. plebeius. The optimal temperature and pH for His-tagged BpGH117 activity were 35 °C and 9.0, respectively, indicative of its unique origin. His-tagged BpGH117 was thermostable up to 35 °C, and the enzyme activity was maintained at 80% of the initial activity at a pre-incubation temperature of 40 °C for 120 min. Km and Vmax values for NAB were 30.22 mM and 54.84 U/mg, respectively, and kcat/Km was 2.65 s−1 mM−1. These results suggest that His-tagged BpGH117 can be used for producing bioactive products such as AHG and agarotriose from agarose efficiently. Full article
(This article belongs to the Special Issue Nutra-Cosmeceuticals from Algae for Health and Wellness)
Show Figures

Graphical abstract

17 pages, 5428 KiB  
Article
Enzymatic Degradation of Gracilariopsis lemaneiformis Polysaccharide and the Antioxidant Activity of Its Degradation Products
by Tian Fang, Xiaoqian Zhang, Shanshan Hu, Yanyan Yu, Xue Sun and Nianjun Xu
Mar. Drugs 2021, 19(5), 270; https://doi.org/10.3390/md19050270 - 12 May 2021
Cited by 15 | Viewed by 2930
Abstract
Gracilariopsis lemaneiformis polysaccharides (GLP) were degraded using pectinase, glucoamylase, cellulase, xylanase, and β-dextranase into low-molecular-weight polysaccharides, namely, GPP, GGP, GCP, GXP, and GDP, respectively, and their antioxidant capacities were investigated. The degraded GLP showed higher antioxidant activities than natural GLP, and GDP exhibited [...] Read more.
Gracilariopsis lemaneiformis polysaccharides (GLP) were degraded using pectinase, glucoamylase, cellulase, xylanase, and β-dextranase into low-molecular-weight polysaccharides, namely, GPP, GGP, GCP, GXP, and GDP, respectively, and their antioxidant capacities were investigated. The degraded GLP showed higher antioxidant activities than natural GLP, and GDP exhibited the highest antioxidant activity. After the optimization of degradation conditions through single-factor and orthogonal optimization experiments, four polysaccharide fractions (GDP1, GDP2, GDP3, and GDP4) with high antioxidant abilities (hydroxyl radical scavenging activity, DPPH radical scavenging activity, reduction capacity, and total antioxidant capacity) were obtained. Their cytoprotective activities against H2O2-induced oxidative damage in human fetal lung fibroblast 1 (HFL1) cells were examined. Results suggested that GDP pretreatment can significantly improve cell viability, reduce reactive oxygen species and malonaldehyde levels, improve antioxidant enzyme activity and mitochondria membrane potential, and alleviate oxidative damage in HFL1 cells. Thus, the enzyme degradation of GLP with β-dextranase can significantly improve its antioxidant activity, and GDP might be a suitable source of natural antioxidants. Full article
Show Figures

Figure 1

21 pages, 3141 KiB  
Article
Chitosomes-In-Chitosan Hydrogel for Acute Skin Injuries: Prevention and Infection Control
by Lisa Myrseth Hemmingsen, Kjersti Julin, Luqman Ahsan, Purusotam Basnet, Mona Johannessen and Nataša Škalko-Basnet
Mar. Drugs 2021, 19(5), 269; https://doi.org/10.3390/md19050269 - 12 May 2021
Cited by 34 | Viewed by 4964
Abstract
Burns and other skin injuries are growing concerns as well as challenges in an era of antimicrobial resistance. Novel treatment options to improve the prevention and eradication of infectious skin biofilm-producing pathogens, while enhancing wound healing, are urgently needed for the timely treatment [...] Read more.
Burns and other skin injuries are growing concerns as well as challenges in an era of antimicrobial resistance. Novel treatment options to improve the prevention and eradication of infectious skin biofilm-producing pathogens, while enhancing wound healing, are urgently needed for the timely treatment of infection-prone injuries. Treatment of acute skin injuries requires tailoring of formulation to assure both proper skin retention and the appropriate release of incorporated antimicrobials. The challenge remains to formulate antimicrobials with low water solubility, which often requires carriers as the primary vehicle, followed by a secondary skin-friendly vehicle. We focused on widely used chlorhexidine formulated in the chitosan-infused nanocarriers, chitosomes, incorporated into chitosan hydrogel for improved treatment of skin injuries. To prove our hypothesis, lipid nanocarriers and chitosan-comprising nanocarriers (≈250 nm) with membrane-active antimicrobial chlorhexidine were optimized and incorporated into chitosan hydrogel. The biological and antibacterial effects of both vesicles and a vesicles-in-hydrogel system were evaluated. The chitosomes-in-chitosan hydrogel formulation demonstrated promising physical properties and were proven safe. Additionally, the chitosan-based systems, both chitosomes and chitosan hydrogel, showed an improved antimicrobial effect against S. aureus and S. epidermidis compared to the formulations without chitosan. The novel formulation could serve as a foundation for infection prevention and bacterial eradication in acute wounds. Full article
(This article belongs to the Special Issue Wound Healing Potential of Marine Natural Products)
Show Figures

Graphical abstract

14 pages, 3310 KiB  
Article
Diet Supplementation with Fish-Derived Extracts Suppresses Diabetes and Modulates Intestinal Microbiome in a Murine Model of Diet-Induced Obesity
by Konstantinos Axarlis, Maria G. Daskalaki, Sofia Michailidou, Nikolais Androulaki, Antiopi Tsoureki, Evangelia Mouchtaropoulou, Ourania Kolliniati, Ioanna Lapi, Eirini Dermitzaki, Maria Venihaki, Katerina Kousoulaki, Anagnostis Argiriou, Zouhir El Marsni and Christos Tsatsanis
Mar. Drugs 2021, 19(5), 268; https://doi.org/10.3390/md19050268 - 11 May 2021
Cited by 8 | Viewed by 4874
Abstract
Metabolic syndrome-related diseases affect millions of people worldwide. It is well established that changes in nutritional habits and lifestyle can improve or prevent metabolic-related pathologies such as type-2 diabetes and obesity. Previous reports have shown that nutritional supplements have the capacity to limit [...] Read more.
Metabolic syndrome-related diseases affect millions of people worldwide. It is well established that changes in nutritional habits and lifestyle can improve or prevent metabolic-related pathologies such as type-2 diabetes and obesity. Previous reports have shown that nutritional supplements have the capacity to limit glucose intolerance and suppress diabetes development. In this study, we investigated the effect of dietary supplementation with fish-derived extracts on obesity and type 2 diabetes and their impact on gut microbial composition. We showed that nutritional supplements containing Fish Complex (FC), Fish Complex combined with Cod Powder (FC + CP), or Cod Powder combined with Collagen (CP + C) improved glucose intolerance, independent of abdominal fat accumulation, in a mouse model of diet-induced obesity and type 2 diabetes. In addition, collagen-containing supplements distinctly modulate the gut microbiome in high-fat induced obesity in mice. Our results suggest that fish-derived supplements suppress diet-induced type 2 diabetes, which may be partly mediated through changes in the gut microbiome. Thus, fish-derived supplements and particularly the ones containing fish collagen have potential beneficial properties as dietary supplements in managing type 2 diabetes and metabolic syndrome via modulation of the gut microbiome. Full article
(This article belongs to the Special Issue Marine Natural Products Modulating the Immune System)
Show Figures

Figure 1

11 pages, 1130 KiB  
Review
Sea Urchin Pigments: Echinochrome A and Its Potential Implication in the Cytokine Storm Syndrome
by Tamara Rubilar, Elena S. Barbieri, Ayelén Gazquez and Marisa Avaro
Mar. Drugs 2021, 19(5), 267; https://doi.org/10.3390/md19050267 - 11 May 2021
Cited by 16 | Viewed by 3930
Abstract
Background: Echinochrome A (EchA) is a pigment from sea urchins. EchA is a polyhydroxylated 1,4-naphthoquinone that contains several hydroxyl groups appropriate for free-radical scavenging and preventing redox imbalance. EchA is the most studied molecule of this family and is an active principle [...] Read more.
Background: Echinochrome A (EchA) is a pigment from sea urchins. EchA is a polyhydroxylated 1,4-naphthoquinone that contains several hydroxyl groups appropriate for free-radical scavenging and preventing redox imbalance. EchA is the most studied molecule of this family and is an active principle approved to be used in humans, usually for cardiopathies and glaucoma. EchA is used as a pharmaceutical drug. Methods: A comprehensive literature and patent search review was undertaken using PubMed, as well as Google Scholar and Espacenet search engines to review these areas. Conclusions: In the bloodstream, EchA can mediate cellular responses, act as a radical scavenger, and activate the glutathione pathway. It decreases ROS imbalance, prevents and limits lipid peroxidation, and enhances mitochondrial functions. Most importantly, EchA contributes to the modulation of the immune system. EchA can regulate the generation of regulatory T cells, inhibit pro-inflammatory IL-1β and IL-6 cytokine production, while slightly reducing IL-8, TNF-α, INF-α, and NKT, thus correcting immune imbalance. These characteristics suggest that EchA is a candidate drug to alleviate the cytokine storm syndrome (CSS). Full article
(This article belongs to the Special Issue Quinonoid Pigments of Echinoderms)
Show Figures

Graphical abstract

13 pages, 2714 KiB  
Article
The Effects of Marine Algal Polyphenols, Phlorotannins, on Skeletal Muscle Growth in C2C12 Muscle Cells via Smad and IGF-1 Signaling Pathways
by Seo-Young Kim, Ji-Hyeok Lee, Nalae Kang, Kil-Nam Kim and You-Jin Jeon
Mar. Drugs 2021, 19(5), 266; https://doi.org/10.3390/md19050266 - 10 May 2021
Cited by 11 | Viewed by 3728
Abstract
Skeletal muscle is an important tissue in energy metabolism and athletic performance. The use of effective synthetic supplements and drugs to promote muscle growth is limited by various side effects. Moreover, their use is prohibited by anti-doping agencies; hence, natural alternatives are needed. [...] Read more.
Skeletal muscle is an important tissue in energy metabolism and athletic performance. The use of effective synthetic supplements and drugs to promote muscle growth is limited by various side effects. Moreover, their use is prohibited by anti-doping agencies; hence, natural alternatives are needed. Therefore, we evaluated the muscle growth effect of substances that can act like synthetic supplements from edible marine algae. First, we isolated six marine algal polyphenols belonging to the phlorotannin class, namely dieckol (DK), 2,7″-phloroglucinol-6,6′-bieckol (PHB), phlorofucofuroeckol A (PFFA), 6,6′-bieckol (6,6-BK), pyrogallol-phloroglucinol-6,6′-bieckol (PPB), and phloroglucinol (PG) from an edible brown alga, Ecklonia cava and evaluated their effects on C2C12 myoblasts proliferation and differentiation. Of the six phlorotannin isolates evaluated, DK and PHB induced the highest degree of C2C12 myoblast proliferation. In addition, DK and PHB regulates myogenesis by down-regulating the Smad signaling, a negative regulator, and up-regulating the insulin-like growth factor-1 (IGF-1) signaling, a positive regulator. Interestingly, DK and PHB bind strongly to myostatin, which is an inhibitor of myoblast proliferation, while also binding to IGF-1 receptors. Moreover, they bind to IGF-1 receptor. These results suggest that DK and PHB are potential natural muscle building supplements and could be a safer alternative to synthetic drugs. Full article
Show Figures

Figure 1

17 pages, 653 KiB  
Review
The Therapeutic Potential of the Anticancer Activity of Fucoidan: Current Advances and Hurdles
by Jun-O. Jin, Pallavi Singh Chauhan, Ananta Prasad Arukha, Vishal Chavda, Anuj Dubey and Dhananjay Yadav
Mar. Drugs 2021, 19(5), 265; https://doi.org/10.3390/md19050265 - 10 May 2021
Cited by 53 | Viewed by 5366
Abstract
Several types of cancers share cellular and molecular behaviors. Although many chemotherapy drugs have been designed to weaken the defenses of cancer cells, these drugs may also have cytotoxic effects on healthy tissues. Fucoidan, a sulfated fucose-based polysaccharide from brown algae, has gained [...] Read more.
Several types of cancers share cellular and molecular behaviors. Although many chemotherapy drugs have been designed to weaken the defenses of cancer cells, these drugs may also have cytotoxic effects on healthy tissues. Fucoidan, a sulfated fucose-based polysaccharide from brown algae, has gained much attention as an antitumor drug owing to its anticancer effects against multiple cancer types. Among the anticancer mechanisms of fucoidan are cell cycle arrest, apoptosis evocation, and stimulation of cytotoxic natural killer cells and macrophages. Fucoidan also protects against toxicity associated with chemotherapeutic drugs and radiation-induced damage. The synergistic effect of fucoidan with existing anticancer drugs has prompted researchers to explore its therapeutic potential. This review compiles the mechanisms through which fucoidan slows tumor growth, kills cancer cells, and interacts with cancer chemotherapy drugs. The obstacles involved in developing fucoidan as an anticancer agent are also discussed in this review. Full article
Show Figures

Figure 1

24 pages, 1280 KiB  
Review
Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine
by Hengtong Zhang, Junqiu Cheng and Qiang Ao
Mar. Drugs 2021, 19(5), 264; https://doi.org/10.3390/md19050264 - 10 May 2021
Cited by 231 | Viewed by 13998
Abstract
Alginates are naturally occurring polysaccharides extracted from brown marine algae and bacteria. Being biocompatible, biodegradable, non-toxic and easy to gel, alginates can be processed into various forms, such as hydrogels, microspheres, fibers and sponges, and have been widely applied in biomedical field. The [...] Read more.
Alginates are naturally occurring polysaccharides extracted from brown marine algae and bacteria. Being biocompatible, biodegradable, non-toxic and easy to gel, alginates can be processed into various forms, such as hydrogels, microspheres, fibers and sponges, and have been widely applied in biomedical field. The present review provides an overview of the properties and processing methods of alginates, as well as their applications in wound healing, tissue repair and drug delivery in recent years. Full article
(This article belongs to the Special Issue Nanoparticles from Marine Organisms and Their Biological Activity)
Show Figures

Figure 1

13 pages, 1962 KiB  
Article
Biogenic Synthesis of Copper Nanoparticles Using Bacterial Strains Isolated from an Antarctic Consortium Associated to a Psychrophilic Marine Ciliate: Characterization and Potential Application as Antimicrobial Agents
by Maria Sindhura John, Joseph Amruthraj Nagoth, Marco Zannotti, Rita Giovannetti, Alessio Mancini, Kesava Priyan Ramasamy, Cristina Miceli and Sandra Pucciarelli
Mar. Drugs 2021, 19(5), 263; https://doi.org/10.3390/md19050263 - 8 May 2021
Cited by 60 | Viewed by 5474
Abstract
In the last decade, metal nanoparticles (NPs) have gained significant interest in the field of biotechnology due to their unique physiochemical properties and potential uses in a wide range of applications. Metal NP synthesis using microorganisms has emerged as an eco-friendly, clean, and [...] Read more.
In the last decade, metal nanoparticles (NPs) have gained significant interest in the field of biotechnology due to their unique physiochemical properties and potential uses in a wide range of applications. Metal NP synthesis using microorganisms has emerged as an eco-friendly, clean, and viable strategy alternative to chemical and physical approaches. Herein, an original and efficient route for the microbial synthesis of copper NPs using bacterial strains newly isolated from an Antarctic consortium is described. UV-visible spectra of the NPs showed a maximum absorbance in the range of 380–385 nm. Transmission electron microscopy analysis showed that these NPs are all monodispersed, spherical in nature, and well segregated without any agglomeration and with an average size of 30 nm. X-ray powder diffraction showed a polycrystalline nature and face centered cubic lattice and revealed characteristic diffraction peaks indicating the formation of CuONPs. Fourier-transform infrared spectra confirmed the presence of capping proteins on the NP surface that act as stabilizers. All CuONPs manifested antimicrobial activity against various types of Gram-negative; Gram-positive bacteria; and fungi pathogen microorganisms including Escherichia coli, Staphylococcus aureus, and Candida albicans. The cost-effective and eco-friendly biosynthesis of these CuONPs make them particularly attractive in several application from nanotechnology to biomedical science. Full article
(This article belongs to the Special Issue Bioactive Molecules from Extreme Environments II)
Show Figures

Graphical abstract

13 pages, 1371 KiB  
Article
Fish Oil, Se Yeast, and Micronutrient-Enriched Nutrition as Adjuvant Treatment during Target Therapy in a Murine Model of Lung Cancer
by Hang Wang, Simon Hsia, Tsung-Han Wu and Chang-Jer Wu
Mar. Drugs 2021, 19(5), 262; https://doi.org/10.3390/md19050262 - 4 May 2021
Cited by 6 | Viewed by 3017
Abstract
Despite the effectiveness of primary treatment modalities for cancer, the side effects of treatments, medication resistance, and the deterioration of cachexia after disease progression lead to poor prognosis. A supportive treatment modality to overcome these limitations would be considered a major breakthrough. Here, [...] Read more.
Despite the effectiveness of primary treatment modalities for cancer, the side effects of treatments, medication resistance, and the deterioration of cachexia after disease progression lead to poor prognosis. A supportive treatment modality to overcome these limitations would be considered a major breakthrough. Here, we used two different target drugs to demonstrate whether a nutraceutical formula (fish oil, Se yeast, and micronutrient-enriched nutrition; NuF) can interfere with cancer cachexia and improve drug efficacy. After Lewis lung cancer (LLC) tumor injection, the C57BL/6 mice were orally administered targeted therapy drugs Iressa and Sutent alone or combined with NuF for 27 days. Sutent administration effectively inhibited tumor size but increased the number of lung metastases in the long term. Sutent combined with NuF had no significant difference in tumor weight and metastasis compare with Sutent alone. However, NuF slightly attenuated metastases number in lung may via mesenchymal marker N-cadherin suppression. NuF otherwise increased epithelial-like marker E-cadherin expression and induce NO-mediated intrinsic apoptotic pathway in tumor cells, thereby strengthening the ability of the targeted therapy drug Iressa for inhibiting tumor progression. Our results demonstrate that NuF can promote the anticancer effect of lung cancer to targeted therapy, especially in Iressa, by inhibiting HIF-1α and epithelial-mesenchymal transition (EMT) and inducing the apoptosis of lung cancer cells. Furthermore, NuF attenuates cancer-related cachectic symptoms by inhibiting systemic oxidative stress. Full article
(This article belongs to the Special Issue Advances in Therapeutic Applications of Fish Oil)
Show Figures

Figure 1

26 pages, 4537 KiB  
Article
Jorunnamycin A Suppresses Stem-Like Phenotypes and Sensitizes Cisplatin-Induced Apoptosis in Cancer Stem-Like Cell-Enriched Spheroids of Human Lung Cancer Cells
by Somruethai Sumkhemthong, Supakarn Chamni, Gea U. Ecoy, Pornchanok Taweecheep, Khanit Suwanborirux, Eakachai Prompetchara, Pithi Chanvorachote and Chatchai Chaotham
Mar. Drugs 2021, 19(5), 261; https://doi.org/10.3390/md19050261 - 3 May 2021
Cited by 7 | Viewed by 3969
Abstract
It has been recognized that cancer stem-like cells (CSCs) in tumor tissue crucially contribute to therapeutic failure, resulting in a high mortality rate in lung cancer patients. Due to their stem-like features of self-renewal and tumor formation, CSCs can lead to drug resistance [...] Read more.
It has been recognized that cancer stem-like cells (CSCs) in tumor tissue crucially contribute to therapeutic failure, resulting in a high mortality rate in lung cancer patients. Due to their stem-like features of self-renewal and tumor formation, CSCs can lead to drug resistance and tumor recurrence. Herein, the suppressive effect of jorunnamycin A, a bistetrahydroisoquinolinequinone isolated from Thai blue sponge Xestospongia sp., on cancer spheroid initiation and self-renewal in the CSCs of human lung cancer cells is revealed. The depletion of stemness transcription factors, including Nanog, Oct-4, and Sox2 in the lung CSC-enriched population treated with jorunnamycin A (0.5 μM), resulted from the activation of GSK-3β and the consequent downregulation of β-catenin. Interestingly, pretreatment with jorunnamycin A at 0.5 μM for 24 h considerably sensitized lung CSCs to cisplatin-induced apoptosis, as evidenced by upregulated p53 and decreased Bcl-2 in jorunnamycin A-pretreated CSC-enriched spheroids. Moreover, the combination treatment of jorunnamycin A (0.5 μM) and cisplatin (25 μM) also diminished CD133-overexpresssing cells presented in CSC-enriched spheroids. Thus, evidence on the regulatory functions of jorunnamycin A may facilitate the development of this marine-derived compound as a novel chemotherapy agent that targets CSCs in lung cancer treatment. Full article
Show Figures

Graphical abstract

10 pages, 2126 KiB  
Article
Cherbonolides M and N from a Formosan Soft Coral Sarcophyton cherbonnieri
by Chia-Chi Peng, Tzu-Yin Huang, Chiung-Yao Huang, Tsong-Long Hwang and Jyh-Horng Sheu
Mar. Drugs 2021, 19(5), 260; https://doi.org/10.3390/md19050260 - 1 May 2021
Cited by 5 | Viewed by 2617
Abstract
Two new isosarcophine derivatives, cherbonolides M (1) and N (2), were further isolated from a Formosan soft coral Sarcophyton cherbonnieri. The planar structure and relative configuration of both compounds were established by the detailed analysis of the IR, [...] Read more.
Two new isosarcophine derivatives, cherbonolides M (1) and N (2), were further isolated from a Formosan soft coral Sarcophyton cherbonnieri. The planar structure and relative configuration of both compounds were established by the detailed analysis of the IR, MS, and 1D and 2D NMR data. Further, the absolute configuration of both compounds was determined by the comparison of CD spectra with that of isosarcophine (3). Notably, cherbonolide N (2) possesses the unique cembranoidal scaffold of tetrahydrooxepane with the 12,17-ether linkage fusing with a γ-lactone. In addition, the assay for cytotoxicity of both new compounds revealed that they showed to be noncytotoxic toward the proliferation of A549, DLD-1, and HuCCT-1 cell lines. Moreover, the anti-inflammatory activities of both metabolites were carried out by measuring the N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced generation of superoxide anion and elastase release in the primary human neutrophils. Cherbonolide N (2) was found to reduce the generation of superoxide anion (20.6 ± 6.8%) and the elastase release (30.1 ± 3.3%) in the fMLF/CB-induced human neutrophils at a concentration of 30 μM. Full article
Show Figures

Figure 1

18 pages, 1936 KiB  
Article
Shrimp Oil Extracted from Shrimp Processing By-Product Is a Rich Source of Omega-3 Fatty Acids and Astaxanthin-Esters, and Reveals Potential Anti-Adipogenic Effects in 3T3-L1 Adipocytes
by Indrayani Phadtare, Hitesh Vaidya, Kelly Hawboldt and Sukhinder Kaur Cheema
Mar. Drugs 2021, 19(5), 259; https://doi.org/10.3390/md19050259 - 30 Apr 2021
Cited by 8 | Viewed by 4853
Abstract
The province of Newfoundland and Labrador, Canada, generates tons of shrimp processing by-product every year. Shrimp contains omega (n)-3 polyunsaturated fatty acids (PUFA) and astaxanthin (Astx), a potent antioxidant that exists in either free or esterified form (Astx-E). In this study, shrimp oil [...] Read more.
The province of Newfoundland and Labrador, Canada, generates tons of shrimp processing by-product every year. Shrimp contains omega (n)-3 polyunsaturated fatty acids (PUFA) and astaxanthin (Astx), a potent antioxidant that exists in either free or esterified form (Astx-E). In this study, shrimp oil (SO) was extracted from the shrimp processing by-product using the Soxhlet method (hexane:acetone 2:3). The extracted SO was rich in phospholipids, n-3 PUFA, and Astx-E. The 3T3-L1 preadipocytes were differentiated to mature adipocytes in the presence or absence of various treatments for 8 days. The effects of SO were then investigated on fat accumulation, and the mRNA expression of genes involved in adipogenesis and lipogenesis in 3T3-L1 cells. The effects of fish oil (FO), in combination with Astx-E, on fat accumulation, and the mRNA expression of genes involved in adipogenesis and lipogenesis were also investigated. The SO decreased fat accumulation, compared to untreated cells, which coincided with lower mRNA expression of adipogenic and lipogenic genes. However, FO and FO + Astx-E increased fat accumulation, along with increased mRNA expression of adipogenic and lipogenic genes, and glucose transporter type 4 (Glut-4), compared to untreated cells. These findings have demonstrated that the SO is a rich source of n-3 PUFA and Astx-E, and has the potential to elicit anti-adipogenic effects. Moreover, the SO and FO appear to regulate adipogenesis and lipogenesis via independent pathways in 3T3-L1 cells. Full article
(This article belongs to the Special Issue Marine Natural Products That Target Metabolic Diseases)
Show Figures

Graphical abstract

15 pages, 3330 KiB  
Article
Probing the Anti-Cancer Potency of Sulfated Galactans on Cholangiocarcinoma Cells Using Synchrotron FTIR Microspectroscopy, Molecular Docking, and In Vitro Studies
by Boonyakorn Boonsri, Kiattawee Choowongkomon, Buabarn Kuaprasert, Thanvarin Thitiphatphuvanon, Kittiya Supradit, Apinya Sayinta, Jinchutha Duangdara, Tawut Rudtanatip and Kanokpan Wongprasert
Mar. Drugs 2021, 19(5), 258; https://doi.org/10.3390/md19050258 - 30 Apr 2021
Cited by 3 | Viewed by 2887
Abstract
Sulfated galactans (SG) isolated from red alga Gracilaria fisheri have been reported to inhibit the growth of cholangiocarcinoma (CCA) cells, which was similar to the epidermal growth factor receptor (EGFR)-targeted drug, cetuximab. Herein, we studied the anti-cancer potency of SG compared to cetuximab. [...] Read more.
Sulfated galactans (SG) isolated from red alga Gracilaria fisheri have been reported to inhibit the growth of cholangiocarcinoma (CCA) cells, which was similar to the epidermal growth factor receptor (EGFR)-targeted drug, cetuximab. Herein, we studied the anti-cancer potency of SG compared to cetuximab. Biological studies demonstrated SG and cetuximab had similar inhibition mechanisms in CCA cells by down-regulating EGFR/ERK pathway, and the combined treatment induced a greater inhibition effect. The molecular docking study revealed that SG binds to the dimerization domain of EGFR, and this was confirmed by dimerization assay, which showed that SG inhibited ligand-induced EGFR dimer formation. Synchrotron FTIR microspectroscopy was employed to examine alterations in cellular macromolecules after drug treatment. The SR-FTIR-MS elicited similar spectral signatures of SG and cetuximab, pointing towards the bands of RNA/DNA, lipids, and amide I vibrations, which were inconsistent with the changes of signaling proteins in CCA cells after drug treatment. Thus, this study demonstrates the underlined anti-cancer mechanism of SG by interfering with EGFR dimerization. In addition, we reveal that FTIR signature spectra offer a useful tool for screening anti-cancer drugs’ effect. Full article
(This article belongs to the Special Issue Application of Spectroscopic Techniques in Marine Natural Products)
Show Figures

Graphical abstract

40 pages, 23667 KiB  
Review
Synthesis-Driven Stereochemical Assignment of Marine Polycyclic Ether Natural Products
by Haruhiko Fuwa
Mar. Drugs 2021, 19(5), 257; https://doi.org/10.3390/md19050257 - 29 Apr 2021
Cited by 3 | Viewed by 3215
Abstract
Marine polycyclic ether natural products have gained significant interest from the chemical community due to their impressively huge molecular architecture and diverse biological functions. The structure assignment of this class of extraordinarily complex natural products has mainly relied on NMR spectroscopic analysis. However, [...] Read more.
Marine polycyclic ether natural products have gained significant interest from the chemical community due to their impressively huge molecular architecture and diverse biological functions. The structure assignment of this class of extraordinarily complex natural products has mainly relied on NMR spectroscopic analysis. However, NMR spectroscopic analysis has its own limitations, including configurational assignment of stereogenic centers within conformationally flexible systems. Chemical shift deviation analysis of synthetic model compounds is a reliable means to assign the relative configuration of “difficult” stereogenic centers. The complete configurational assignment must be ultimately established through total synthesis. The aim of this review is to summarize the indispensable role of organic synthesis in stereochemical assignment of marine polycyclic ethers. Full article
(This article belongs to the Special Issue Synthesis-Driven Structure Assignment of Marine Natural Products)
Show Figures

Graphical abstract

10 pages, 1897 KiB  
Article
Optimising the DPPH Assay for Cell-Free Marine Microorganism Supernatants
by Yehui Gang, Tae-Yang Eom, Svini Dileepa Marasinghe, Youngdeuk Lee, Eunyoung Jo and Chulhong Oh
Mar. Drugs 2021, 19(5), 256; https://doi.org/10.3390/md19050256 - 29 Apr 2021
Cited by 8 | Viewed by 5781
Abstract
Antioxidants prevent ageing and are usually quantified and screened using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. However, this assay cannot be used for salt-containing samples, such as the cell-free supernatants of marine microorganisms that are aggregated under these conditions. Herein, the DPPH solvent (methanol or [...] Read more.
Antioxidants prevent ageing and are usually quantified and screened using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. However, this assay cannot be used for salt-containing samples, such as the cell-free supernatants of marine microorganisms that are aggregated under these conditions. Herein, the DPPH solvent (methanol or ethanol) and its water content were optimized to enable the analysis of salt-containing samples, aggregation was observed for alcohol contents of >70%. The water content of methanol influenced the activities of standard antioxidants but did not significantly affect that of the samples. Based on solution stability considerations, 70% aqueous methanol was chosen as the optimal DPPH solvent. The developed method was successfully applied to the cell-free supernatants of marine bacteria (Pseudoalteromonas rubra and Pseudoalteromonas xiamenensis), revealing their high antioxidant activities. Furthermore, it was concluded that this method would be useful for the screening of marine microorganism–derived antioxidants, which also has numerous potential applications, such as salt-fermented foods. Full article
(This article belongs to the Special Issue Advanced Methods in the Marine Natural Product Science)
Show Figures

Figure 1

21 pages, 1937 KiB  
Review
Marine Microbial-Derived Antibiotics and Biosurfactants as Potential New Agents against Catheter-Associated Urinary Tract Infections
by Shuai Zhang, Xinjin Liang, Geoffrey Michael Gadd and Qi Zhao
Mar. Drugs 2021, 19(5), 255; https://doi.org/10.3390/md19050255 - 29 Apr 2021
Cited by 18 | Viewed by 5868
Abstract
Catheter-associated urinary tract infections (CAUTIs) are among the leading nosocomial infections in the world and have led to the extensive study of various strategies to prevent infection. However, despite an abundance of anti-infection materials having been studied over the last forty-five years, only [...] Read more.
Catheter-associated urinary tract infections (CAUTIs) are among the leading nosocomial infections in the world and have led to the extensive study of various strategies to prevent infection. However, despite an abundance of anti-infection materials having been studied over the last forty-five years, only a few types have come into clinical use, providing an insignificant reduction in CAUTIs. In recent decades, marine resources have emerged as an unexplored area of opportunity offering huge potential in discovering novel bioactive materials to combat human diseases. Some of these materials, such as antimicrobial compounds and biosurfactants synthesized by marine microorganisms, exhibit potent antimicrobial, antiadhesive and antibiofilm activity against a broad spectrum of uropathogens (including multidrug-resistant pathogens) that could be potentially used in urinary catheters to eradicate CAUTIs. This paper summarizes information on the most relevant materials that have been obtained from marine-derived microorganisms over the last decade and discusses their potential as new agents against CAUTIs, providing a prospective proposal for researchers. Full article
(This article belongs to the Special Issue Marine Natural Products with Antifouling Activity)
Show Figures

Figure 1

16 pages, 558 KiB  
Article
Influence of Dietary Lipids and Environmental Salinity on the n-3 Long-Chain Polyunsaturated Fatty Acids Biosynthesis Capacity of the Marine Teleost Solea senegalensis
by Manuel Marrero, Óscar Monroig, Mónica Betancor, Marcelino Herrera, José A. Pérez, Diego Garrido, Ana Galindo, Inmaculada Giráldez and Covadonga Rodríguez
Mar. Drugs 2021, 19(5), 254; https://doi.org/10.3390/md19050254 - 29 Apr 2021
Cited by 5 | Viewed by 3400
Abstract
Fish vary in their ability to biosynthesise long-chain polyunsaturated fatty acids (LC-PUFA) depending upon the complement and function of key enzymes commonly known as fatty acyl desaturases and elongases. It has been reported in Solea senegalensis the existence of a Δ4 desaturase, enabling [...] Read more.
Fish vary in their ability to biosynthesise long-chain polyunsaturated fatty acids (LC-PUFA) depending upon the complement and function of key enzymes commonly known as fatty acyl desaturases and elongases. It has been reported in Solea senegalensis the existence of a Δ4 desaturase, enabling the biosynthesis of docosahexaenoic acid (DHA) from eicosapentaenoic acid (EPA), which can be modulated by the diet. The present study aims to evaluate the combined effects of the partial replacement of fish oil (FO) with vegetable oils and reduced environmental salinity in the fatty acid composition of relevant body compartments (muscle, hepatocytes and enterocytes), the enzymatic activity over α-linolenic acid (ALA) to form n-3 LC-PUFA through the incubation of isolated hepatocytes and enterocytes with [1-14C] 18:3 n-3, and the regulation of the S. senegalensis fads2 and elovl5 in the liver and intestine. The presence of radiolabelled products, including 18:4n-3, 20:4n-3 and EPA, provided compelling evidence that a complete pathway enabling the biosynthesis of EPA from ALA, establishing S. senegalensis, has at least one Fads2 with ∆6 activity. Dietary composition prevailed over salinity in regulating the expression of fads2, while salinity did so over dietary composition for elovl5. FO replacement enhanced the proportion of DHA in S. senegalensis muscle and the combination with 20 ppt salinity increased the amount of n-3 LC-PUFA in hepatocytes. Full article
(This article belongs to the Special Issue Marine Fatty Acids-2021)
Show Figures

Figure 1

15 pages, 4966 KiB  
Article
Compounds Identified from Marine Mangrove Plant (Avicennia alba) as Potential Antiviral Drug Candidates against WDSV, an In-Silico Approach
by Mohammed Othman Aljahdali, Mohammad Habibur Rahman Molla and Foysal Ahammad
Mar. Drugs 2021, 19(5), 253; https://doi.org/10.3390/md19050253 - 28 Apr 2021
Cited by 48 | Viewed by 5513
Abstract
Walleye dermal sarcoma virus (WDSV) is a type of retrovirus, which affects most of the adult walleye fishes during the spawning time. The virus causes multiple epithelial tumors on the fish’s skin and fins that are liable for more than 50% of the [...] Read more.
Walleye dermal sarcoma virus (WDSV) is a type of retrovirus, which affects most of the adult walleye fishes during the spawning time. The virus causes multiple epithelial tumors on the fish’s skin and fins that are liable for more than 50% of the mortality rate of fish around the world. Till now, no effective antiviral drug or vaccine candidates have been developed that can block the progression of the disease caused by the pathogen. It was found that the 582-amino-acid (aa) residues long internal structural gag polyprotein of the virus plays an important role in virus budding and virion maturation outside of the cell. Inhibition of the protein can block the budding and virion maturation process and can be developed as an antiviral drug candidate against the virus. Therefore, the study aimed to identify potential natural antiviral drug candidates from the tropical mangrove marine plant Avicennia alba, which will be able to block the budding and virion maturation process by inhibiting the activity of the gag protein of the virus. Initially, a homology modeling approach was applied to identify the 3D structure, followed by refinement and validation of the protein. The refined protein structures were then utilized for molecular docking simulation. Eleven phytochemical compounds have been isolated from the marine plant and docked against the virus gag polyprotein. Three compounds, namely Friedlein (CID244297), Phytosterols (CID12303662), and 1-Triacontanol (CID68972) have been selected based on their docking score −8.5 kcal/mol, −8.0 kcal/mol and −7.9 kcal/mol, respectively, and were evaluated through ADME (Absorption, Distribution, Metabolism and Excretion), and toxicity properties. Finally, molecular dynamics (MD) simulation was applied to confirm the binding stability of the protein-ligands complex structure. The ADME and toxicity analysis reveal the efficacy and non-toxic properties of the compounds, where MD simulation confirmed the binding stability of the selected three compounds with the targeted protein. This computational study revealed the virtuous value of the selected three compounds against the targeted gag polyprotein and will be effective and promising antiviral candidates against the pathogen in a significant and worthwhile manner. Although in vitro and in vivo study is required for further evaluation of the compounds against the targeted protein. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop