Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci
Abstract
:1. Introduction
2. Results
2.1. Diversity of Wild Marine Animals Associated-Enterococci
2.2. Marine Enterococcal Genomes Harbor Diverse Biosynthetic Gene Clusters (BGCs) Coding for Antimicrobial Compounds
2.3. Diversity of Bacteriocins Genes among Wild Marine Animals-Associated Enterococci
2.4. Phylogenetic Relationship among Class II and III Bacteriocins Predicted from Wild Marine Animal-Associated Enterococcal Genomes
2.5. Detection of Genes Associated with Enhanced Enterococcal Virulence
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Genomic DNA Preparation, High-Throughput Sequencing, Assembly, and Annotation
4.3. Genome Mining for Antimicrobial Compounds
4.4. Phylogenetic Analysis
4.5. Molecular Modeling
4.6. Potential Virulence Markers
4.7. Figures Design
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wohlleben, W.; Mast, Y.; Stegmann, E.; Ziemert, N. Antibiotic Drug Discovery. Microb. Biotechnol. 2016, 9, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Willyard, C. The Drug-Resistant Bacteria that Pose the Greatest Health Threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Buonocore, F. Marine Biotechnology: Developments and Perspectives. J. Aquac. Res. Dev. 2013, 4, 9546. [Google Scholar] [CrossRef] [Green Version]
- Reen, F.J. Emerging Concepts Cromising New Horizons for Marine Biodiscovery and Synthetic Biology. Mar. Drugs 2015, 31, 2924–2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calle, F. Marine Microbiome as Source of Natural Products. Microb. Biotechnol. 2017, 10, 1293–1296. [Google Scholar] [CrossRef] [PubMed]
- Smith, D. Discovery Pipelines for Marine Resources: An Ocean of Opportunity for Biotechnology? World J. Microbiol. Biotechnol. 2019, 8, 1293–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desriac, F. Bacteriocin as Weapons in the Marine Animal-Associated Bacteria Warfare: Inventory and Potential Applications as an Aquaculture Probiotic. Mar. Drugs 2010, 25, 1153–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debbab, A.; Aly, A.H.; Lin, W.H.; Proksch, P. Bioactive Compounds from Marine Bacteria and Fungi. Microb. Biotechnol. 2010, 20, 544–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deer, T.R.; Pope, J.E.; Hanes, M.C.; McDowell, G.C. Intrathecal Therapy for Chronic Pain: A Review of Morphine and Ziconotide as Firstline Options. Pain Med. 2019, 20, 784–798. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, Y.; Fujimura, T.; Matsushita, S.; Yamamoto, Y.; Uchi, H.; Otsuka, A.; Funakoshi, T.; Miyagi, T.; Hata, H.; Gosho, M.; et al. The Efficacy of Eribulin Mesylate for Patients with Cutaneous Angiosarcoma Previously Treated with Taxane: A Multicentre Prospective Observational Study. Br. J. Dermatol. 2020, 183, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Luesch, H.; Moore, R.E.; Paul, V.J.; Mooberry, S.L.; Corbett, T.H. Isolation of Dolastatin 10 from the Marine Cyanobacterium Symploca Species VP642 and Total Stereochemistry and Biological Evaluation of Its Analogue Symplostatin 1. J. Nat. Prod. 2001, 64, 907–910. [Google Scholar] [CrossRef]
- Luesch, H.; Chanda, S.K.; Raya, R.M.; DeJesus, P.D.; Orth, A.P.; Walker, J.R.; Izpisúa Belmonte, J.C.; Schultz, P.G. A Functional Genomics Approach to the Mode of Action of Apratoxin A. Nat. Chem. Biol. 2006, 2, 158–167. [Google Scholar] [CrossRef]
- Galonić, D.P.; Barr, E.W.; Walsh, C.T.; Bollinger, J.M.; Krebs, C. Two Interconverting Fe (IV) Intermediates in Aliphatic Chlorination by the Halogenase CytC3. Nat. Chem. Biol. 2007, 3, 113–116. [Google Scholar] [CrossRef]
- Liao, L.; Lee, J.-H.; You, M.; Choi, T.J.; Park, W.; Lee, S.K.; Oh, D.-C.; Oh, K.-B.; Shin, J. Penicillipyrones A and B, Meroterpenoids from a Marine-Derived Penicillium Sp. Fungus. J. Nat. Prod. 2014, 77, 406–410. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Guerrero, A.J.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine Pharmacology in 2014–2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar. Drugs 2019, 18, 5. [Google Scholar]
- Kamada, T.; Vairappan, C.S. New Laurene-Type Sesquiterpene from Bornean Laurencia nangii. Nat. Prod. Commun. 2015, 10, 843–844. [Google Scholar] [CrossRef] [Green Version]
- Piao, M.; Hewage, S.; Han, X.; Kang, K.; Kang, H.; Lee, N.; Hyun, J. Protective Effect of Diphlorethohydroxycarmalol against Ultraviolet B Radiation-Induced DNA Damage by Inducing the Nucleotide Excision Repair System in HaCaT Human Keratinocytes. Mar. Drugs 2015, 13, 5629–5641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsueng, G.; Teisan, S.; Lam, K.S. Defined Salt Formulations for the Growth of Salinispora tropica Strain NPS21184 and the Production of Salinosporamide A (NPI-0052) and Related Analogs. Appl. Microbiol. Biotechnol. 2008, 78, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Freundlich, J.S.; Lalgondar, M.; Wei, J.-R.; Swanson, S.; Sorensen, E.J.; Rubin, E.J.; Sacchettini, J.C. The Abyssomicin C Family as in Vitro Inhibitors of Mycobacterium tuberculosis. Tuberculosis 2010, 90, 298–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyche, T.P.; Piotrowski, J.S.; Hou, Y.; Braun, D.; Deshpande, R.; McIlwain, S.; Ong, I.M.; Myers, C.L.; Guzei, I.A.; Westler, W.M.; et al. Forazoline A: Marine-Derived Polyketide with Antifungal In Vivo Efficacy. Angew. Chem. Int. Ed. 2014, 53, 11583–11586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Yang, A.; Wu, C.; Guo, P.; Proksch, P.; Lin, W. Lipid-Lowering Effects of Farnesylquinone and Related Analogues from the Marine-Derived Streptomyces nitrosporeus. Bioorg. Med. Chem. Lett. 2014, 24, 5288–5293. [Google Scholar] [CrossRef]
- Donia, M.S.; Cimermancic, P.; Schulze, C.J.; Wieland Brown, L.C.; Martin, J.; Mitreva, M.; Clardy, J.; Linington, R.G.; Fischbach, M.A. A Systematic Analysis of Biosynthetic Gene Clusters in the Human Microbiome Reveals a Common Family of Antibiotics. Cell 2014, 158, 1402–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Ravichandran, V.; Yin, Y.; Yin, J.; Zhang, Y. Natural Products from Mammalian Gut Microbiota. Trends Biotechnol. 2019, 37, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, F.; Manson, A.L.; Saavedra, J.T.; Straub, T.J.; Earl, A.M.; Gilmore, M.S. Tracing the Enterococci from Paleozoic Origins to the Hospital. Cell 2017, 169, 849–861. [Google Scholar] [CrossRef] [Green Version]
- Prichula, J.; Van Tyne, D.; Schwartzman, J.; Sant’Anna, F.H.; Pereira, R.I.; da Cunha, G.R.; Tavares, M.; Lebreton, F.; Frazzon, J.; d’Azevedo, P.A.; et al. Enterococci from Wild Magellanic Penguins (Spheniscus magellanicus) as an Indicator of Marine Ecosystem Health and Human Impact. Appl. Environ. Microbiol. 2020, 86, e01662-20. [Google Scholar] [CrossRef]
- Lebreton, F.; van Schaik, W.; Manson McGuire, A.; Godfrey, P.; Griggs, A.; Mazumdar, V.; Corander, J.; Cheng, L.; Saif, S.; Young, S.; et al. Emergence of Epidemic Multidrug-Resistant Enterococcus Faecium from Animal and Commensal Strains. mBio 2013, 4, e00534-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raven, K.E.; Reuter, S.; Reynolds, R.; Brodrick, H.J.; Russell, J.E.; Török, M.E.; Parkhill, J.; Peacock, S.J. A Decade of Genomic History for Healthcare-Associated Enterococcus faecium in the United Kingdom and Ireland. Genome Res. 2016, 26, 1388–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raven, K.E.; Reuter, S.; Gouliouris, T.; Reynolds, R.; Russell, J.E.; Brown, N.M.; Török, M.E.; Parkhill, J.; Peacock, S.J. Genome-Based Characterization of Hospital-Adapted Enterococcus faecalis Lineages. Nat. Microbiol. 2016, 1, 15033. [Google Scholar] [CrossRef] [Green Version]
- Fiore, E.; Van Tyne, D.; Gilmore, M.S. Pathogenicity of Enterococci. Microbiol. Spect. 2019, 7, 378–397. [Google Scholar]
- Brock, T.D.; Peacher, B.; Pierson, D. Survey of the Bacteriocines of Enterococci. J. Bacteriol. 1963, 86, 702–707. [Google Scholar] [CrossRef] [Green Version]
- Nes, I.F.; Diep, D.B.; Holo, H. Bacteriocin Diversity in Streptococcus and Enterococcus. J. Bacteriol. 2007, 189, 1189–1198. [Google Scholar] [CrossRef] [Green Version]
- Ness, I.F.; Diep, D.B.; Ike, Y. Enterococcal Bacteriocins and Antimicrobial Proteins that Contribute to Niche Control. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A Viable Alternative to Antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef]
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns—An Update. Front. Microbiol. 2018, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of Lactic Acid Bacteria: Extending the Family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef] [Green Version]
- Zimina, M.; Babich, O.; Prosekov, A.; Sukhikh, S.; Ivanova, S.; Shevchenko, M.; Noskova, S. Overview of Global Trends in Classification, Methods of Preparation and Application of Bacteriocins. Antibiotics 2020, 9, 553. [Google Scholar] [CrossRef] [PubMed]
- Maqueda, M.; Sánchez-Hidalgo, M.; Fernández, M.; Montalbán-López, M.; Valdivia, E.; Martínez-Bueno, M. Genetic Features of Circular Bacteriocins Produced by Gram-Positive Bacteria. FEMS Microbiol. Rev. 2008, 32, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Hoover, D.G. Bacteriocins and Their Food Applications. Compr. Rev. Food Sci. Food Saf. 2003, 2, 82–100. [Google Scholar]
- Franz, C.M.A.P.; Van Belkum, M.J.; Holzapfel, W.H.; Abriouel, H.; Gálvez, A. Diversity of Enterococcal Bacteriocins and Their Grouping in a New Classification Scheme. FEMS Microbiol. Rev. 2007, 31, 293–310. [Google Scholar] [CrossRef]
- Todorov, S.D.; Wachsman, M.B.; Knoetze, H.; Meincken, M.; Dicks, L.M.T. An Antibacterial and Antiviral Peptide Produced by Enterococcus mundtii ST4V Isolated from Soya Beans. Int. J. Antimicrob. Agents 2005, 25, 508–513. [Google Scholar] [CrossRef]
- Poeta, P.; Costa, D.; Rojo-Bezares, B.; Zarazaga, M.; Klibi, N.; Rodrigues, J.; Torres, C. Detection of Antimicrobial Activities and Bacteriocin Structural Genes in Faecal Enterococci of Wild Animals. Microbiol. Res. 2007, 162, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Comerlato, C.B.; Buboltz, J.R.; Santestevan, N.A. Antimicrobial compounds produced by Enterococcus spp. isolates from fecal samples of wild South American fur seals. J. Microbiol. Antimicrob. 2016, 8, 14–21. [Google Scholar]
- Ghomrassi, H.; Hani, K.; Chobert, J.M.; Ghrairi, T. Evaluation of Marine Bacteriocinogenic Enterococci Strains with Inhibitory Activity against Fish-Pathogenic Gram-Negative Bacteria. Dis. Aquat. Organ. 2016, 118, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Ogaki, M.B.; Rocha, K.R.; Terra, M.R.; Furlaneto, M.C.; Furlaneto-Maia, L. Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species. J. Microbiol. Biotechnol. 2016, 26, 9. [Google Scholar] [CrossRef] [Green Version]
- Phumisantiphong, U.; Siripanichgon, K.; Reamtong, O.; Diraphat, P. A Novel Bacteriocin from Enterococcus faecalis 478 Exhibits a Potent Activity against Vancomycin-Resistant Enterococci. PLoS ONE 2017, 12, e0186415. [Google Scholar] [CrossRef] [Green Version]
- Rahmeh, R. Characterization of Semipurified Enterocins Produced by Enterococcus faecium Strains Isolated from Raw Camel Milk. J. Dairy Sci. 2016, 101, 4944–4952. [Google Scholar] [CrossRef]
- Vandera, E. Approaches for Enhancing in Situ Detection of Enterocin Genes in Thermized Milk, and Selective Isolation of Enterocin-Producing Enterococcus faecium from Baird-Parker Agar. Int. J. Food Microbiol. 2018, 281, 23–31. [Google Scholar] [CrossRef]
- Zhao, X.-Q. Genome-Based Studies of Marine Microorganisms to Maximize the Diversity of Natural Products Discovery for Medical Treatments. Evid.-Based Complementary Altern. Med. 2011, 2011, 1–12. [Google Scholar] [CrossRef]
- Zhang, M.M. Using Natural Products for Drug Discovery: The Impact of the Genomics Era. Expert. Opin. Drug Discov. 2017, 12, 475–487. [Google Scholar] [CrossRef]
- Gregory, K.; Salvador, L.A.; Akbar, S.; Adaikpoh, B.I.; Stevens, D.C. Survey of Biosynthetic Gene Clusters from Sequenced Myxobacteria Reveals Unexplored Biosynthetic Potential. Microorganisms 2019, 7, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekurova, O.N.; Schneider, O.; Zotchev, S.B. Novel Bioactive Natural Products from Bacteria via Bioprospecting, Genome Mining and Metabolic Engineering. Microb. Biotechnol. 2019, 12, 828–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, B.; Liu, H.; Zheng, J.; Xie, C.; Gao, Y.; Dai, D.; Peng, D.; Ruan, L.; Chen, H.; Sun, M. In Silico Analysis Highlights the Diversity and Novelty of Circular Bacteriocins in Sequenced Microbial Genomes. Msystems 2020, 5, e00047-20. [Google Scholar] [CrossRef]
- Bonacina, J.; Suárez, N.; Hormigo, R.; Fadda, S.; Lechner, M.; Saavedra, L. A Genomic View of Food-Related and Probiotic Enterococcus Strains. DNA Res. 2016, 24, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Suárez, N.E.; Bonacina, J.; Hebert, E.M.; Saavedra, M.L. Genome Mining and Transcriptional Analysis of Bacteriocin Genes in Enterococcus faecium CRL1879. J. Data Min. Genom. Proteom. 2015, 6, 1–8. [Google Scholar]
- Vezina, B.; Rehm, B.H.A.; Smith, A.T. Bioinformatic Prospecting and Phylogenetic Analysis Reveals 94 Undescribed Circular Bacteriocins and Key Motifs. BMC Microbiol. 2020, 20, 1–16. [Google Scholar] [CrossRef]
- Blin, K. AntiSMASH 5.0: Updates to the Secondary Metabolite Genome Mining Pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef] [Green Version]
- van Heel, A.J.; de Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A User-Friendly Web Server to Thoroughly Mine RiPPs and Bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rosselló-Móra, R. Shifting the Genomic Gold Standard for the Prokaryotic Species Definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [Green Version]
- Coburn, P.S. Enterococcus faecalis Senses Target Cells and in Response Expresses Cytolysin. Science 2004, 306, 2270–2272. [Google Scholar] [CrossRef] [PubMed]
- Van Tyne, D.; Martin, M.; Gilmore, M. Structure, Function, and Biology of the Enterococcus faecalis Cytolysin. Toxins 2013, 5, 895–911. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein Structure and Function Prediction. Nat. Methods 2015, 12, 7–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. I-TASSER Server for Protein 3D Structure Prediction. BMC Bioinf. 2008, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.L.; Godfrey, P.; Griggs, A.; Kos, V.N.; Zucker, J.; Desjardins, C.; Cerqueira, G.; Gevers, D.; Walker, S.; Wortman, J.; et al. Comparative Genomics of Enterococci: Variation in Enterococcus faecalis, Clade Structure in E. faecium, and Defining Characteristics of E. gallinarum and E. casseliflavus. mBio 2012, 3, e00318-11. [Google Scholar] [CrossRef] [Green Version]
- Jennes, W.; Dicks, L.M.T.; Verwoerd, D.J. Enterocin 012, a Bacteriocin Produced by Enterococcus gallinarum Isolated from the Intestinal Tract of Ostrich. J. Appl. Microbiol. Biochem. 2000, 88, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ermolenko, E.I. Anti–Influenza Activity of Enterocin B In Vitro and Protective Effect of Bacteriocinogenic Enterococcal Probiotic Strain on Influenza Infection in Mouse Model. Probiotics Antimicrob. Proteins 2019, 11, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Al-Fakharany, O.M.; Aziz, A.A.A.; El-Banna, T.E.-S.; Sonbol, F.I. Immunomodulatory and Anticancer Activities of Enterocin Oe-342 Produced by Enterococcus faecalis Isolated from Stool. J. Clin. Cell. Immunol. 2018, 9, 1000558. [Google Scholar] [CrossRef]
- Ankaiah, D.; Palanichamy, E.; Antonyraj, C.B.; Ayyanna, R.; Perumal, V.; Ahamed, S.I.B.; Arul, V. Cloning, Overexpression, Purification of Bacteriocin Enterocin-B and Structural Analysis, Interaction Determination of Enterocin-A, B against Pathogenic Bacteria and Human Cancer Cells. Int. J. Biol. Macromol. 2018, 116, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Pirkhezranian, Z.; Tanhaeian, A.; Mirzaii, M.; Sekhavati, M.H. Expression of Enterocin-P in HEK Platform: Evaluation of Its Cytotoxic Effects on Cancer Cell Lines and Its Potency to Interact with Cell-Surface Glycosaminoglycan by Molecular Modeling. Int. J. Pept. Res. Ther. 2020, 26, 1503–1512. [Google Scholar] [CrossRef]
- Caly, D.L. The Safe Enterocin DD14 Is a Leaderless Two-Peptide Bacteriocin with Anti-Clostridium perfringens Activity. J. Antimicrob. Agents 2017, 49, 282–289. [Google Scholar] [CrossRef]
- Mathur, H.; Rea, M.; Cotter, P.; Hill, C.; Ross, R. The Sactibiotic Subclass of Bacteriocins: An Update. CPPS 2015, 16, 549–558. [Google Scholar] [CrossRef]
- Bédard, F.; Hammami, R.; Zirah, S.; Rebuffat, S.; Fliss, I.; Biron, E. Synthesis, Antimicrobial Activity and Conformational Analysis of the Class IIa Bacteriocin Pediocin PA-1 and Analogs Thereof. Sci. Rep. 2018, 8, 9029. [Google Scholar] [CrossRef] [Green Version]
- Bédard, F.; Biron, E. Recent Progress in the Chemical Synthesis of Class II and S-Glycosylated Bacteriocins. Front. Microbiol. 2018, 9, 1048. [Google Scholar] [CrossRef] [PubMed]
- Lander, A.J.; Li, X.; Jin, Y.; Luk, L.Y. Total Chemical Synthesis of Aureocin A53, Lacticin Q and Their Enantiomeric Counterparts. ChemRxiv. Preprint. 2020. [Google Scholar] [CrossRef]
- Tanhaeian, A.; Damavandi, M.S.; Mansury, D.; Ghaznini, K. Expression in Eukaryotic Cells and Purification of Synthetic Gene Encoding Enterocin P: A Bacteriocin with Broad Antimicrobial Spectrum. AMB Expr. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cintas, L.M.; Casaus, P.; Håvarstein, L.S.; Hernández, P.E.; Nes, I.F. Biochemical and Genetic Characterization of Enterocin P, a Novel Sec-Dependent Bacteriocin from Enterococcus faecium P13 with a Broad Antimicrobial Spectrum. Appl. Environ. Microbiol. 1997, 63, 4321–4330. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, T.; Nes, I.F.; Holo, H. Enterolysin A, a Cell Wall-Degrading Bacteriocin from Enterococcus faecalis LMG 2333. AEM 2003, 69, 2975–2984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, H.; Flint, S.H.; Yu, P.-L. Determination of the Mode of Action of Enterolysin A, Produced by Enterococcus faecalis B9510. J. Appl. Microbiol. 2013, 115, 484–494. [Google Scholar] [CrossRef]
- Tran, P.N.; Yen, M.-R.; Chiang, C.-Y.; Lin, H.-C.; Chen, P.-Y. Detecting and Prioritizing Biosynthetic Gene Clusters for Bioactive Compounds in Bacteria and Fungi. Appl. Microbiol. Biotechnol. 2019, 103, 3277–3287. [Google Scholar] [CrossRef] [Green Version]
- Chu, J.; Vila-Farres, X.; Inoyama, D.; Ternei, M.; Cohen, L.J.; Gordon, E.A.; Reddy, B.V.B.; Charlop-Powers, Z.; Zebroski, H.A.; Gallardo-Macias, R.; et al. Discovery of MRSA Active Antibiotics Using Primary Sequence from the Human Microbiome. Nat. Chem. Biol. 2016, 12, 1004–1006. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [Green Version]
- Basalla, J.; Chatterjee, P.; Burgess, E.; Khan, M.; Verbrugge, E.; Wiegmann, D.D.; LiPuma, J.J.; Wildschutte, H. Loci Encoding Compounds Potentially Active against Drug-Resistant Pathogens amidst a Decreasing Pool of Novel Antibiotics. Appl. Environ. Microbiol. 2019, 85, e01438-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappiello, F.; Loffredo, M.R.; Del Plato, C.; Cammarone, S.; Casciaro, B.; Quaglio, D.; Mangoni, M.L.; Botta, B.; Ghirga, F. The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics 2020, 9, 325. [Google Scholar] [CrossRef]
- Liang, L.; Haltli, B.; Marchbank, D.H.; Fischer, M.; Kirby, C.W.; Correa, H.; Clark, T.N.; Gray, C.A.; Kerr, R.G. Discovery of an Isothiazolinone-Containing Antitubercular Natural Product Levesquamide. J. Org. Chem. 2020, 85, 6450–6462. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, Z.; Guo, H.; Liu, L.; Chen, S. A Review of Terpenes from Marine-Derived Fungi: 2015–2019. Mar. Drugs 2020, 18, 321. [Google Scholar] [CrossRef] [PubMed]
- Brahmkshatriya, P.P.; Brahmkshatriya, P.S. Terpenes: Chemistry, Biological Role, and Therapeutic Applications. In Natural Products; Ramawat, K.G., Mérillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2665–2691. [Google Scholar]
- Chen, R.; Wong, H.; Burns, B. New Approaches to Detect Biosynthetic Gene Clusters in the Environment. Medicines 2019, 6, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziko, L.; Adel, M.; Malash, M.N.; Siam, R. Insights into Red Sea Brine Pool Specialized Metabolism Gene Clusters Encoding Potential Metabolites for Biotechnological Applications and Extremophile Survival. Mar. Drugs 2019, 17, 273. [Google Scholar] [CrossRef] [Green Version]
- Beukers, A.G. Comparative Genomics of Enterococcus Spp. Isolated from Bovine Feces. BMC Microbiol. 2017, 17, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Román, L.; Padilla, D.; Acosta, F.; Sorroza, L.; Fátima, E.; Déniz, S.; Grasso, V.; Bravo, J.; Real, F. The Effect of Probiotic Enterococcus gallinarum L-1 on the Innate Immune Parameters of Outstanding Species to Marine Aquaculture. J. Appl. Anim. Res. 2015, 43, 177–183. [Google Scholar] [CrossRef]
- Safari, R.; Adel, M.; Lazado, C.C.; Caipang, C.M.A.; Dadar, M. Host-Derived Probiotics Enterococcus casseliflavus Improves Resistance against Streptococcus iniae Infection in Rainbow Trout (Oncorhynchus mykiss) via Immunomodulation. Fish Shellfish Immunol. 2016, 52, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Ringø, E.; Hoseinifar, S.H.; Ghosh, K.; Doan, H.V.; Beck, B.R.; Song, S.K. Lactic Acid Bacteria in Finfish—An Update. Front. Microbiol. 2018, 9, 1818. [Google Scholar] [CrossRef]
- Rubner-Institute, M. Enterococci as Probiotics and Their Implications in Food Safety. Int. J. Food Microbiol. 2001, 151, 125–140. [Google Scholar]
- Huys, G.; Botteldoorn, N.; Delvigne, F.; De Vuyst, L.; Heyndrickx, M.; Pot, B.; Dubois, J.; Daube, G. Microbial Characterization of Probiotics—Advisory Report of the Working Group “8651 Probiotics” of the Belgian Superior Health Council (SHC). Mol. Nutr. Food Res. 2013, 57, 1479–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, J.P. Probiotic genomes: Sequencing and annotation in the past decade. Int. J. Pharm. Sci. Res. 2018, 9, 1351–1362. [Google Scholar]
- Donia, M.S.; Fischbach, M.A. Small Molecules from the Human Microbiota. Science 2016, 349, 1254766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashempour-Baltork, F.; Hosseini, H.; Shojaee-Aliabadi, S.; Torbati, M.; Alizadeh, A.M.; Alizadeh, M. Drug Resistance and the Prevention Strategies in Food Borne Bacteria: An Update Review. Adv. Pharm. Bull. 2019, 9, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Prichula, J.; Pereira, R.I.; Wachholz, G.R.; Cardoso, L.A.; Tolfo, N.C.C.; Santestevan, N.A.; Medeiros, A.W.; Tavares, M.; Frazzon, J.; d’Azevedo, P.A.; et al. Resistance to Antimicrobial Agents among Enterococci Isolated from Fecal Samples of Wild Marine Species in the Southern Coast of Brazil. Mar. Pollut. Bull. 2016, 105, 51–57. [Google Scholar] [CrossRef]
- Santestevan, N.A. Antimicrobial Resistance and Virulence Factor Gene Profiles of Enterococcus Spp. Isolates from Wild Arctocephalus australis (South American Fur Seal) and Arctocephalus tropicalis (Subantarctic Fur Seal). World J. Microbiol. Biotechnol. 2015, 31, 1935–1946. [Google Scholar] [CrossRef]
- Haft, D.H.; DiCuccio, M.; Badretdin, A.; Brover, V.; Chetvernin, V.; O’Neill, K.; Li, W.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; et al. RefSeq: An Update on Prokaryotic Genome Annotation and Curation. Nucleic Acids Res. 2018, 46, D851–D860. [Google Scholar] [CrossRef]
- Richter, M.; Rossello, R.J. Species WS: A Web Server for Prokaryotic Species Circumscription Based on Pairwise Genome Comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Kuma, K.; Toh, H.; Miyata, T. MAFFT Version 5: Improvement in Accuracy of Multiple Sequence Alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Sela, I.; Ashkenazy, H.; Katoh, K.; Pupko, T. GUIDANCE 2: Accurate Detection of Unreliable Alignment Regions Accounting for the Uncertainty of Multiple Parameters. Nucleic Acids Res. 2015, 43, W7–W14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, T.; Vingron, M. Modeling Amino Acid Replacement. J. Comput. Biol. 2000, 7, 761–776. [Google Scholar] [CrossRef]
- Lefort, V.; Longueville, J.-E.; Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 2017, 34, 2422–2424. [Google Scholar] [CrossRef] [Green Version]
- Anisimova, M.; Gascuel, O. Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative. Syst. Biol. 2006, 55, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar]
- Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v4: Recent Updates and New Developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and Model-Centric Curation of the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemoth. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia Coli. J. Clin. Microb. 2014, 52, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Bostock, M.; Ogievetsky, V.; Heer, J. D3 Data-Driven Documents. IEEE Trans. Visual. Comput. Graph. 2011, 17, 2301–2309. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 18 December 2019).
Animal | Common Name | Scientific Name | Age 1 | Code 2 | Collection Date | Location | Enterococci Genomes 3 | Species Identification (ANI 5) | Collection from |
---|---|---|---|---|---|---|---|---|---|
Sea turtles | green turtle | Chelonia mydas | Y | 2 | 29-May-13 | Cidreira | GT3-2 | E. faecalis (98.38) | Prichula et al. (2016) Prichula et al. (2020) |
green turtle | Chelonia mydas | Y | 1 | 25-Apr-14 | Tramandaií | GT6-1 | E. faecalis (98.53) | ||
hawksbill turtle | Eretmochelys imbricata | Y | 1 | 23-Dec-12 | Tramandaií | HT1-3 | E. casseliflavus (98.56) | ||
Seabirds | Magellanic penguin | Spheniscus magellanicus | Y | 1 | 2-Nov-12 | Cidreira | MP1-1 | E. hirae (98.36) | |
MP1-2 | E. hirae (98.37) | ||||||||
MP1-4 | E. hirae (99.34) | ||||||||
MP1-5 | E. hirae (98.68) | ||||||||
Magellanic penguin | Spheniscus magellanicus | Y | 1 | 13-Nov-12 | Xangri-laí | MP2-6 4 | E. faecalis (98.55) | ||
Magellanic penguin | Spheniscus magellanicus | Y | 2 | 27-Jul-13 | Cidreira | MP5-1 4 | E. faecalis (98.54) | ||
Magellanic penguin | Spheniscus magellanicus | Y | 1 | 19-Sep-13 | Imbeí | MP7-18 | E. mundtii (97.04) | ||
Magellanic penguin | Spheniscus magellanicus | Y | 1 | 14-Oct-13 | Cidreira | MP8-1 4 | E. faecalis (98.52) | ||
MP8-17 4 | E. faecalis (98.67) | ||||||||
Magellanic penguin | Spheniscus magellanicus | Y | 1 | 16-Oct-13 | Cidreira | MP9-10 4 | E. faecalis (98.52) | ||
Magellanic penguin | Spheniscus magellanicus | Y | 1 | 23-Dec-13 | Torres | MP10-1 | E. lactis (98.92) | ||
snowy-crowned tern | Sterna trudeaui | A | 2 | 4-Dec-13 | Arroio do Sal | ST1-20 | E. faecalis (98.63) | ||
Marine Mammals | dwarf minke whale | Balaenoptera acutorostrata | Y | 2 | 21-Jun-13 | Tramandaií | DMW1-1 | E. hirae (98.09) | |
Risso’s dolphin | Grampus griseus | A | 2 | 4-Jul-13 | Balneaírio Pinhal | RD1-1 | E. faecalis (98.71) | ||
South American fur seal | Arctocephalus australis | - | 2 | 2-Aug-12 | Torres | B9 | E. faecalis (98.81) | Santestevan et al. (2015) | |
South American fur seal | Arctocephalus australis | A | 2 | 2-Aug-12 | Xangri-laí | C7 | E. hirae (98.67) | ||
South American fur seal | Arctocephalus australis | A | 2 | 12-Jul-12 | Palmares do Sul | J2 | E. casseliflavus (98.56) | ||
J4 | E. casseliflavus (98.57) | ||||||||
South American fur seal | Arctocephalus australis | - | 2 | 21-Jul-12 | Tramandaií | L8 | E. avium (98.06) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prichula, J.; Primon-Barros, M.; Luz, R.C.Z.; Castro, Í.M.S.; Paim, T.G.S.; Tavares, M.; Ligabue-Braun, R.; d’Azevedo, P.A.; Frazzon, J.; Frazzon, A.P.G.; et al. Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci. Mar. Drugs 2021, 19, 328. https://doi.org/10.3390/md19060328
Prichula J, Primon-Barros M, Luz RCZ, Castro ÍMS, Paim TGS, Tavares M, Ligabue-Braun R, d’Azevedo PA, Frazzon J, Frazzon APG, et al. Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci. Marine Drugs. 2021; 19(6):328. https://doi.org/10.3390/md19060328
Chicago/Turabian StylePrichula, Janira, Muriel Primon-Barros, Romeu C. Z. Luz, Ícaro M. S. Castro, Thiago G. S. Paim, Maurício Tavares, Rodrigo Ligabue-Braun, Pedro A. d’Azevedo, Jeverson Frazzon, Ana P. G. Frazzon, and et al. 2021. "Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci" Marine Drugs 19, no. 6: 328. https://doi.org/10.3390/md19060328
APA StylePrichula, J., Primon-Barros, M., Luz, R. C. Z., Castro, Í. M. S., Paim, T. G. S., Tavares, M., Ligabue-Braun, R., d’Azevedo, P. A., Frazzon, J., Frazzon, A. P. G., Seixas, A., & Gilmore, M. S. (2021). Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci. Marine Drugs, 19(6), 328. https://doi.org/10.3390/md19060328