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Abstract: Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced
by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause
sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus,
which may become chronic, occurs also in CFP. No curative treatment is available and the pathophys-
iology is not fully elucidated. Here we conducted single-cell calcium video-imaging experiments
in sensory neurons from newborn rats to study in vitro the ability of Pacific-ciguatoxin-2 (P-CTX-2)
and brevetoxin-1 (PbTx-1) to sensitize receptors and ion channels, (i.e., to increase the percentage of
responding cells and/or the response amplitude to their pharmacological agonists). In addition, we
studied the neurotrophin release in sensory neurons co-cultured with keratinocytes after exposure
to P-CTX-2. Our results show that P-CTX-2 induced the sensitization of TRPA1, TRPV4, PAR2,
MrgprC, MrgprA and TTX-r NaV channels in sensory neurons. P-CTX-2 increased the release of
nerve growth factor and brain-derived neurotrophic factor in the co-culture supernatant, suggesting
that those neurotrophins could contribute to the sensitization of the aforementioned receptors and
channels. Our results suggest the potential role of sensitization of sensory receptors/ion channels in
the induction or persistence of sensory disturbances in CFP syndrome.

Keywords: ciguatoxin; ciguatera fish poisoning; brevetoxin; neurotoxic shellfish poisoning; sensory
disorders; pruritus; pain; sensitization; receptors; ion channels

1. Introduction

Ciguatoxins (CTX) are produced by dinoflagellates of the genera Gambierdiscus and
Fukuyoa [1–5] and bioaccumulate in tropical and sub-tropical fishes [1,6]. Ciguatera fish
poisoning (CFP) is a syndrome consecutive to an oral consumption of CTX contaminated
fish [6,7]. Between 50,000 and 500,000 persons are estimated to be affected annually [6,8–10].
Clinically, CFP includes gastrointestinal symptoms (e.g., diarrhea, nausea, vomiting and
abdominal pain), typical sensory disturbances (e.g., paresthesia, cold dysesthesia, pruritus,
dental pain and myalgia) and in the most severe cases, cardiovascular signs [7,11–18]. The
intense and disabling sensory disturbances of CFP [11,19], can persist several days, weeks
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or even years after the toxic meal ingestion. In some cases, sensory symptoms reoccur or
are exacerbated after consumption of alcohol, certain foods or after physical exercise [6,20].
No curative treatment is available and the pathophysiology of the sensory disturbances is
not fully understood.

CTX target mainly voltage gated sodium channels (NaV) [21], which are highly ex-
pressed in the dorsal root ganglion (DRG) neurons. Brevetoxins, responsible for neurotoxic
shellfish poisoning (NSP) considered as a moderate CFP, are structural and functional
analogs of CTX that also target the NaV channels. Toxin binding to NaV channels en-
hances a sodium influx which leads to membrane hyperexcitability [22–25] that can lead
to sensory disturbance. Previously, we have shown that Pacific-ciguatoxin-2 (P-CTX-2)
and brevetoxin-1 (PbTx-1) induce neuropeptide (substance P (SP) and calcitonin gene-
related peptide (CGRP)) release from a co-culture of sensory neurons and differentiated
keratinocytes [26–28]. Other studies demonstrated a neuropeptide release from murine skin
treated with Pacific-ciguatoxin-1 (P-CTX-1) [12,29]. In skin, the release of neuropeptides
drives cutaneous neurogenic inflammation characterized by flare, edema and pruritus [30],
signs also observed in CFP cases [7] and P-CTX-1 intracutaneous injection in humans [12].
In the central nervous system, neuropeptides mediate pain and itch transmission [31–33]
and contribute to both peripheral and central sensitization [34].

Pain and itch are two distinct sensations with their own dedicated sensory path-
ways but common mechanisms. Sensitization of sensory receptors or ion channels is one
of the mechanisms resulting in chronic pain as well as chronic itch. It is defined as a
reduction of activation threshold and/or an increase of the response amplitude to a stimu-
lus. Namely, normally ineffective stimuli might be effective or a spontaneous activation
can be induced. Sensitization of sensory receptors/ion channels is well established in
inflammatory, neuropathic pain [35] and can occur both centrally and peripherally. A
combination of both is frequently present in chronic pain and itch. Sensitizing mediators
include proinflammatory cytokines, neuropeptides, bradykinins, chemokines, histamine
and neurotrophins (nerve growth factor (NGF)), brain-derived neurotrophic factor (BDNF)
and glial cell line-derived neurotrophic factor [36–38]. Those mediators bind to their
receptors whose signaling induces the sensitization of sensory receptors and/or ion chan-
nels. Different molecular mechanisms are involved, including the activation of protein
kinases and an increase in trafficking and/or gene expression [39–41]. We focused on the
neurotrophins, including NGF and BDNF which are the most commonly studied growth
factors in the sensitization of receptors [42,43], given the important role they play in the
processing of nociceptive/pruriceptive information in the periphery and/or the central
nervous system [44,45].

Previous work showed that a vast majority of murine sensory neurons responding
to 1 nM of P-CTX-1 express transient receptor potential A1 (TRPA1) [46]. Cold allodynia
after CTX intraplantar injection in mice has been shown to involve the sensitization to cold
of tetrodotoxin-sensitive (TTX-s) A-fibres and TRPA1 in NaV1.8-expressing C-fibers [46].
Sensitization of channels/receptors expressed in sensory neurons contributes to the devel-
opment and maintenance of pain and/or pruritus [35]. TTX-s and TTX-resistant (TTX-r)
NaV channels, which are highly expressed in the peripheral nervous system [47], are the
main targets of CTX and PbTx and can be sensitized [48]. Other channels including tran-
sient receptor potential vanilloid 1 (TRPV1) [49–52], transient receptor potential vanilloid
4 (TRPV4) [53] and TRPA1 [40,54] are involved in pruritus and several types of chronic
pain [55,56]. Protease-activated receptor 2 (PAR2), mainly expressed by small diameter
fibers [57], is involved in pruritus [58] and peripheral neuropathy induced by chemother-
apy [59–61]. Previously, we have shown that PAR2 is activated by P-CTX-2 and PbTx-1
in sensory neurons [26,28]. PAR2 is known to sensitize transient receptor potential (TRP)
channels [53–55,62]. Mas-related G-protein coupled receptors (Mrgpr), including Mrg-
prA and MrgprC, expressed in unmyelinated fibers innervating epidermis, were recently
identified as itch-sensing receptors [63]. PAR2 activation potentiated itch induced by their
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agonists in the mouse model, suggesting sensitization [64]. Thus, we were interested in
studying the sensitization of TRP channels, PAR2 and Mrgprs by CTX and PbTx.

Our hypothesis was that the sensitization of sensory receptors/ion channels by CTX
and PbTx contributes to the development and maintenance of CFP and NSP sensory
symptoms. In this new work, we studied the ability of P-CTX-2 and PbTx-1 to sensitize
receptors/ion channels including TRPA1, TRPV1, TRPV4, PAR2, MrgprC, MrgprA, and
TTX-r NaV channels after a 20 h exposure. We used single-cell calcium video imaging in
newborn rat sensory neurons by measuring the toxin ability to increase the percentage
of responding cells and/or the response amplitude to the pharmacological agonist of
each receptor/channel. In addition, we explored the ability of P-CTX-2 to increase NGF
and BDNF release by quantifying neurotrophin levels in the supernatant of co-culture of
sensory neurons and differentiated keratinocytes following a 24 h exposure to P-CTX-2.
Our data provide new knowledge on the physiopathology of sensory symptoms induced
by CTX and PbTx. These results could be useful for the development of specific treatments.

2. Results

We studied the ability of P-CTX-2 and PbTx-1 to sensitize several receptors and ion
channels in DRG neurons using single-cell calcium video imaging. After pretreatment
with PbTx-1, P-CTX-2 or vehicle controls for 20 h, we assessed the change in the calcium
response (percentage of responding cells and/or the response amplitude) to the specific
agonist of each sensory receptor (e.g., capsaicin for TRPV1) induced by the toxins compared
with their vehicle controls.

2.1. Potentiation of the Calcium Response of Sensory Receptors/Channels to their Agonist after
PbTx-1 or P-CTX-2 Pretreatment

We assessed the ability of the toxins to sensitize TRPA1 using the agonist JT010 [65].
The percentage of cells responding to JT010 was significantly increased after pretreatment
with PbTx-1 (271 ± 51% compared to control (100%)) (Figure 1A) and after pretreatment
with P-CTX-2 (195 ± 27% compared to control (100%)) (Figure 1C). In contrast, PbTx-1
and P-CTX-2 did not significantly modify the amplitude values. A strong increase in the
amplitude values were recorded after pretreatment with P-CTX-2 although this did not
reach the significance level (196 ± 48% compared to control (100%)) (Figure 1B,D). These
results suggest a sensitization of TRPA1 by P-CTX-2 and PbTx-1 in sensory neurons.

SLIGRL is able to activate PAR2 [66] and MrgprC [67]. We assessed the ability of PbTx-
1 and P-CTX-2 to sensitize PAR2/MrgprC and TRPV4 using the peptide activators SLIGRL
and GSK-1016790A [68], respectively. The percentage of responding cells to the SLIGRL and
GSK-1016790A were significantly enhanced after pretreatment with PbTx-1 (169 ± 15% and
147 ± 17% of control, respectively). However, no significant modification of the amplitude
values was recorded (85 ± 12% and 146 ± 25% of controls, respectively) (Figure 2A−D).
The percentage of responding cells to GSK-1016790A after P-CTX-2 pretreatment was not
modified (94 ± 2.3% of the control) (Figure 2E), while the amplitude values recorded for
TRPV4 were significantly increased compared to control (142 ± 6.3%) (Figure 2F). These
results suggest that PAR2/MrgprC and TRPV4 are sensitized by PbTx-1 in sensory neurons.
Similarly, P-CTX-2 sensitized TRPV4, while its effect on SLIGRL response (PAR2 and
MrgprC) was not assessed.

We also assessed the ability of PbTx-1 to sensitize MrgprA using the agonist chloro-
quine [70,71]. The percentage of cells responding to chloroquine was significantly in-
creased (271 ± 53% compared to control (100%)) in the presence of PbTx-1 while the
associated amplitude values were not significantly modified (124 ± 30% compared to
control (100%)) (Figure 3C,D). These results suggest a sensitization of MrgprA by PbTx-1
in sensory neurons.
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Figure 1. Sensitization of TRPA1 by PbTx-1 and P-CTX-2 in DRG neurons. Sensory neurons were pretreated with 10 nM 
of P-CTX-2, 1 µM of PbTx-1 or vehicles for 20 h. Specific agonist of TRPA1 (JT010) was used to assess the sensitization of 
this channel. Normalized percentages of responding cells (A,C) and the normalized associated amplitude values (B,D) of 
the calcium signal in response to the JT010 were recorded. Normalized data were obtained from 3 (with PbTx-1) and 5 
(with P-CTX-2) independent experiments and data were expressed as mean ± SEM. * p < 0.05. DRG: dorsal root ganglion; 
PbTx-1: brevetoxin-1; P-CTX-2: Pacific-ciguatoxin-2; TRPA1: transient receptor potential ankyrin 1. 
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Figure 1. Sensitization of TRPA1 by PbTx-1 and P-CTX-2 in DRG neurons. Sensory neurons were pretreated with 10 nM of
P-CTX-2, 1 µM of PbTx-1 or vehicles for 20 h. Specific agonist of TRPA1 (JT010) was used to assess the sensitization of this
channel. Normalized percentages of responding cells (A,C) and the normalized associated amplitude values (B,D) of the
calcium signal in response to the JT010 were recorded. Normalized data were obtained from 3 (with PbTx-1) and 5 (with
P-CTX-2) independent experiments and data were expressed as mean ± SEM. * p < 0.05. DRG: dorsal root ganglion; PbTx-1:
brevetoxin-1; P-CTX-2: Pacific-ciguatoxin-2; TRPA1: transient receptor potential ankyrin 1.
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Figure 2. Sensitization of PAR2/MrgprC by PbTx-1 and TRPV4 by PbTx-1 and P-CTX-2 in DRG neurons. Sensory neurons
were pretreated with 10 nM of P-CTX-2, 1 µM of PbTx-1 or vehicle for 20 h. Peptide activator of PAR2 and MrgprC
(SLIGRL) and agonist of TRPV4 (GSK 1016790A) were used to assess sensitization of these channels/receptors. Normalized
percentages of responding cells (A,C,E) and the associated amplitude values (B,D,F) of the calcium signal in response to the
specific agonist were recorded. Normalized data were obtained from 5 (PAR2 and MrgprC), 6 (TRPV4 in PbTx-1 condition)
and 3 (TRPV4 in P-CTX-2 condition) independent experiments. Data were expressed as mean ± SEM. * p < 0.05. DRG:
dorsal root ganglion; MrgprC: Mas-related G-protein coupled receptors C; PAR2: protease-activated receptor 2; PbTx-1:
brevetoxin-1; P-CTX-2: Pacific-ciguatoxin-2; TRPV4: transient receptor potential vanilloid 4.
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We assessed the ability of PbTx-1 to sensitize TRPV1 using the agonist capsaicin [69].
PbTx-1 neither significantly modified the percentage of responding cells to capsaicin
(85 ± 8.2% compared to control (100%)), nor the amplitude values (116 ± 20% compared to
control (100%)) (Figure 3A,B). These results suggest that PbTx-1 does not sensitize TRPV1
in sensory neurons.
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Pacific-ciguatoxin-2; TRPV1: transient receptor potential vanilloid 1. 

We assessed the ability of toxins to sensitize NaV channels using veratridine, which 
activates these channels without isoform specificity. No significant modification of the 
two recorded parameters of the calcium response to veratridine was measured after pre-
treatment with PbTx-1 (102 ± 15% of responding cells compared to control (100%) and 117 
± 21% of the associated amplitude value compared to control (100%)) (Figure 4A,B). No 
modification of the two calcium parameters in response to veratridine recorded after pre-
treatment with P-CTX-2 (115 ± 19.4% for the percentage of responding cells; 70 ± 12.7% for 

Figure 3. Sensitization of TRPV1 and MrgprA by PbTx-1 in DRG neurons. Sensory neurons were pretreated with 1 µM of
PbTx-1 or its vehicle for 20 h. Specific agonists of TRPV1 (capsaicin) and MrgprA (chloroquine) were used to assess the
sensitization of these channels/receptors. Normalized percentages of responding cells (A,C) and the associated amplitude
values (B,D) of the calcium signal were recorded. Normalized data were obtained from 9 (TRPV1) and 5 (MrgprA)
independent experiments. Statistical analysis has been performed using a t-test and data were expressed as mean ± SEM.
* p < 0.05. DRG: dorsal root ganglion; MrgprA: Mas-related G-protein coupled receptors A; PbTx-1: brevetoxin-1; P-CTX-2:
Pacific-ciguatoxin-2; TRPV1: transient receptor potential vanilloid 1.

We assessed the ability of toxins to sensitize NaV channels using veratridine, which
activates these channels without isoform specificity. No significant modification of the
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two recorded parameters of the calcium response to veratridine was measured after pre-
treatment with PbTx-1 (102 ± 15% of responding cells compared to control (100%) and
117 ± 21% of the associated amplitude value compared to control (100%)) (Figure 4A,B).
No modification of the two calcium parameters in response to veratridine recorded after
pretreatment with P-CTX-2 (115 ± 19.4% for the percentage of responding cells; 70 ± 12.7%
for the amplitude values compared to control (100%), respectively) (Figure 4C,D). These re-
sults suggest that PbTx-1 and P-CTX-2 did not induce overall sensitization of NaV channels,
i.e., no sensitization of all NaV channel subtypes taken as a whole.
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Figure 4. No sensitization of NaV channels by PbTx-1 and P-CTX-2 in DRG neurons. Sensory neurons were pretreated with
1 µM of PbTx-1, 10 nM of P-CTX-2 or vehicles for 20 h. Next, specific agonist of NaV channels, here veratridine 30 µM, was
used to assess the sensitization of those channels. Normalized percentages of responding cells (A,C) and the normalized
associated amplitude values (B,D) of the calcium response induced by veratridine were recorded. Data obtained from 6
(with PbTx-1) and 4 (with P-CTX-2) independent experiments were normalized to vehicle control conditions experiment by
experiment. Data were expressed as mean ± SEM and no statistical difference was observed. DRG: dorsal root ganglion;
NaV: voltage-gated sodium channel; PbTx-1: brevetoxin-1; P-CTX-2: Pacific-ciguatoxin-2.
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In another series of experiments, we assessed the ability of the toxins to sensitize
TTX-r NaV channels. TTX was used at 300 nM, which inhibits only TTX-s neuronal NaV
channels [47,66] and allows toxin sensitization TTX-r NaV channels to be investigated.
The calcium response induced by veratridine in the presence of TTX (pretreatment with
300 nM for 10 min prior to veratridine injection) was assessed. After PbTx-1 pretreatment,
the percentage of cells responding to veratridine in the presence of 300 nM TTX (i.e TTX-
r NaV channels) was significantly increased (133 ± 2.6% of the control value) and the
amplitude value was significantly decreased (76 ± 7.4% of the control) (Figure 5A,B). P-
CTX-2 induced also a strong and significant increase in the percentage of cells responding
to veratridine + 300 nM of TTX (238 ± 30.5% compared to control condition (100%)) and
did not change the amplitude values (103 ± 2.9% compared to control condition (100%))
(Figure 5C,D). These results suggest a sensitization of TTX-r NaV channels by PbTx-1
and P-CTX-2.
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Figure 5. Sensitization of TTX-r NaV channels by PbTx-1 and P-CTX-2 from DRG neurons. Sensory neurons were pretreated
with 1 µM of PbTx-1, 10 nM of P-CTX-2 or vehicles for 20 h. TTX 300 nM + veratridine was used to assess the sensitization
of those channels. Normalized percentages of responding cells (A,C) and the normalized associated amplitude values (B,D)
of the calcium signal induced by 300 nM of TTX + veratridine were recorded. Normalized data were obtained from 4 (with
PbTx-1) and 3 (with P-CTX-2) independent experiments. Data were expressed as mean ± SEM. * p < 0.05. DRG: dorsal root
ganglion; PbTx-1: brevetoxin-1; P-CTX-2: Pacific-ciguatoxin-2; TTX: tetrodotoxin; TTX-r NaV: TTX-resistant voltage-gated
sodium channel.
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2.2. Increase in the release of NGF and BDNF in the Supernatant of Homologue Co-Culture
Treated by P-CTX-2

In the skin, neurotrophins are released by free intra-epidermal nerve endings and
also keratinocytes [72–74]. To better understand the neuro-epithelial interactions and
to identify the soluble mediators potentially involved in P-CTX-2-induced sensitization
of receptors, we quantified neurotrophins from our homolog co-culture model of rat
sensory neurons and keratinocytes. The release of NGF in the co-culture supernatant was
significantly increased to 122 ± 3.5% after treatment with 10 nM of P-CTX-2 compared to
control condition (Figure 6A). The release of BDNF was also increased 172 ± 28.9% after
pretreatment with 10 nM of P-CTX-2, compared to control condition (Figure 6B).
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rat sensory neurons and 10 nM of P-CTX-2. Co-cultured cells were treated with 10 nM of P-CTX-2 or
control for 24 h. Data obtained from 4 independent experiments were normalized to vehicle control
conditions, expressed as mean ± SEM. * p < 0.05 and ** p < 0.01. BDNF: brain-derived neurotrophic
factor; NGF: nerve growth factor; P-CTX-2: Pacific-ciguatoxin-2.
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3. Discussion

The present study highlights the ability of PbTx-1 and P-CTX-2 to sensitize several
sensory ion channels/receptors in DRG neurons from newborn rats. TRPA1, TRPV4, TTX-r
NaV channels, PAR2, MrgprC and MrgprA were sensitized by PbTx-1 and also TRPA1,
TTX-r NaV channels, TRPV4 by P-CTX-2. In contrast, TTX-s NaV channels and TRPV1
were not sensitized by PbTx-1 and/or P-CTX-2. NGF and BDNF levels were increased
in our homologue co-culture model after treatment with P-CTX-2, representing potential
mediators of the sensitization of the receptors/ion channels. This sensitization is one of the
mechanisms that may contribute to the sensory disorders induced by both toxins in humans.
The results provide new information on the pathophysiology of sensory symptoms in CFP
and NSP.

3.1. TRPA1 Channel Is Sensitized by PbTx-1 and P-CTX-2 in Rat Sensory Neurons

Our results show that 10 nM of P-CTX-2 and 1 µM of PbTx-1 sensitized TRPA1 to the
pharmacological agonist JT010. Our results are consistent with a previous in vivo work
showing that P-CTX-1 sensitizes TRPA1 to cold in C-fibers without direct activation [46].
As P-CTX-1-induced cold allodynia involves TRPA1, these results demonstrate a major
role of sensitization in sensory disorders induced by CTX. TRPA1 has a major role in pain
transduction, notably evoked by PAR2 [54,55] or in nonhistaminergic chronic pruritus
by Mrgpr activation [71,75]. However, two studies showed the lack of involvement of
TRPA1 in P-CTX-2-induced SP release from an in vitro co-culture model [76] and in P-
CTX-1-induced CGRP release from ex vivo mouse skins [29]. Those discrepancies could
stem from experimental procedure differences (e.g., absence of pharmacological or cooling
stimulus, timing used . . . ) to record CTX-induced sensitization of TRPA1. These data
suggest that TRPA1 sensitization by CTX and PbTx is a major component of the sensory
disorders occurring during CFP and NSP.

In addition, our results revealed an increased release of NGF in the supernatant of
co-cultures treated with P-CTX-2. NGF is able to induce TRPA1 expression in DRG neurons
after injury or in an inflammatory context [77,78]. The mechanism includes P38 mitogen-
activated protein kinase (MAPK) activation leading to the development and maintenance
of cold hyperalgesia [76]. Thus, NGF is a potential mediator of the TRPA1 sensitization
induced by P-CTX-2 and PbTx-1.

3.2. Sensitization of PAR2 and/MrgprC by PbTx-1 in Rat Sensory Neurons

We demonstrated that PbTx-1 pretreatment induced an increase in the percentage
of cells responding to SLIGRL, which was able to activate PAR2 and MrgprC. Further
experiments are needed to define the part of each receptor (PAR2 and MrgprC) sensitization
by PbTx-1 and P-CTX-2. MrgprC is a member of the Mrgprs nearly exclusively expressed in
sensory neurons [77] with important roles in itch [63,78]. PAR2 is mainly localized in small
and medium DRG sensory neurons [79], particularly in peptidergic neurons [57] which
are the sensory neurons mainly activated by CTX [46]. In previous work, we showed that
P-CTX-2 and PbTx-1 activate PAR2 and increase the activity of the PAR2-activating protease
cathepsin S in sensory neurons [26,28]. P-CTX-2 and PbTx-1 induced PAR2 internalization
20 min after exposure [26,28]. The calcium response to trypsin resensitized after 60−90 min
suggests that PAR2 is re-expressed at the plasmic membrane from preformed pools of
receptors after its rapid internalization [80]. The treatment of DRG neurons by PAR2-
activating proteases was shown to increase PAR2 expression within a few hours [81]. Taken
together, these data suggest that PAR2 sensitization by 20 h treatment of P-CTX-2 and
PbTx-1 involves an increased PAR2 expression at the plasma membrane subsequent to
its activation.

3.3. Sensitization of TRPV4 Channels by PbTx-1 and P-CTX-2 in Rat Sensory Neurons

In our study, we show that TRPV4 is sensitized by PbTx-1 and P-CTX-2. P-CTX-2 sig-
nificantly increased the amplitude of the response to GSK-1016790A without modification
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of the percentage of responding cells, while PbTx-1 significantly increased the percentage
of responding cells without modification of the response amplitude. Mechanisms could
differ between the two toxins. Further experiments are needed to explain these differences
between the two toxins.

TPRV4 is expressed by one out of four of rat sensory neurons [82], mainly in Aδ fibers
and C fibers [83]. PAR2 activation leads to TRPV4 sensitization [55,84] by both biased and
canonical pathways. We showed that P-CTX-2 activates PAR2 [26], PbTx-1 activates PAR2
by both biased and canonical pathways, and PbTx-1 activates both PAR2 and TRPV4 in a
common pathway [28]. The latter finding suggests a PAR2-dependent TRPV4 sensitization
by PbTx-1. The sensitization of TRPV4 shown in this study by both P-CTX-2 and PbTx-1 is
consistent with this hypothesis.

3.4. MrgprA Is Sensitized by PbTx-1 in Rat Sensory Neurons

The rat MrgprA (MrgprA3 in mouse) is expressed by a small number of DRG sensory
neurons (around 4% of DRG sensory neurons) and is activated by chloroquine [78]. Our
results showed that PbTx-1 markedly sensitizes MrgprA in rat sensory neurons. Given the
major role of MrgprA in pruritus, our results suggest that sensitization could have a major
role in CFP pruritus.

The sensory neurons of rat DRG expressing MrgprA [85] also express a higher density
of voltage-gated K+ (Kv) channels than other sensory neurons [85]. Kv channels are crucial
in the maintenance of the rest state and in the repolarization phase after depolarization [86].
The hyperexcitability of nociceptors by an increase in NaV channel activity and a decrease
in Kv channel activity is involved in neuropathic pain [87] and is induced by P-CTX-2 and
PbTx-1 [21,23]. The neuron subtype expressing MrgprA could play a particular role in the
neurotoxin mechanism induced in DRG neurons.

3.5. TRPV1 Channels Is Not Sensitized by PbTx-1 in Rat Sensory Neurons

TRPV1 sensitization by PbTx-1 was shown in frog oocytes transfected with TRPV1 [88].
Both NGF [89–91] and PAR2 [49,55,62] are well-known for sensitizing TRPV1. However,
TRPV1 was not sensitized by PbTx-1 in our model. This result is consistent with previous
data showing that TRPV1 is not required for CGRP release in a murine skin model treated
by P-CTX-1 [46]. TRPV1 is not involved in P-CTX-2-induced calcium response in sensory
neurons or SP release in our co-culture model [74].

3.6. TTX-rNaV Channels Are Sensitized by PbTx-1 and P-CTX-2 in Rat Sensory Neurons

PbTx-1 and P-CTX-2 induced a significant increase in the percentage of cells respond-
ing to veratridine in the presence of 300 nM TTX, which suggests that both toxins sensitize
TTX-r NaV channels by increasing their expression. However, the percentage of responding
cells and the amplitude values of the response to veratridine alone were not significantly
changed, suggesting that NaV channels as a whole are not sensitized by both toxins. These
results highlight the crucial role of TTX-r NaV (especially NaV1.8 and NaV1.9) channels in
C and Aδ sensory neurons [92,93], and suggest the role of their sensitization, in the sensory
effects induced by those neurotoxins.

Neurokinin 1 receptor (NK1R) activation by SP potentiates NaV1.8 sodium currents in
rat DRG neurons by a protein kinase C (PKC)-dependent mechanism probably participat-
ing to hyperalgesia [94]. We previously demonstrated that PbTx-1 and P-CTX-2 increase SP
release in our co-culture model [26,28]. Together, these data suggest that the SP/NK1R axis
could be involved in P-CTX-2-induced sensitization of TTX-r NaV in sensory neurons. NGF
is another potential mediator of NaV1.8 sensitization because the NGF level is increased in
the supernatant of the co-culture treated with P-CTX-2 in this study. Hyperalgesia induced
by NGF in the murine model is mediated by the NaV1.8 [95]. Direct phosphorylation of
NaV1.8 by MAPK P38 increases current density at the membrane, contributing to inflam-
matory and neuropathic pain [96]. The present data suggest that NaV1.8 is a major TTX-r
NaV channel sensitized by CTX probably in SP- and/or NGF-dependent mechanisms.
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3.7. Increase of NGF and BDNF Levels in Co-Culture Model

Neurotrophins, including NGF and BDNF, are key actors of sensitization in sensory
neurons [42,43]. Our study shows that P-CTX-2 increased levels of BDNF and NGF in our
co-culture model.

BDNF is mainly expressed in small-to-medium sized peptidergic primary sensory
neurons (expressing CGRP or SP) [97–99]. BDNF level is increased following both in-
flammation and nerve injury [100–104]. Local treatments with an anti-BDNF antibody
reduced pain behavior in several neuropathic pain models [105,106] highlighting the crucial
role of BDNF in pain. A transcriptomic study performed in a primary culture of cortical
neurons, showed that BDNF gene expression is upregulated after 72 h of cigautoxin-3C
treatment [107]. A study in DRG sensory neurons showed that prolonged exposure to
BDNF modulates TRP channel expression contributing to chronic pain [108], suggesting
a role of BDNF in the sensitization of these sensory channels. Together these data sug-
gest that BDNF could contribute to the sensitization of TRPA1 induced by P-CTX-2 and
PbTx-1. However, a recent paper suggested that primary afferent-derived BDNF normally
contributes only minimally to the processing of pain and itch [109].

NGF is able to increase NaV1.8 [95], TRPV1 [110,111], TRPA1 [75,76] expression
and/or activity in sensory neurons and contribute to hyperalgesia following nerve injury
or peripheral inflammation [112]. Increased levels of NGF by P-CTX-2 suggest that NGF is a
good candidate for direct ion channel/receptor sensitization induced by those neurotoxins.
In addition, 35−40% of adult rat sensory neurons expressed the tropomyosin receptor
kinase A (trkA, the specific high-affinity receptor of NGF) [113,114]. TrkA-positive sensory
neurons are partially co-expressed with CGRP [115], which are mainly targeted by CTX [46].
NGF increases SP and CGRP levels in skin-innervating sensory fibers [116], BDNF mRNA
levels in DRG following peripheral inflammation [117,118] and TrkA mRNA in the sensory
neuron-like PC12 cells [119]. Thus, the involvement of NGF in the sensitization of ion
channels/receptors could also be an indirect effect via increased BDNF, SP and CGRP levels.

In this study, we identified the ability of PbTx-1 and P-CTX-2 to sensitize several
sensory receptors in rat DRG neurons. The present data is subject to several limitations. The
intervariability of the primary sensory neuron cultures may explain the variability observed
in the responses to the different analog neurotoxins. Increased numbers of experiments
could decrease the interexperimental variability but due to the limited availability of P-
CTX-2, the repetition of the experiments was limited. It should be noted that in vitro results
obtained in rodent DRG neurons may be considered with caution because they do not
integrate the complete environment, including the spatial and functional organization of
DRG neurons and fibers, immune and epithelial cells, and differences might exist between
rodents in vivo and humans [120,121].

4. Materials and Methods
4.1. Reagents

PbTx-1 and TTX were purchased from Latoxan (Valence, France). One µM of PbTx-1
was considered as a relevant concentration, given its relative potency compared with
P-CTX-1 and P-CTX-2 [21,122] and our studies [26,28]. Pure P-CTX-2 was isolated from
moray eel (Gymnothorax javanicus) livers as previously described [122]. A 1.15 mM stock
solution of PbTx-1 was prepared in pure methanol (MeOH), while a 10 µM stock solution
of P-CTX-2 was prepared in MeOH: water (1:1). Aliquots of PbTx-1 stock solution were
next dried and resolubilized in culture medium. Culture media were supplemented with
100 µg/mL of Normocin (InvivoGen, Toulouse, France). Keratinocyte-serum free medium
(KSFM) with L-glutamine, epidermal growth factor, and bovine pituitary extract provided
by Life Technologies (Saint Aubin, France) to obtain a so-called complete KSFM. Dulbecco’s
Modified Eagle Medium (DMEM) and DMEM plus Ham’s F12 media (DMEM:F12) were
purchased from Lonza Group Ltd. (Basel, Switzerland), veratridine, JT010, capsaicin,
SLIGRL, and chloroquine were purchased from Sigma-Aldrich (Saint Quentin Fallavier,
France) while GSK-1016790A was provided by Abcam (Cambridge, United Kingdom). To
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study TTX-r NaV sensitization, neurons were pretreated with TTX 300 nM, which inhibits
only TTX-s NaV channels [27,47,93], before treatment with the agonist veratridine. Agonist
targets and concentrations used are summarized below in the Table 1.

Table 1. Target receptors/ion channels and their corresponding agonists: Concentrations used for
sensitization study.

Target(s) Agonist/Antagonist Concentration Used References

NaV Veratridine 30 µM [12,123]
TTX-r NaV Veratridine/TTX 30 µM/300 nM [47,93,123]

PAR2/MrgprC SLIGRL 100 µM [66,67]
TRPA1 JT010 10 µM [65,124]
TRPV1 Capsaicin 200 nM [125,126]
TRPV4 GSK-1016790A 10 nM [68]

MrgprA Chloroquine 2 mM [78]

4.2. Cell Culture

Animal experiments were approved by local authorities and in accordance with
the French Ministry of Agriculture and the European Communities Council Directive
2010/63/UE. They were approved by the veterinary services of the Departmental Direc-
torate for the Protection of Populations of Finistere and the Animal Welfare Structure of
the University of Brest, France.

Rat sensory neurons were obtained from DRG of neonatal rats as previously de-
scribed [27]. Briefly, DRG were extracted from newborn Wistar rats between 2 and 5 days
after birth, then enzymatically (collagenase IV, 200 units/mL) and mechanically dissociated.
DRG suspension was filtered through 70 µm cell strainer before seeding in 96-well plates
or on glass coverslips coated with poly-L-lysine (PLL).

Rat keratinocytes were obtained from neonatal rat skin as previously described [127]
with minor modification including the dispase (20 UI/mL) used for enzymatic digestion
overnight at 4 ◦C. Keratinocytes between 1 and 3 passages were maintained in complete
KSFM for 24 h and then, differentiated for 14−16 h in mixture of DMEM/DMEM:F12 (1:1).

The co-culture model was performed as previously described [27] with minor modifica-
tions. Briefly, DRG neurons from one newborn rat were seeded in 10 wells of 96-well plates
in DMEM/DMEM:F12 (1:1) supplemented with Normocin (100 µg/mL), B27 (20 µL/mL),
NGF (100 ng/mL), insulin (4 µg/mL), BDNF (20 ng/mL) and hydrocortisone (10 ng/mL).
After 3−5 days of culture, the medium was removed, and 20,000 rat non-differentiated ker-
atinocytes per well were seeded in complete KSFM. Co-cultures were maintained for 24 h
at 37 ◦C in a 5% CO2 humidified atmosphere to allow keratinocyte attachment and then the
medium was replaced by DMEM/DMEM:F12 (1:1) to induce keratinocyte differentiation
for 14−16 h.

4.3. Single-Cell Calcium Video Imaging

DRG neurons were cultured on glass coverslips coated with PLL and maintained at
37 ◦C for 24 h. Then, DRG neurons were treated for 20 h either with 1 µM of PbTx-1, 10 nM
of P-CTX-2 or vehicle controls. Later, DRG neurons were placed in a recording buffer
(135 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 10 mM HEPES, 10 mM glucose
and pH adjusted at 7.45 with NaOH) and loaded with 4 µM of Fura-2/AM (Molecular
Probes, Invitrogen, Cergy Pontoise, France) for 30 min at 37 ◦C. After washing, ratiometric
images of calcium signals (340/380 nm) were obtained with the microscope IX71 Olympus
equipped with a monochromator illumination system (Polychrome V, TILL Photonics).
Emission at 510 nm was captured through a 415 DCLP dichroic mirror, by a 14-bit CCD
camera (EXiBlue, Qimaging). Image acquisition and analysis were performed with the
Metafluor 6.3 software (Universal Imaging, West Chester, PA, USA) at room temperature.

At least 50 to 150 regions of interest were defined with single neuron for each condition
of each experiment. Agonist was injected manually and data were recorded for several
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minutes. Background subtraction and calculation of the resulting 340/380 ratio images
were performed offline. Calcium entry was quantified after value normalization (with
the formula ∆F/F0 = (F−F0)/F0, where F is the ratiometric value at a given moment and
F0 is the baseline (average of values before agonist injection)). Cells were considered to
respond to the agonist when they exhibited a ∆F/F0 increase of at least 0.15. To study
the effect of pretreatment with P-CTX-2 or PbTx-1 on the response to the agonist, two
parameters were recorded: the percentage of responding cells and the maximum amplitude
value associated. The sensitization was assessed by measuring the ability of pretreatment
with PbTx-1 or P-CTX-2 to increase percentages of cell responding to the specific agonist
and/or the associated amplitude values, compared with vehicle pretreatment. We used
normalized data, due to the interexperimental variability in the responses of primary
neurons, considering as 100% the average data obtained with control condition for each
experiment. The “n” represents the number of independent experiments in which 50 to
150 neuronal cells have been integrated to the calcium analysis. Data were expressed as
mean ± standard error of the mean (SEM) of at least 3 separate experiments.

4.4. Magnetic Bead-Based NGF and BDNF Immunoassays

Co-cultured sensory neurons and keratinocytes were maintained between 5 to 7 days,
washed twice with medium without supplement and then treated for 24 h with 10 nM
of P-CTX-2 or equivalent of MeOH (vehicle control). Supernatants of the co-culture were
collected and stored at -80 ◦C. Neurotrophin levels were measured in the supernatants
using the magnetic bead-based assay (MAGPIX—Luminex, Austin, TX, USA) and the
mono-analysis kits for BDNF (RMYOMAG-88K-01, Merck-Millipore, Burlington, VT, USA)
and NGF (HAD2MAG-61K-01, Merck-Millipore, Burlington, VT, USA) according to the
manufacturer’s instructions. Data were collected using MAGPIX instrument (Luminex,
Austin, TX, USA) and xPONENT Software Version 4.3 (Luminex, Austin, TX, USA).

4.5. Data Analysis

The statistical analyses were conducted with GraphPad Prism 6.0 (San Diego, CA,
USA). The details are provided in the figure legends. Shapiro−Wilk normality test was
performed and in the case of non-normal distribution, a non-parametric approach was cho-
sen. Statistical analysis has been performed using a t-test. The differences were considered
statistically significant with p < 0.05.

5. Conclusions

This study shows that the marine neurotoxins P-CTX-2 et PbTx-1 are able to sensitize
in vitro several receptor/ion channels in the DRG neurons from newborn rats, including
TRPA1, MrgprA, MrgprC/PAR2, TRPV4 and TTX-r NaV channels. In contrast, TRPV1 and
TTX-s NaV channels are not sensitized by PbTx-1 and P-CTX-2. Similar to the sensory neu-
ropathies of other origins, the sensitization of those receptor/ion channels may contribute
to the development and maintenance of sensory symptoms occurring during CFP and NSP.
An increased level of NGF and BDNF after P-CTX-2 treatment in our homologue co-culture
model suggests they are potential mediators of this sensitization. Our results provide
new knowledge on the pathophysiology and could be very useful for the development of
therapeutic options for CFP and NSP.
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