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Abstract: The divergent total synthesis strategy can be successfully applied to the preparation of
families of natural products using a common late-stage pluripotent intermediate. This approach is a
powerful tool in organic synthesis as it offers opportunities for the efficient preparation of structurally
related compounds. This article reviews the synthesis of the marine natural product aureol, as well as
its use as a common intermediate in the divergent synthesis of other marine natural and non-natural
tetracyclic meroterpenoids.
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1. Introduction

The original definition of divergent total synthesis (Figure 1) was reported by Boger
et al. [1] and was defined as the synthesis in which “at least two members of the class of
compounds” can be separately prepared from a common, advanced synthetic intermediate.
Therefore, the most important challenge in a divergent synthesis is the choice of a common
intermediate which could be transformed into a target array of natural products and
non-natural derivatives. This strategy is a powerful tool that has attracted the attention
of numerous research groups as it improves the efficiency of chemical processes [2,3],
and attains special relevance when structure-activity studies are the ultimate goals. Later,
other terms such as “diverted total synthesis” [4] and “collective total synthesis” [5] were
introduced, thus extending the amplitude of divergent synthesis. In this way, “diverted
total synthesis” can be applied to the preparation of a natural product-like compound
library by appropriate transformations of a common intermediate, avoiding the limitations
inherent to partial syntheses from the natural product caused by the presence of multiple
similar functional groups. In addition, the term “collective total synthesis” is used when
the common intermediate is endowed with functional characteristics suitable for the
preparation of structurally diverse natural products belonging to different families.
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Figure 1. Divergent total synthesis.

On the other hand, tetracyclic meroterpenoids [6,7] are a unique class of marine natural
compounds with significant biological activities. Representative examples of marine
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natural and non-natural tetracyclic meroterpenoids, including (+)-aureol (1) [8–10], (+)-
strongylin A (2) [8,11,12], (+)-smenoqualone (3) [8,13], (−)-cyclosmenospongine (4) [8,14],
(+)-5-epi-aureol (5) [8,15–17], and (+)-5-epi-smenoqualone (6) [8] have been considered of
interest by the chemical community due to their interesting biological properties and unique
molecular structures (Scheme 1). In fact, structure–activity relationship (SAR) studies show
that variations on the nature and substituents on the aromatic ring have a strong impact
on the observed activity [8,18]. These natural products (Scheme 1) contain a compact
tetracyclic system with a substituted benzopyran moiety, four consecutive asymmetric
carbon atoms, and a well-defined trans- or cis-relationship between the two cyclohexane
rings of the decalin system. Although several synthetic methods have been described, a
divergent approach to this class of compounds has not been previously reported as such.
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Scheme 1. Representative examples of marine natural and non-natural tetracyclic meroterpenoids
and their reported biological activity.

This article focuses on the synthetic efforts towards aureol (1), a marine natural
meroterpenoid present in the Caribbean sponges Smenospongia aurea [9] and Verongula
gigantea [10] which has shown an important biological profile [8,19,20]. Aureol (1) can be
an excellent advanced and common synthetic intermediate for the divergent synthesis of
other natural and non-natural tetracyclic terpenoids. In this article, we present a unified
and versatile approach for the diversification of this class of compounds with the aim to
contribute to the development of new desirable drugs for the pharmaceutical industry
and the medicinal chemistry. The divergent synthesis of either natural or fully synthetic
derivatives could be achieved through aureol (1) as a common intermediate, by adequate
sequential functionalization of the aromatic ring, or by epimerization of the decalin core of
aureol (1) to 5-epi-aureol (5) followed by functionalization of the aromatic ring (Scheme 2).
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Scheme 2. Conceptual model of the divergent synthesis of tetracyclic meroterpenoids using aureol
(1) as a pluripotential late-stage intermediate.

Scheme 3 summarizes the last step of previous syntheses towards aureol (1). All of
them have as key step a cationic cyclization of an olefinic intermediate (7–11).
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The different synthetic sequences for aureol (1) are listed below, classified according
to the olefinic key intermediate shown in Scheme 3.

2. Synthesis of Aureol
2.1. Synthesis of Aureol from Key Intermediates 7–9
2.1.1. Capon’s Synthesis of (+)-Aureol

The first work on the synthesis of the marine product (+)-aureol (1) was published by
the group of R. J. Capon [15] using natural sesquiterpene hydroquinones ((+)-avarol (7) and
(+)-arenarol (8)) as starting materials (Scheme 4). In these processes (+)-aureol (1) could be
formed via a concerted 1,2-migration of Me-12 and H-10. However, formation of (+)-epi-
aureol (5) is better understood considering that, after methyl migration, there is a loss of
the C-10 proton to give a ∆5,10 olefin intermediate, which would later suffer trans addition
of the OH group. This lack of stereocontrol of the process was later confirmed by Lakshmi
et al. [21], as they could determine the structure of 5 by X-ray analysis (Scheme 4b).
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2.1.2. Katoh’s Synthesis of (+)-Aureol

Katoh and colleagues [22–24] reported the first enantioselective total synthesis of
(+)-aureol (1) in 2002 [22], a process they later improved in 2003 [23]. The retrosynthetic
plan of the improved synthesis is shown in Scheme 5a. This approach obtains aureol
(1) in one step by acid-induced rearrangement/cyclization of (−)-neoavarol (9). In turn,
9 can be prepared by reduction of the quinone moiety present in (−)-neovarone (13), a
compound which can be readily obtained by strategic salcomine oxidation of 14. This can
be assembled by stereocontrolled reductive alkylation of (+)-5-methyl-Wieland-Miescher
ketone (15) with 2-methoxybenzyl bromide (16) (Scheme 5a).

As shown in Scheme 5b, Katoh’s synthesis of (+)-aureol (1) used enantiopure (+)-5-
methyl-Wieland-Miescher ketone (15) as the starting material. A C-C bond-forming reaction
between 15 and a lithiated arene unit, prepared from 2-methoxybenzyl bromide (16), gave
the coupling product 17 as a single diastereomer in 74%. The Wittig methylenation of 17
produced the exo-double bond present in decaline 18 in 86% yield. Removal of the acetal
protective group by acid treatment (97% yield), followed by hydrogenation of the exocyclic
double bond present in the resulting ketone 19, led to the product 20 (80% yield) together
with its C8 epimer (13% yield). Subsequent Wittig methylenation of 20 quantitatively gave
21, which was submitted to a deprotection of the O-methyl group in order to form the
phenol 14 (92% yield). O2/salcomine oxidation of 14 gave the quinone 13 (91% yield).
Finally, NaBH4 reduction of quinone 13 gave (−)-neoavarol (9) (86% yield). Once 9 was
synthesized, the crucial step was the BF3

.Et2O-induced rearrangement of 9, which led to
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the desired (+)-aureol (1) (93% yield). This rearrangement occurred via stereospecific 1,2-
hydride and methyl shifts, as shown in Scheme 5b. In this reaction the three intermediate
carbocations I, II, and III are involved. This synthesis was completed in nine steps (33%
overall yield) from the starting material 15.
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2.2. Synthesis of Aureol from Key Intermediate 10
Magauer’s Synthesis of (+)-Aureol

The synthesis of (+)-aureol (1) reported by Magauer and colleagues [8] used a highly
robust and modular synthetic platform, developed for the preparation of natural and
fully synthetic analogues of tetracyclic meroterpenoids. The retrosynthetic plan for (+)-
aureol (1) (Scheme 6a) is based on the stereospecific acid-promoted cyclization of the ∆5(6)

olefin intermediate 10. Its methoxymethyl ether derivative 22 could be prepared from 23
following the Barton–McCombie deoxygenation protocol. This diastereoisomeric mixture
of benzyl alcohols results from the addition of 2-lithiohydroquinone dimethyl ether to
aldehyde 24, which can be obtained by Fukuyama’s reduction [25] of thioester 25.
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The keystone in the asymmetric process is the formation of the three chiral centers
present in 25 through the asymmetric Diels–Alder reaction [26,27] between 26 and enan-
tiopure 27 followed by lithium ethanethiolate removal of the chiral auxiliar (Scheme 6a).

Scheme 6b details the synthesis of (+)-aureol (1) from diene 26. The first key step
was the asymmetric construction of the 5,6-dehydrodecaline component 28 employing an
exo-selective Diels–Alder cycloaddition between diene 26 and tiglic acid-derived dienophile
27 to afford 28 (61% yield). The oxazolidinone chiral auxiliar was replaced by nucleophilic
1,2-addition of lithium ethanethiolate to the carbonyl group of the Diels–Alder product 28,
a process which afforded thioester 25 in 98% yield. A smooth Fukuyama reduction [25] of
25 gave aldehyde 24 (85% yield), which was coupled with the lithiated arene unit to afford
a mixture of diastereomeric benzylic alcohols 23 (86% yield). The free hydroxy group of
23 was removed using the two-step Barton–McCombie deoxygenation protocol, which
afforded 22 in 84% yield (two steps). The subsequent deprotection of 22 with HCl/MeOH
gave hydroquinone sesquiterpene 10, which was directly subjected to cyclization conditions
to give (+)-aureol (1) (83% yield). In this reaction, the proton formed by coordination of
BF3

.OEt2 to one of the OH-groups in 10 possibly triggers the cationic rearrangement. When
the cyclization is carried out under kinetic conditions (at temperatures below −10 ◦C), a
cis-decaline framework is formed exclusively. On the other hand, under thermodynamic
control, only the trans-decaline is obtained. This total synthesis was achieved in eight steps
(30% overall yield) from the starting material 26.

2.3. Synthesis of Aureol from Key Intermediate 11
2.3.1. Marcos’s Synthesis of (−)-Aureol

Marcos and colleagues [28] reported the total synthesis of the (−) enantiomer of aureol
(ent-1) from the methyl ester of natural ent-halimic acid (Scheme 7a). Their approach was
based on: (a) the acid-induced cyclization of sesquiterpene hydroquinone ent-11, (b) the
Barton decarboxylation reaction/p-benzoquinone addition sequence and the subsequent
reduction with Raney® nickel (ent-11 from 29), and (c) the side-chain degradation of ent-
halimic acid methyl ester 30 and the subsequent reduction of C-18 methyl ester.

As shown in Scheme 7b the synthesis of (−)-aureol (ent-1) used ent-halimic acid
methyl ester 30 as the starting material. The degradation of the side chain of 30 was
achieved [29,30] by oxidation with OsO4 followed by Pb(OAc)4, which gave ketone 31 (94%
yield, two steps). The synthesis of the endo-olefin 33 required the Wittig methylenation of
31 (87% yield) and subsequent acid isomerization of 32 (99% yield). In order to remove
the C-18 methyl ester, a three steps sequence from 33 to 36 was used, a process which
gave a very good global yield. The synthesis of product 39 was achieved in four steps:
a) the chemoselective epoxidation of the side-chain double bond in 36 (98% yield), b) the
oxidative cleavage with H5IO6 in H2O/THF to afford 37 (94% yield); c) reduction with
LiAlH4 (99% yield) to give 38 (99% yield), and d) the acetylation of the hydroxy group in 38
to afford 39 (99% yield). The isomerization of the olefin double bond present in acetate 39
with HI (97% yield) followed by the saponification of the acetoxy group (98% yield) gave
the rearranged product ent-40. Finally, the oxidation of ent-40 to acid 29 via aldehyde 41
was achieved with pyridinium dichromate (PDC) in a moderate yield. Once intermediate
29 was available, the key precursor ent-11 of (−)-aureol (ent-1) could be readily prepared
by Barton decarboxylation reaction in the presence of p-benzoquinone, a methodology
reported by Theodorakis and colleagues [31,32] for the synthesis of ilimaquinone. In
this way, when 29 was treated with 2-mercaptopyridine N-oxide in the presence of N,N′-
dicyclohexylcarbodiimide (DCC) a photo labile thio-hydroxamic ester (42) was obtained.
Then, 43 was prepared by light-induced decarboxylation (halogen lamp 500W) of 42 in the
presence of benzoquinone in a 65% yield from 29. The subsequent reduction of 43 with
Raney® nickel gave ent-11 in a 99% yield. With the key precursor ent-11 in their hands,
the treatment of this compound with BF3

.Et2O at low temperature exclusively afforded
(−)-aureol (ent-1) with complete stereoselectivity (60% yield). This total synthesis was
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achieved in 19 steps (10.3% overall yield) from ent-halimic acid methyl ester 30 as the chiral
pool starting material.
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Scheme 7. Strategy for the synthesis of (−)-aureol (ent-1) according to Marcos and colleagues [26]. (a): Retrosynthetic plan.
(b): Synthesis of (−)-aureol (ent-1). NMO = N-methylmorpholine-N-oxide; TPAP = tetra-n-propylammonium perruthenate;
mCPBA = m-chloroperoxybenzoic acid; PDC = pyridinium dichromate; DCC = N,N′-dicyclohexylcarbodiimide.

2.3.2. George’s Synthesis of (+)-Aureol

George’s group [33] published in 2012 the second total synthesis of (+)-aureol (1).
Their biosynthetically inspired retrosynthesis of (+)-aureol (1) (Scheme 8a) rests upon
the biomimetic acid-mediated cyclization of the key tetrasubstituted olefin intermediate
11, which could be prepared through a process involving the addition of an aryllithium
derivative to aldehyde 44. This aldehyde could be formed using a one-carbon dehomolo-
gation sequence from 45. Another key step in the process is the biomimetic sequence of
1,2-hydride and 1,2-methyl shifts, which converts alcohol 46 into 45. Finally, the reduc-
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tion and selective protection of the commercially available enantiopure starting material
(+)-sclareolide (47) would form the intermediate 46.
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Retrosynthetic plan. (b) Synthesis of (+)-aureol (1). DMAP = 4-(dimethylamino)pyridine; NMO=
N-methylmorpholine-N-oxide; TBAF = tetrabutylammonium fluoride.

As shown in Scheme 8b, George’s synthesis of (+)-aureol (1) used 11 as the key inter-
mediate, which was prepared from natural (+)-sclareolide (47). Its reduction with LiAlH4
gave a diol, which was selectively protected at the primary hydroxy group with Ac2O
in pyridine to afford the acetate 46 in an 84% yield (two steps). Monoacetate 46 was
stereoselectively converted to the single stereoisomer olefin 45 (70% yield) in a rearrange-
ment induced by BF3

.Et2O, which occurred via stereospecific sequential 1,2-hydride and
1,2-methyl shifts. Saponification of the acetate in 45 gave alcohol 40 (83% yield), which
was readily converted into aldehyde 44 through a one-carbon dehomologation sequence
using the Grieco–Sharples elimination protocol [34,35] (67% yield in two steps) followed
by oxidative cleavage of the resulting terminal alkene 48 (45% yield in two steps). With
aldehyde 44 in their hands, the coupling between 44 and an aryllithium species gave the
mixture of diastereomeric benzylic alcohols 49. In order to remove the OH group, this
mixture of alcohols (49) was treated with lithium in liquid ammonia followed by NH4Cl
aqueous solution to afford deoxygenated compound 50 in a 78% yield (two steps). Re-
moval of the TBS protecting groups in 50 with tetrabutylammonium fluoride provided



Mar. Drugs 2021, 19, 273 10 of 15

the key intermediate 11 in an 86% yield. To complete the synthesis of (+)-aureol (1), the
intermediate 11 was treated with BF3

.Et2O to afford (+)-aureol (1) in a 66% yield. This total
synthesis was achieved in 12 steps (6% overall yield) from (+)-sclareolide (47).

2.3.3. Wu’s Synthesis of (+)-Aureol

In 2018, Wu and colleagues [36] published the formal synthesis of (+)-aureol (1).
Their retrosynthesis of (+)-aureol is outlined in Scheme 9a. This retrosynthetic analysis is
based on: (a) the biomimetic acid-mediated cyclization of the hydroquinone 11 to generate
(+)-aureol (1), (b) the removal of the two O-Me protecting groups of 51 to afford the key
intermediate 11, (c) the cross-coupling reaction between alkyl iodide 52 and Grignard
reagent 53 to give the intermediate 51, (d) the rearrangement reaction of 54 to afford 52,
and (e) the reduction of (+)-sclareolide (47) and subsequent C-C bond cleavage to give 54.
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Retrosynthetic plan. (b): Synthesis of (+)-aureol (1). DIBAL-H = diisobutylaluminium hydride; PIDA
= (diacetoxyiodo)benzene.

As shown in Scheme 9b, the synthesis of intermediate 11 was carried out starting from
commercially available (+)-sclareolide (47). Reduction of 47 using diisobutylaluminium
hydride (DIBAL-H) generated sclareal 55 in a 98% yield. The treatment of 55 under
the C-C bond cleavage conditions described by Suárez and colleagues [37] gave drimanal
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iodoformate (54) in a 78% yield. The crucial step was the BF3
.Et2O-mediated rearrangement

of 54, which occurred via stereospecific sequential 1,2-hydride and 1,2-methyl shifts to
generate the desired alkyl iodide 52 (63%), together with a minor amount of by-product
56 (20%). In this reaction, the intermediate carbocations V-VII could be involved. With
alkyl iodide 52 in their hands, the cross-coupling reaction between Grignard reagent 53
and alkyl iodide 52 generated the key intermediate 51 in a 56% yield. As olefin 51 was an
advanced intermediate in the Rosales’s synthesis [38,39] of (±)-aureol (1), their strategy
constituted a formal synthesis of (+)-aureol (1). This formal synthesis was completed in
four steps (27% overall yield) from starting material (+)-sclareolide (47).

2.3.4. Rosales Martínez’s Synthesis of (±)-Aureol

As a part of our efforts directed towards the synthesis of marine terpenoids [40], we
embarked on a project aimed at the divergent synthesis of tetracyclic meroterpenoids. Our
endeavors started with the racemic preparation of (±)-aureol (1) in 2015 [38], a process
we latter improved in 2020 [39]. This effort continues with the divergent synthesis of
other tetracyclic meroterpenoids using aureol (1) as a common synthetic intermediate. The
retrosynthetic plan for each synthesis is shown in Scheme 10. Our strategy is based on
the preparation of (±)-aureol (1) through the biomimetic acid cyclization of hydroquinone
11, an intermediate that could be generated from 57 through a sequence of 1,2-hydride
and 1,2-methyl shifts and the subsequent deprotection of both O-Me groups. 57 is an
intermediate common to both synthetic approaches. In one of them, 57 is prepared through
Cp2TiCl-catalyzed reductive epoxide cyclization cascade of epoxyfarnesol derivative 58
and the subsequent deoxygenation of the OH-group. In the other, a cross-coupling reaction
between albicanal (59) and 2-lithiohydroquinone is used.
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Initially [38], we pursued the synthesis of the key intermediate 57 using epoxyfarnesol
60 as the starting material (Scheme 11). The one-pot mesylation of product 60 with MsCl,
and the subsequent addition of LiBr quantitatively gave a yield of bromide 61. The cross-
coupling reaction between 61 and 2,5-dimethoxyphenylmagnesium bromide afforded the
epoxyfarnesol derivative 58 (97% yield). A very elegant Cp2TiCl-catalyzed [40] radical
cascade cyclization of 58 gave 62 in a moderate 48% yield. The subsequent deoxygenation
of alcohol 62 was carried out using the Barton–McCombie procedure, which afforded 57
in an 86% overall yield (two steps). Later [39], the key intermediate 57 was also prepared
through a C-C bond-forming reaction between 2-lithiohydroquinone dimethyl ether and
(±)-albicanal (59) as starting material, which was previously obtained by oxidation of
(±)-albicanol (63) with the Dess–Martin reagent (99.7% yield). In this way, the coupling of
59 with 2-lithiohydroquinone dimethyl ether gave a mixture of diastereomeric benzylic
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alcohols which, without separation, was treated with lithium in liquid NH3/THF followed
by aqueous NH4Cl to give the deoxygenated product 57 in a 90% yield (two steps). With 57
in our hands, tetrasubstituted olefin 51 was synthesized by biomimetic-type rearrangement
of 57 mediated by BF3

.Et2O.
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Under these conditions, 51 was obtained in a 63% yield, together with the by-product
64 in a 30% yield. In this reaction, the intermediate carbocations IX-XI could be in-
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volved [39]. The cationic rearrangement might be initiated by a proton from HF, which
could be formed through hydrolysis of BF3, since is known that BF3

.Et2O is very moisture
sensitive. The demethylation of 51 gave 11 in an 82% yield over the two steps. Finally, the
treatment of the hydroquinone 11 with BF3

.Et2O afforded aureol (1) (62%). This cyclization
was originally explored by Marcos et al. [28] This synthesis of racemic (±)-aureol (1) was
completed in eight steps (14% overall yield) from the starting material epoxyfarnesol (60)
or in seven steps (28% yield overall yield) from the starting material (±)-albicanal (59).

3. Aureol as Pluripotent Late-Stage Intermediate for the Synthesis of Tetracyclic
Meroterpenoids

The possibility of using aureol (1) as a late-intermediate for the divergent synthesis
of other tetracyclic terpenoids stems from the fact that these compounds have differences
mostly on the aromatic moiety. Furthermore, the easy epimerization of aureol (1) into
5-epi-aureol (5) previously described by Magauer and colleagues [8] opens the door to the
preparation of trans-decaline. From both cis- or trans-decaline frameworks, it should be
quite straightforward the access to a library of natural or non-natural tetracyclic meroter-
penoid analogues, just by simple variation of the arene moiety. The examples represented
in Scheme 12 illustrate how other compounds can be obtained from aureol (1). The non-
natural 5-epi-aureol (5) was synthesized by thermal isomerization of (+)-aureol (1) using
hydroiodic acid in benzene at 90 ◦C (87% yield) [8]. From 5-epi-aureol (5), the compounds
(−)-cyclosmenospongine (4) and 5-epi-smenoqualone (6) were prepared by sequential func-
tionalization of their aromatic core. In this way, selective bromination of 5 with Br2, and
the subsequent methylation gave the compound 65 in an excellent yield. The non-natural
5-epi-smenoqualone (6) was prepared from 65 via a boronation-oxidation sequence in a 58%
yield (two steps). Eventually, non-natural 6 was converted to (−)-cyclomenospongine (4)
via aminolysis (60% yield). In addition, the application of this sequential functionalization
of the aromatic core to (+)-aureol (1) could be used to prepare natural (+)-smenoqualone
(4).
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4. Conclusions

The divergent synthesis is a valuable tool in the design of efficient routes for the
synthesis of natural products using a common intermediate. Although several unified
strategies have been reported for some families of natural products, it is desirable to
extrapolate this methodology to the synthesis of tetracyclic meroterpenoids. In this context,
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this article reviews the synthesis of the marine natural product aureol (1), with special
emphasis on their strategies and methodologies. In addition, this natural tetracyclic
meroterpenoid can be used as pluripotent late-stage intermediate for the synthesis of
other natural and non-natural tetracyclic meroterpenoids. In this article, we proposed a
methodology based on a diversification strategy that we believe will be useful in future
research for the preparation of other tetracyclic meroterpenoids as substances that could be
used as new drugs or in structure–activity relationship studies.

Author Contributions: A.R.M.: design and coordination of the project, writing—original draft,
writing—review and editing. I.R.-G.: writing—review and editing. J.L.L.-M.: writing—review. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Vicerrectorado de Investigación (Project 2020/00001014)
of University of Sevilla (Spain) and by the Vicerrectorado de Investigación e Innovación of University
of Almería (Project PPUENTE2020/010).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: A. Rosales Martínez acknowledges University of the Sevilla for his position as
professor and for financial support (Project 2020/00001014).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boger, D.L.; Brotherton, C.E. Total synthesis of azafluoranthene alkaloids: Rufescine and imeluteine. J. Org. Chem. 1984, 49, 4050.

[CrossRef]
2. Li, L.; Chen, Z.; Zhang, X.; Jia, Y. Divergent Strategy in Natural Product Total Synthesis. Chem. Rev. 2018, 118, 3752–3832.

[CrossRef] [PubMed]
3. Shimokawa, J. Divergent strategy in natural product total synthesis. Tetrahedron Lett. 2014, 55, 6156–6162. [CrossRef]
4. Njardarson, J.T.; Gaul, C.; Shan, D.; Huang, X.-Y.; Danishefsky, S.J. Discovery of Potent Cell Migration Inhibitors through Total

Synthesis: Lessons from Structure-Activity Studies of (+)-Migrastatin. J. Am. Chem. Soc. 2004, 126, 1038–1040. [CrossRef]
5. Jones, S.B.; Simmons, B.; Mastracchio, A.; MacMillan, D.W.C. Collective synthesis of natural products by means of organocascade

catalysis. Nature 2011, 475, 183–188. [CrossRef]
6. Katoh, T. Total synthesis of decahydrobenzo[d]xanthene sesquiterpenoids aureol, strongylin A, and stachyflin. Development of a

new strategy for the construction of a common tetracyclic core structure. Heterocycles 2013, 87, 2199–2224. [CrossRef]
7. Zong, Y.; Wang, W.; Xu, T. Total synthesis of bioactive marine meroterpenoids: The cases of liphagal and frondosin B. Mar. Drugs

2018, 16, 115. [CrossRef]
8. Wildermuth, R.; Speck, K.; Haut, F.-L.; Mayer, P.; Karge, B.; Broenstrup, M.; Magauer, T. A modular synthesis of tetracyclic

meroterpenoid antibiotics. Nat. Commun. 2017, 8, 1–9. [CrossRef] [PubMed]
9. Djura, P.; Stierle, D.B.; Sullivan, B.; Faulkner, D.J.; Arnold, E.V.; Clardy, J. Some metabolites of the marine sponges Smenospongia

aurea and Smenospongia (. ident. Polyfibrospongia) echina. J. Org. Chem. 1980, 45, 1435. [CrossRef]
10. Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Magno, S.; Pansini, M. Chemistry of Verongida sponges. 10. Secondary metabolite

composition of the Caribbean sponge Verongula gigantea. J. Nat. Prod. 2000, 63, 263–266. [CrossRef]
11. Wright, A.E.; Rueth, S.A.; Cross, S.S. An antiviral sesquiterpene hydroquinone from the marine sponge Strongylophora hartmani. J.

Nat. Prod. 1991, 54, 1108. [CrossRef]
12. Coval, S.J.; Conover, M.A.; Mierzwa, R.; King, A.; Puar, M.S.; Phife, D.W.; Pai, J.-K.; Burrier, R.E.; Ahn, H.-S.; Boykow, G.C.; et al.

Wiedendiol-A and -B, cholesteryl ester transfer protein inhibitors from the marine sponge Xestospongia wiedenmayeri. Bioorg.
Med. Chem. Lett. 1995, 5, 605–610. [CrossRef]

13. Bourguet-Kondracki, M.L.; Martin, M.T.; Guyot, M. Smenoqualone, a novel sesquiterpenoid from the marine sponge Smenospongia
sp. Tetrahedron Lett. 1992, 33, 8079. [CrossRef]

14. Utkina, N.K.; Denisenko, V.A.; Scholokova, O.V.; Makarchenko, A.E. Determination of the Absolute Stereochemistry of Cyclos-
menospongine. J. Nat. Prod. 2003, 66, 1263–1265. [CrossRef] [PubMed]

15. Urban, S.; Capon, R.J. Marine sesquiterpene quinones and hydroquinones: Acid-catalyzed rearrangements and stereochemical
investigations. Aust. J. Chem. 1994, 47, 1023–1029. [CrossRef]

16. Speck, K.; Wildermuth, R.; Magauer, T. Convergent Assembly of the Tetracyclic Meroterpenoid (-)-Cyclosmenospongine by a
Non-Biomimetic Polyene Cyclization. Angew. Chem. Int. Ed. 2016, 55, 14131–14135. [CrossRef] [PubMed]

http://doi.org/10.1021/jo00195a035
http://doi.org/10.1021/acs.chemrev.7b00653
http://www.ncbi.nlm.nih.gov/pubmed/29516724
http://doi.org/10.1016/j.tetlet.2014.09.078
http://doi.org/10.1021/ja039714a
http://doi.org/10.1038/nature10232
http://doi.org/10.3987/REV-13-779
http://doi.org/10.3390/md16040115
http://doi.org/10.1038/s41467-017-02061-7
http://www.ncbi.nlm.nih.gov/pubmed/29234008
http://doi.org/10.1021/jo01296a019
http://doi.org/10.1021/np990343e
http://doi.org/10.1021/np50076a032
http://doi.org/10.1016/0960-894X(95)00081-4
http://doi.org/10.1016/S0040-4039(00)74722-8
http://doi.org/10.1021/np030115r
http://www.ncbi.nlm.nih.gov/pubmed/14510613
http://doi.org/10.1071/CH9941023
http://doi.org/10.1002/anie.201608040
http://www.ncbi.nlm.nih.gov/pubmed/27730742


Mar. Drugs 2021, 19, 273 15 of 15

17. Speck, K.; Magauer, T. Evolution of a Polyene Cyclization Cascade for the Total Synthesis of (-)-Cyclosmenospongine. Chem. Eur.
J. 2017, 23, 1157–1165. [CrossRef]

18. Prokof’eva, N.G.; Utkina, N.K.; Chaikina, E.L.; Makarchenko, A.E. Biological activities of marine sesquiterpenoid quinones:
Structure-activity relationships in cytotoxic and hemolytic assays. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2004, 139B,
169–173. [CrossRef] [PubMed]

19. Wright, A.E.; Cross, S.S.; Burres, N.S.; Koehn, F. Antiviral and Antitumor Terpene Hydroquinones from Marine Sponge and
Methods of Use. U.S. Patent WO9,112,250, 22 August 1991.

20. Longley, R.E.; McConnell, O.J.; Essich, E.; Harmody, D. Evaluation of marine sponge metabolites for cytotoxicity and signal
transduction activity. J. Nat. Prod. 1993, 56, 915. [CrossRef]

21. Lakshmi, V.; Gunasekera, S.P.; Schmitz, F.J.; Ji, X.; Van der Helm, D. Acid-catalyzed rearrangement of arenerol. J. Org. Chem. 1990,
55, 4709. [CrossRef]

22. Nakamura, M.; Suzuki, A.; Nakatani, M.; Fuchikami, T.; Inoue, M.; Katoh, T. An efficient synthesis of (+)-aureol via boron
trifluoride etherate-promoted rearrangement of (+)-arenarol. Tetrahedron Lett. 2002, 43, 6929–6932. [CrossRef]

23. Suzuki, A.; Nakatani, M.; Nakamura, M.; Kawaguchi, K.; Inoue, M.; Katoh, T. Highly improved synthesis of (+)-aureol via
(-)-neoavarone and (-)-neoavarol, by employing salcomine oxidation and acid-induced rearrangement/cyclization strategy.
Synlett 2003, 329–332. [CrossRef]

24. Sakurai, J.; Oguchi, T.; Watanabe, K.; Abe, H.; Kanno, S.-I.; Ishikawa, M.; Katoh, T. Highly efficient total synthesis of the marine
natural products (+)-avarone, (+)-avarol, (-)-neoavarone, (-)-neoavarol and (+)-aureol. Chem. Eur. J. 2008, 14, 829–837. [CrossRef]
[PubMed]

25. Fukuyama, T.; Lin, S.C.; Li, L. Facile reduction of ethyl thiol esters to aldehydes: Application to a total synthesis of (+)-
neothramycin A methyl ether. J. Am. Chem. Soc. 1990, 112, 7050. [CrossRef]

26. Yoon, T.; Danishefsky, S.J.; de Gala, S. A Concise Total Synthesis of (±)-Mamanuthaquinone by Using an exo-Diels–Alder Reaction.
Angew. Chem. Int. Ed. Engl. 1994, 33, 853–855. [CrossRef]

27. Buter, J.; Heijnen, D.; Wan, I.C.; Bickelhaupt, F.M.; Young, D.C.; Otten, E.; Moody, D.B.; Minnaard, A.J. Stereoselective Synthesis
of 1-Tuberculosinyl Adenosine; a Virulence Factor of Mycobacterium tuberculosis. J. Org. Chem. 2016, 81, 6686–6696. [CrossRef]

28. Marcos, I.S.; Conde, A.; Moro, R.F.; Basabe, P.; Díez, D.; Urones, J.G. Synthesis of quinone/hydroquinone sesquiterpenes.
Tetrahedron 2010, 66, 8280–8290. [CrossRef]

29. Marcos, I.S.; Hernández, F.A.; Sexmero, M.J.; Díez, D.; Basabe, P.; Pedrero, A.B.; García, N.; Sanz, F.; Urones, J.G. Synthesis and
absolute configuration of (-)-chettaphanin II. Tetrahedron Lett. 2002, 43, 1243–1245. [CrossRef]

30. Marcos, I.S.; Hernández, F.A.; Sexmero, M.J.; Díez, D.; Basabe, P.; Pedrero, A.B.; García, N.; Urones, J.G. Synthesis and absolute
configuration of (-)-chettaphanin I and (-)-chettaphanin II. Tetrahedron 2003, 59, 685–694. [CrossRef]

31. Ling, T.; Poupon, E.; Rueden, E.J.; Kim, S.H.; Theodorakis, E.A. Unified Synthesis of Quinone Sesquiterpenes Based on a Radical
Decarboxylation and Quinone Addition Reaction. J. Am. Chem. Soc. 2002, 124, 12261–12267. [CrossRef]

32. Ling, T.; Xiang, A.X.; Theodorakis, E.A. Enantioselective total synthesis of avarol and avarone. Angew. Chem. Int. Ed. 1999, 38,
3089–3091. [CrossRef]

33. Kuan, K.K.W.; Pepper, H.P.; Bloch, W.M.; George, J.H. Total Synthesis of (+)-Aureol. Org. Lett. 2012, 14, 4710–4713. [CrossRef]
[PubMed]

34. Sharpless, K.B.; Young, M.W. Olefin synthesis. Rate enhancement of the elimination of alkyl aryl selenoxides by electron-
withdrawing substituents. J. Org. Chem. 1975, 40, 947. [CrossRef]

35. Majetich, G.; Grieco, P.A.; Nishizawa, M. Total synthesis of β-elemenone. J. Org. Chem. 1977, 42, 2327. [CrossRef]
36. Wang, J.-L.; Li, H.-J.; Wang, M.; Wang, J.-H.; Wu, Y.-C. A six-step synthetic approach to marine natural product (+)-aureol.

Tetrahedron Lett. 2018, 59, 945–948. [CrossRef]
37. Concepción, J.I.; Francisco, C.G.; Freire, R.; Hernández, R.; Salazar, J.A.; Suárez, E. Iodosobenzene diacetate, an efficient reagent

for the oxidative decarboxylation of carboxylic acids. J. Org. Chem. 1986, 51, 402. [CrossRef]
38. Rosales, A.; Muñoz-Bascón, J.; Roldán-Molina, E.; Rivas-Bascón, N.; Padial, N.M.; Rodríguez-Maecker, R.; Rodríguez-García, I.;

Oltra, J.E. Synthesis of (±)-Aureol by Bioinspired Rearrangements. J. Org. Chem. 2015, 80, 1866–1870. [CrossRef]
39. Rosales Martínez, A.; Enríquez, L.; Jaraíz, M.; Pozo Morales, L.; Rodríguez-García, I.; Díaz Ojeda, E. A Concise Route for the

Synthesis of Tetracyclic Meroterpenoids: (±)-Aureol Preparation and Mechanistic Interpretation. Mar. Drugs 2020, 18, 441.
[CrossRef]

40. Rosales Martínez, A.; Pozo Morales, L.; Díaz Ojeda, E.; Castro Rodríguez, M.; Rodríguez-García, I. The Proven Versatility of
Cp2TiCl. J. Org. Chem. 2021, 86, 1311–1329. [CrossRef]

http://doi.org/10.1002/chem.201605029
http://doi.org/10.1016/j.cbpc.2004.06.017
http://www.ncbi.nlm.nih.gov/pubmed/15465662
http://doi.org/10.1021/np50096a015
http://doi.org/10.1021/jo00302a042
http://doi.org/10.1016/S0040-4039(02)01627-1
http://doi.org/10.1002/chin.200326190
http://doi.org/10.1002/chem.200701386
http://www.ncbi.nlm.nih.gov/pubmed/17992684
http://doi.org/10.1021/ja00175a043
http://doi.org/10.1002/anie.199408531
http://doi.org/10.1021/acs.joc.6b01332
http://doi.org/10.1016/j.tet.2010.08.038
http://doi.org/10.1016/S0040-4039(01)02400-5
http://doi.org/10.1016/S0040-0(02)01564-8
http://doi.org/10.1021/ja027517q
http://doi.org/10.1002/(SICI)1521-3773(19991018)38:20&lt;3089::AID-ANIE3089&gt;3.0.CO;2-W
http://doi.org/10.1021/ol301715u
http://www.ncbi.nlm.nih.gov/pubmed/22946620
http://doi.org/10.1021/jo00895a030
http://doi.org/10.1021/jo00433a030
http://doi.org/10.1016/j.tetlet.2018.01.091
http://doi.org/10.1021/jo00353a026
http://doi.org/10.1021/jo502841u
http://doi.org/10.3390/md18090441
http://doi.org/10.1021/acs.joc.0c01233

	Introduction 
	Synthesis of Aureol 
	Synthesis of Aureol from Key Intermediates 7–9 
	Capon’s Synthesis of (+)-Aureol 
	Katoh’s Synthesis of (+)-Aureol 

	Synthesis of Aureol from Key Intermediate 10 
	Synthesis of Aureol from Key Intermediate 11 
	Marcos’s Synthesis of (-)-Aureol 
	George’s Synthesis of (+)-Aureol 
	Wu’s Synthesis of (+)-Aureol 
	Rosales Martínez’s Synthesis of ()-Aureol 


	Aureol as Pluripotent Late-Stage Intermediate for the Synthesis of Tetracyclic Meroterpenoids 
	Conclusions 
	References

