The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Field Sampling
4.3. Fatty Acid Analysis
4.4. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shumway, S.E. Shellfish Aquaculture and the Environment; Wiley-Blackwell: Oxford, UK, 2011. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2018 Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Gibbs, M.T. Sustainability performance indicators for suspended bivalve aquaculture activities. Ecol. Indic. 2007, 7, 94–107. [Google Scholar] [CrossRef]
- Tan, K.; Ma, H.; Li, S. Bivalves as future source of sustainable natural omega-3 polyunsaturated fatty acids. Food Chem. 2020, 311, 125907. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 1991, 54, 438–463. [Google Scholar] [CrossRef] [PubMed]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Arts, M.T.; Ackman, R.G.; Holub, B.J. “Essential fatty acids” in aquatic ecosystems: A crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 2001, 58, 122–137. [Google Scholar] [CrossRef]
- Harwood, J.L. Algae: Critical sources of very long-chain polyunsaturated fatty acids. Biomolecules 2019, 9, 708. [Google Scholar] [CrossRef] [Green Version]
- Salem, N., Jr.; Eggersdorfer, M. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition? Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 147–154. [Google Scholar] [CrossRef]
- Adams, C.M.; Shumway, S.E.; Whitlatch, R.B.; Getchis, T. Biofouling in marine molluscan shellfish aquaculture: A survey assessing the business and economic implications of mitigation. J. World Aquac. Soc. 2011, 42, 242–252. [Google Scholar] [CrossRef]
- Fitridge, I.; Dempster, T.; Guenther, J.; de Nys, R. The impact and control of biofouling in marine aquaculture: A review. Biofouling 2012, 28, 649–669. [Google Scholar] [CrossRef]
- Lodeiros, C.J.; Himmelman, J.H. Influence of fouling on the growth and survival of the tropical scallop, Euvola (Pecten) ziczac (L. 1758) in suspended culture. Aquac. Res. 1996, 27, 749–756. [Google Scholar] [CrossRef]
- Taylor, J.J.; Southgate, P.C.; Rose, R.A. Fouling animals and their effect on the growth of silver-lip pearl oysters, Pinctada maxima (Jameson) in suspended culture. Aquaculture 1997, 153, 31–40. [Google Scholar] [CrossRef]
- Kripa, V.; Mohamed, K.S.; Velayudhan, T.S. Seasonal fouling stress on the farmed pearl oyster, Pinctada fucata, from southeastern Arabian Sea. J. World Aquac. Soc. 2012, 43, 514–525. [Google Scholar] [CrossRef]
- Claereboudt, M.; Bureau, D.; Côté, J.; Himmelman, J.H. Fouling development and its effect on the growth of juvenile giant scallops (Placopecten magellanicus) in suspended culture. Aquaculture 1994, 121, 327–342. [Google Scholar] [CrossRef]
- Lodeiros, C.J.M.; Himmelman, J.H. Identification of environmental factors affecting growth and survival of the tropical scallop Euvola (Pecten) ziczac in suspended culture in the Golfo de Cariaco, Venezuela. Aquaculture 2000, 182, 91–114. [Google Scholar] [CrossRef]
- Filgueira, R.; Grant, J. A Box Model for ecosystem-level management of mussel culture carrying capacity in a coastal bay. Ecosystems 2009, 12, 1222–1233. [Google Scholar] [CrossRef]
- Filgueira, R.; Guyondet, T.; Comeau, L.A.; Grant, J. A fully-spatial ecosystem-DEB model of oyster (Crassostrea virginica) carrying capacity in the Richibucto Estuary, Eastern Canada. J. Mar. Syst. 2014, 136, 42–54. [Google Scholar] [CrossRef]
- Daigle, R.M.; Herbinger, C.M. Ecological interactions between the vase tunicate (Ciona intestinalis) and the farmed blue mussel (Mytilus edulis) in Nova Scotia, Canada. Aquat. Invasions 2009, 4, 177–187. [Google Scholar] [CrossRef]
- Qi, H.; Song, K.; Li, C.; Wang, W.; Li, B.; Li, L.; Zhang, G. Construction and evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas). PLoS ONE 2017, 12, e0174007. [Google Scholar] [CrossRef]
- Alagarswami, K.; Chellam, A. On fouling and boring organisms and mortality of pearl oysters in the farm at Veppalodai, Gulf of Mannar. Indian J. Fish. 1976, 23, 10–22. [Google Scholar]
- Rodriguez, L.F.; Ibarra-Obando, S.E. Cover and colonization of commercial oyster (Crassostrea gigas) shells by fouling organisms in San Quintin Bay, Mexico. J. Shellfish Res. 2008, 27, 337–343. [Google Scholar] [CrossRef]
- Arakawa, K.Y. Competitors and fouling organisms in the hanging culture of the Pacific oyster, Crassostrea gigas (Thunberg). Mar. Behav. Physiol. 1990, 17, 67–94. [Google Scholar] [CrossRef]
- Lawrence, D.R.; Scott, G.I. The determination and use of condition index of oysters. Estuaries 1982, 5, 23–27. [Google Scholar] [CrossRef]
- Sato, S.; Takeda, T. Studies on the organisms attaching to raft cultured oysters. I. On the extermination of the mussels (Mytilus edulis L.). Bull. Tohoku Reg. Fish. Res. Lab. 1952, 1, 63–67. [Google Scholar]
- Fuzita, S.; Fujita, T.; Ito, M. On mussels, Mytilus edulis, attached to the oyster rafts in Miyako Bay-II. Aquac. Sci. 1996, 14, 47–50. (In Japanese) [Google Scholar]
- Sato, H. Elimination of purple sea mussel in oyster cultivation. Bull. Fukuoka Fish. Mar. Technol. Res. Cent. 1999, 9, 57–60. (In Japanese) [Google Scholar]
- Mazouni, N.; Gaertner, J.C.; Deslous-Paoli, J.M. Composition of biofouling communities on suspended oyster cultures: An in situ study of their interactions with the water column. Mar. Ecol. Prog. Ser. 2001, 214, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Royer, J.; Ropert, M.; Mathieu, M.; Costil, K. Presence of spionid worms and other epibionts in Pacific oysters (Crassostrea gigas) cultured in Normandy, France. Aquaculture 2006, 253, 461–474. [Google Scholar] [CrossRef]
- Lacoste, E.; Gaertner-Mazouni, N. Biofouling impact on production and ecosystem functioning: A review for bivalve aquaculture. Rev. Aquac. 2015, 7, 187–196. [Google Scholar] [CrossRef]
- De Nys, R.; Ison, O. Biofouling. In The Pearl Oyster; Southgate, P., Lucas, J., Eds.; Elsevier: Oxford, UK, 2008. [Google Scholar]
- Watts, J.C.; Carroll, J.M.; Munroe, D.M.; Finelli, C.M. Examination of the potential relationship between boring sponges and pea crabs and their effects on eastern oyster condition. Dis. Aquat. Org. 2018, 130, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Sala, A.; Lucchetti, A. Low-cost tool to reduce biofouling in oyster longline culture. Aquac. Eng. 2008, 39, 53–58. [Google Scholar] [CrossRef]
- Pennarun, A.L.; Prost, C.; Haure, J.; Demaimay, M. Comparison of two microalgal diets. 1. Influence on the biochemical and fatty acid compositions of raw oysters (Crassostrea gigas). J. Agric. Food Chem. 2003, 51, 2006–2010. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, F.; Robert, R.; Quéré, C.; Wikfors, G.H.; Soudant, P. Essential fatty acid assimilation and synthesis in larvae of the bivalve Crassostrea gigas. Lipids 2005, 50, 503–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobelas, M.A.; Lechado, J.Z. Lipids in microalgae. A review 1. Biochemistry. Grasas Aceites 1989, 40, 118–145. [Google Scholar]
- Mitani, E.; Nakayama, F.; Matsuwaki, I.; Ichi, I.; Kawabata, A.; Kawachi, M.; Kato, M. Fatty acid composition profiles of 235 strains of three microalgal divisions within the NIES Microbial Culture Collection. Microb. Resour. Syst. 2017, 33, 19–29. [Google Scholar]
- Gili, J.M.; Coma, R. Benthic suspension feeders: Their paramount role in littoral marine food webs. Trends Ecol. Evol. 1998, 13, 316–321. [Google Scholar] [CrossRef]
- Coma, R.; Ribes, M.; Gili, J.M.; Hughes, R.N. The ultimate opportunists: Consumers of seston. Mar. Ecol. Prog. Ser. 2001, 219, 305–308. [Google Scholar] [CrossRef]
- Stuart, V.; Klumpp, D.W. Evidence for food-resources partitioning by kelpbed filter feeders. Mar. Ecol. Prog. Ser. 1984, 16, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Accoroni, S.; Percopo, I.; Cerino, F.; Romagnoli, T.; Pichierri, S.; Perrone, C.; Totti, C. Allelopathic interactions between the HAB dinoflagellate Ostreopsis cf. ovata and macroalgae. Harmful Algae 2015, 49, 149–155. [Google Scholar]
- Gharbia, H.B.; Yahia, O.K.D.; Cecchi, P.; Masseret, E.; Amzil, Z.; Herve, F.; Rovillon, G.; Nouri, H.; M’Rabet, C.; Couet, D.; et al. New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates. PLoS ONE 2017, 12, e0187963. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.Y.; Zhou, W.J.; Wang, H.; Guo, G.L.; Su, Z.X.; Pu, Y.F. Antialgal compounds with antialgal activity against the common red tide microalgae from a green algae Ulva pertusa. Ecotoxicol. Environ. Saf. 2018, 157, 61–66. [Google Scholar] [CrossRef]
- Fujibayashi, M.; Nishimura, O.; Tanaka, H. Evaluation of Food Sources Assimilated by Unionid Mussels Using Fatty Acid Trophic Markers in Japanese Freshwater Ecosystems. J. Shellfish Res. 2016, 35, 231–235. [Google Scholar] [CrossRef]
- Pernet, F.; Malet, N.; Pastoureaud, A.; Vaquer, A.; Quéré, C.; Dubroca, L. Marine diatoms sustain growth of bivalves in a Mediterranean lagoon. J. Sea Res. 2012, 68, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Piveteau, F.; Gandemer, G.; Baud, J.P.; Demaimay, M. Changes in lipid and fatty acid compositions of European oysters fattened with Skeletonema costatum diatom for six weeks in ponds. Aquac. Int. 1999, 7, 341–355. [Google Scholar] [CrossRef]
- Alkanani, T.; Parrish, C.C.; Thompson, R.J.; McKenzie, C.H. Role of fatty acids in cultured mussels, Mytilus edulis, grown in Notre Dame Bay, Newfoundland. J. Exp. Mar. Biol. Ecol. 2007, 348, 33–45. [Google Scholar] [CrossRef]
- Rahman, M.A.; Henderson, S.; Miller-Ezzy, P.A.; Li, X.X.; Qin, J.G. Analysis of the seasonal impact of three marine bivalves on seston particles in water column. J. Exp. Mar. Biol. Ecol. 2020, 522, 151251. [Google Scholar] [CrossRef]
- Holm, M.W.; Davids, J.K.; Dolmer, P.; Holmes, E.; Nielsen, T.T.; Vismann, B.; Hansen, B.W. Coexistence of Pacific oyster Crassostrea gigas (Thunberg, 1793) and blue mussels Mytilus edulis Linnaeus, 1758 on a sheltered intertidal bivalve bed? Aquat. Invasions 2016, 11, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Sakamaki, T.; Hayashi, K.; Zheng, Y.; Fujibayashi, M.; Nishimura, O. Effects of oyster age on the selective filter-feeding and chemical composition of biodeposits: Insights from fatty acid analysis. Mar. Ecol. Prog. Ser. 2020, 644, 75–89. [Google Scholar] [CrossRef]
- Barillé, L.; Cognie, B. Revival capacity of diatoms in bivalve pseudofaeces and faeces. Diatom Res. 2000, 15, 11–17. [Google Scholar] [CrossRef]
- Flores-Vergara, C.; Cordero-Esquivel, B.; Cerón-Ortiz, A.N.; Arredondo-Vega, B.O. Combined effects of temperature and diet on growth and biochemical composition of the Pacific oyster Crassostrea gigas (Thunberg) spat. Aquac. Res. 2004, 35, 172–183. [Google Scholar] [CrossRef]
- Hurtado, M.A.; Racotta, I.S.; Arcos, F.; Morales-Bojórquez, E.; Moal, J.; Soudant, P.; Palacios, E. Seasonal variations of biochemical, pigment, fatty acid, and sterol compositions in female Crassostrea corteziensis oysters in relation to the reproductive cycle. Comp. Biochem. Physiol. B 2012, 163, 172–183. [Google Scholar] [CrossRef]
- Isono, C.; Maruta, H.; Ma, Y.; Ganeko, N.; Miyake, T.; Yamashita, H. Seasonal variations in major components of Crassostrea gigas from Seto Inland Sea. Fish. Sci. 2020, 86, 1087–1099. [Google Scholar] [CrossRef]
- Dagorn, F.; Couzinet-Mossion, A.; Kendel, M.; Beninger, P.G.; Rabesaotra, V.; Barnathan, G.; Wielgosz-Collin, G. Exploitable lipids and fatty acids in the invasive oyster Crassostrea gigas on the French Atlantic coast. Mar. Drugs 2016, 14, 104. [Google Scholar] [CrossRef] [Green Version]
- Hatakeyama, Y.; Kawahata, T.; Fujibayashi, M.; Nishimura, O.; Sakamaki, T. Sources and oxygen consumption of particulate organic matter settling in oyster aquaculture farms: Insights from analysis of fatty acid composition. Estuar. Coast. Shelf Sci. 2021, 254, 107328. [Google Scholar] [CrossRef]
- Abdulkadir, S.; Tsuchiya, T. One-step method for quantitative and qualitative analysis of fatty acids in marine animal samples. J. Exp. Mar. Biol. Ecol. 2008, 354, 1–8. [Google Scholar] [CrossRef]
- Fujibayashi, M.; Ogino, M.; Nishimura, O. Fractionation of the stable carbon isotope ratio of essential fatty acids in zebrafish Danio rerio and mud snails Bellamya chinensis. Oecologia 2016, 180, 589–600. [Google Scholar] [CrossRef]
- Lucas, A.; Beninger, P.G. The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 1985, 44, 187–200. [Google Scholar] [CrossRef]
- Orban, E.; Di Lena, G.; Nevigato, T.; Casini, I.; Marzetti, A.; Caproni, R. Seasonal changes in meat content, condition index and chemical composition of mussels (Mytilus galloprovincialis) cultured in two different Italian sites. Food Chem. 2002, 77, 57–65. [Google Scholar] [CrossRef]
Fouling Organisms | Crassostrea gigas | ||||||
---|---|---|---|---|---|---|---|
Total Wet Weight | CI | EPA | DHA | EPA | DHA | ||
unit | g cluster−1 | - | mg g−1 | g cluster−1 | |||
Wet weight | |||||||
Mytilus galloprovincialis | g cluster−1 | 0.204 | −0.743 ** | −0.689 ** | −0.154 | −0.250 | −0.061 |
Sponges and algae | g cluster−1 | −0.189 | −0.409 | −0.475 | −0.642 ** | −0.409 | −0.357 |
Wet weight ratios to oyster | |||||||
Mytilus galloprovincialis | g g−1 | −0.071 | −0.661 ** | −0.646 ** | −0.310 | −0.421 | −0.236 |
Sponges and algae | g g−1 | −0.649 ** | −0.259 | −0.312 | −0.585 * | −0.697 ** | −0.732 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujibayashi, M.; Nishimura, O.; Sakamaki, T. The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas. Mar. Drugs 2021, 19, 369. https://doi.org/10.3390/md19070369
Fujibayashi M, Nishimura O, Sakamaki T. The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas. Marine Drugs. 2021; 19(7):369. https://doi.org/10.3390/md19070369
Chicago/Turabian StyleFujibayashi, Megumu, Osamu Nishimura, and Takashi Sakamaki. 2021. "The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas" Marine Drugs 19, no. 7: 369. https://doi.org/10.3390/md19070369
APA StyleFujibayashi, M., Nishimura, O., & Sakamaki, T. (2021). The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas. Marine Drugs, 19(7), 369. https://doi.org/10.3390/md19070369