Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review
Abstract
:1. Introduction
2. Chemical Structures of Diketopiperazines from Marine Organisms
2.1. Sponge
2.2. Bacteria
2.3. Actinomycetes
2.4. Fungi
2.4.1. Fungi from Sediment Origin
2.4.2. Fungi from Sponge Origin
2.4.3. Fungi from Beach Origin
2.4.4. Fungi from Mangrove Origin
2.4.5. Fungi from Coral Origin
2.4.6. Fungi from Alga Origin
2.4.7. Fungi from Other Origin
3. Chemical Structures of Diketopiperazine Derivatives from Marine Organisms
3.1. Actinomycetes
3.2. Fungi
4. Characteristics of Bioactive Diketopiperazines and Their Derivatives from Marine Organisms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, K.L.; Xing, R.R.; Yan, X.H. Cyclic dipeptides: Biological activities and self-assembled materials. Pept. Sci. 2021, 113, 13. [Google Scholar] [CrossRef]
- Zhao, P.C.; Xue, Y.; Li, J.H.; Li, X.; Zu, X.Y.; Zhao, Z.Q.; Quan, C.S.; Gao, W.N.; Feng, S.X. Non-lipopeptide fungi-derived peptide antibiotics developed since 2000. Biotechnol. Lett. 2019, 41, 651–673. [Google Scholar] [CrossRef] [PubMed]
- Borgman, P.; Lopez, R.D.; Lane, A.L. The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases. Org. Biomol. Chem. 2019, 17, 2305–2314. [Google Scholar] [CrossRef] [PubMed]
- Borthwick, A.D. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 2012, 112, 3641–3716. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhou, X.; Xu, T.; Yang, X.; Liu, Y. Diketopiperazines from marine organisms. Chem. Biodivers. 2010, 7, 2809–2829. [Google Scholar] [CrossRef] [PubMed]
- Guan, J. Insulin-like growth factor-1 and its derivatives: Potential pharmaceutical application for ischemic brain injury. Recent Pat. CNS Drug Discov. 2008, 3, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.L.; Zhang, Y.W.; Deng, J.M.; Jiang, H.Y.; Zhuang, L.M.; Ye, W.; Ma, J.Y.; Jiang, J.Y.; Feng, L.F. Diketopiperazines synthesis gene in Shewanella baltica and roles of diketopiperazines and resveratrol in quorum sensing. J. Agric. Food Chem. 2019, 67, 12013–12025. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Bi, W.; Chen, S.; Zhu, J.; Liu, X. Regulatory function of sigma factors RpoS/RpoN in adaptation and spoilage potential of Shewanella baltica. Food Microbiol. 2021, 97, 103755. [Google Scholar] [CrossRef]
- Turkez, H.; Cacciatore, I.; Arslan, M.E.; Fornasari, E.; Marinelli, L.; Di Stefano, A.; Mardinoglu, A. Histidyl-proline diketopiperazine isomers as multipotent anti-alzheimer drug candidates. Biomolecules 2020, 10, 737. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.P.; Li, F.F.; Zhong, C.J.; Li, F.; Liu, Y.Q.; Wang, S.X.; Zhao, J.C.; Li, W.B. Structure-based design and synthesis of novel furan-diketopiperazine-type derivatives as potent microtubule inhibitors for treating cancer. Bioorg. Med. Chem. 2020, 28, 16. [Google Scholar] [CrossRef]
- Deigin, V.; Ksenofontova, O.; Yatskin, O.; Goryacheva, A.; Ignatova, A.; Feofanov, A.; Ivanov, V. Novel platform for the preparation of synthetic orally active peptidomimetics with hemoregulating activity. II. Hemosuppressor activity of 2,5-diketopiperazine-based cyclopeptides. Int. Immunopharmacol. 2020, 81, 106185. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; Maeno, S.; Hashimoto, M.; Mine, Y. Bicyclomycin, a new antibiotic. II. Structural elucidation and acyl derivatives. J. Antibiot. 1972, 25, 576–581. [Google Scholar] [CrossRef] [Green Version]
- Kohn, H.; Widger, W. The molecular basis for the mode of action of bicyclomycin. Curr. Drug Targets Infect. Disord. 2005, 5, 273–295. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, M.P.; Abraham, W.R. Antimicrobial and biofilm inhibiting diketopiperazines. Curr. Med. Chem. 2012, 19, 3564–3577. [Google Scholar] [CrossRef]
- Hauser, D.; Weber, H.P.; Sigg, H.P. Isolation and configuration of chaetocin. Helv. Chim. Acta. 1970, 53, 1061–1073. [Google Scholar] [CrossRef]
- Greiner, D.; Bonaldi, T.; Eskeland, R.; Roemer, E.; Imhof, A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat. Chem. Biol. 2005, 1, 143–145. [Google Scholar] [CrossRef]
- Isham, C.R.; Tibodeau, J.D.; Jin, W.; Xu, R.F.; Timm, M.M.; Bible, K.C. Chaetocin: A promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood 2008, 109, 2579–2588. [Google Scholar] [CrossRef] [Green Version]
- Jeong, P.S.; Sim, B.W.; Park, S.H.; Kim, M.J.; Kang, H.G.; Nanjidsuren, T.; Lee, S.; Song, B.S.; Koo, D.B.; Kim, S.U. Chaetocin improves pig cloning efficiency by enhancing epigenetic reprogramming and autophagic activity. Int. J. Mol. Sci. 2020, 21, 4836. [Google Scholar] [CrossRef]
- Liang, Y.D.; Liu, X.; Zhou, R.P.; Song, D.W.; Jiang, Y.Z.; Xue, W.W. Chaetocin promotes osteogenic differentiation via modulating Wnt/Beta-Catenin signaling in mesenchymal stem cells. Stem. Cells. Int. 2021, 2021, 6. [Google Scholar] [CrossRef]
- Nicholson, B.; Lloyd, G.K.; Miller, B.R.; Palladino, M.A.; Kiso, Y.; Hayashi, Y.; Neuteboom, S.T.C. NPI-2358 is a tubulin-depolymerizing agent: In-vitro evidence for activity as a tumor vascular-disrupting agent. Anti-Cancer Drugs 2006, 17, 25–31. [Google Scholar] [CrossRef]
- Heist, R.; Aren, O.; Millward, M.; Mainwaring, P.; Mita, A.; Mita, M.; Bazhenova, L.; Blum, R.; Polikoff, J.; Gadgeel, S.; et al. Phase 1/2 study of the vascular disrupting agent (VDA) plinabulin (NPI-2358) combined with docetaxel in patients with non-small cell lung cancer (NSCLC). Mol. Cancer Ther. 2009, 8, 3. [Google Scholar] [CrossRef]
- Natoli, M.; Herzig, P.; Bejestani, E.P.; Buchi, M.; Ritschard, R.; Lloyd, G.K.; Mohanlal, R.; Tonra, J.R.; Huang, L.; Heinzelmann, V.; et al. Plinabulin, a distinct microtubule-targeting chemotherapy, promotes M1-Like macrophage polarization and nti-tumor immunity. Front. Oncol. 2021, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Cornacchia, C.; Cacciatore, I.; Baldassarre, L.; Mollica, A.; Feliciani, F.; Pinnen, F. 2,5-Diketopiperazines as neuroprotective agents. Mini-Rev. Med. Chem. 2012, 12, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Virgone-Carlotta, A.; Dufour, E.; Bacot, S.; Ahmadi, M.; Cornou, M.; Moni, L.; Garcia, J.; Chierici, S.; Garin, D.; Marti-Batlle, D.; et al. New diketopiperazines as vectors for peptide protection and brain delivery: Synthesis and biological evaluation. J. Label. Compd. Radiopharm. 2016, 59, 517–530. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Ma, H.G.; Zhu, W.M. Developments around the bioactive diketopiperazines: A patent review. Expert Opin. Ther. Pat. 2013, 23, 1415–1433. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A global review on short peptides: Frontiers and perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Cao, J.; Wang, B.-G. Chemical diversity and biological function of indolediketopiperazines from marine-derived fungi. Mar. Life Sci. Technol. 2020, 2, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Gomes, N.G.M.; Pereira, R.B.; Andrade, P.B.; Valentao, P. Double the chemistry, double the fun: Structural diversity and biological activity of marine-derived diketopiperazine dimers. Mar. Drugs 2019, 17, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.M.; Yi, X.X.; Zhou, Y.Y.; Su, X.D.; Peng, Y.; Gao, C.H. An update on 2,5-diketopiperazines from marine organisms. Mar. Drugs 2014, 12, 6213–6235. [Google Scholar] [CrossRef]
- Yang, B.; Huang, J.X.; Lin, X.P.; Zhang, Y.Y.; Tao, H.M.; Liu, Y.H. A new diketopiperazine from the marine sponge callyspongia species. Molecules 2010, 15, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Di, X.X.; Rouger, C.; Hardardottir, I.; Freysdottir, J.; Molinski, T.F.; Tasdemir, D.; Omarsdottir, S. 6-Bromoindole derivatives from the icelandic marine sponge geodia barretti: Isolation and anti-inflammatory activity. Mar. Drugs 2018, 16, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Lai, W.; Guan, Z.B.; Liao, X.J.; Zhao, B.X.; Xu, S.H. A new thiodiketopiperzaine from the marine sponge Tedania sp. Nat. Prod. Res. 2019, 34, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Kouchaksaraee, R.M.; Farimani, M.M.; Li, F.J.; Nazemi, M.; Tasdemir, D. Integrating molecular networking and (1)H NMR spectroscopy for isolation of bioactive metabolites from the Persian Gulf Sponge Axinella sinoxea. Mar. Drugs 2020, 18, 366. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.W.; Dai, X.Y.; Sun, J.; Bu, X.G.; Weng, C.H.; Li, H.; Zhu, H. A diketopiperazine factor from Rheinheimera aquimaris QSI02 exhibits anti-quorum sensing activity. Sci. Rep. 2016, 6, 39637. [Google Scholar] [CrossRef] [Green Version]
- Andi, R.R.; Muntaz, A.B.; Nurul, N.A.R.; Abdul, M.A.M.; Azira, M.; Rozida, M.K. Diketopiperazine produced by psychrophilic yeast Glaciozyma antarctica PI12. Malays. J. Anal. Sci. 2017, 21. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Lai, T.K.; Saha, A.; Selvin, J.; Mukherjee, J. Structural elucidation and antimicrobial activity of a diketopiperazine isolated from a Bacillus sp. associated with the marine sponge Spongia officinalis. Nat. Prod. Res. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Ding, L.J.; Xu, P.; Zhang, W.Y.; Yuan, Y.; He, X.P.; Su, D.Q.; Shi, Y.T.; Naman, C.B.; Yan, X.J.; Wu, B.; et al. Three new diketopiperazines from the previously uncultivable marine bacterium Gallaecimonas mangrovi HK-28 cultivated by iChip. Chem. Biodivers. 2020, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Harizani, M.; Katsini, E.; Georgantea, P.; Roussis, V.; Ioannou, E. New chlorinated 2,5-diketopiperazines from marine-derived bacteria isolated from sediments of the eastern Mediterranean Sea. Molecules 2020, 25, 509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Z.Q.; Liu, Q.X.; Pan, Z.L.; Zhao, N.; Feng, Z.X.; Wang, Y. Diversity and bioprospecting of culturable actinomycetes from marine sediment of the Yellow Sea, China. Arch. Microbiol. 2014, 197, 299–309. [Google Scholar] [CrossRef]
- Buedenbender, L.; Grkovic, T.; Duffy, S.; Kurtboke, D.I.; Avery, V.M.; Carroll, A.R. Naseseazine C, a new anti-plasmodial dimeric diketopiperazine from a marine sediment derived Streptomyces sp. Tetrahedron. Lett. 2016, 57, 5893–5895. [Google Scholar] [CrossRef]
- Luo, M.H.; Tang, G.L.; Ju, J.H.; Lu, L.C.; Huang, H.B. A new diketopiperazine derivative from a deep sea-derived Streptomyces sp. SCSIO 04496. Nat. Prod. Res. 2016, 30, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.X.; Zou, Y.; Huang, T.T.; Wang, X.Z.; Brock, N.L.; Deng, Z.X.; Lin, S.J. Indole methylation protects diketopiperazine configuration in the maremycin biosynthetic pathway. Sci. China Chem. 2016, 59, 1224–1228. [Google Scholar] [CrossRef]
- Ou, Y.X.; Huang, J.F.; Li, X.M.; Kang, Q.J.; Pan, Y.T. Three new 2,5-diketopiperazines from the fish intestinal Streptomyces sp. MNU FJ-36. Nat. Prod. Res. 2016, 30, 1771–1775. [Google Scholar] [CrossRef]
- Chen, M.X.; Chai, W.Y.; Zhu, R.Y.; Song, T.F.; Zhang, Z.Z.; Lian, X.Y. Streptopyrazinones A–D, rare metabolites from marine-derived Streptomyces sp ZZ446. Tetrahedron 2018, 74, 2100–2106. [Google Scholar] [CrossRef]
- Chen, S.L.; Zhang, D.; Chen, M.X.; Zhang, Z.Z.; Lian, X.Y. A rare diketopiperazine glycoside from marine-sourced Streptomyces sp. ZZ446. Nat. Prod. Res. 2018, 34, 1046–1050. [Google Scholar] [CrossRef] [PubMed]
- Shaala, L.A.; Youssef, D.T.A.; Badr, J.M.; Harakeh, S.M.; Genta-Jouve, G. Bioactive diketopiperazines and nucleoside derivatives from a sponge-derived Streptomyces species. Mar. Drugs 2019, 17, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, W.W.; Qin, L.; Lian, X.Y.; Zhang, Z.Z. New antifungal metabolites from the Mariana Trench sediment-associated actinomycete Streptomyces sp. SY1965. Mar. Drugs 2020, 18, 385. [Google Scholar] [CrossRef]
- Lin, C.K.; Wang, Y.T.; Hung, E.M.; Yang, Y.L.; Lee, J.C.; Sheu, J.H.; Liaw, C.C. Butyrolactones and diketopiperazines from marine microbes: Inhibition effects on dengue virus Type 2 replication. Planta Med. 2017, 83, 158–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.Y.; Yang, X.M.; Li, F.; Yi, X.X.; Yu, L.; Gao, C.H.; Huang, R.M. A new diketopiperazine of Nocardiopsis alba isolated from Anthogorgia caerulea. Chem. Nat. Compd. 2017, 53, 338–340. [Google Scholar] [CrossRef]
- Kim, M.C.; Cullum, R.; Machado, H.; Smith, A.J.; Yang, I.; Rodvold, J.J.; Fenical, W. Photopiperazines A–D, photosensitive interconverting diketopiperazines with significant and selective activity against U87 glioblastoma cells, from a rare, marine-derived actinomycete of the family Streptomycetaceae. J. Nat. Prod. 2019, 82, 2262–2267. [Google Scholar] [CrossRef] [PubMed]
- Song, M.M.; Xie, Y.H.; Chen, W.H.; Hu, Y.W.; Zhao, K.; Liu, Y.H.; Huang, X.L.; Liu, Q.C.; Wang, J.F. Diketopiperazine and enterotoxin analogues from the mangrove derived-soil Streptomyces sp. SCSIO 41400 and their biological evaluation. Nat. Prod. Res. 2020, 1–8. [Google Scholar] [CrossRef]
- Fukuda, T.; Shinkai, M.; Sasaki, E.; Nagai, K.; Kurihara, Y.; Kanamoto, A.; Tomoda, H. Graphiumins, new thiodiketopiperazines from the marine-derived fungus Graphium sp. OPMF00224. J. Antibiot. 2015, 68, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Nagai, K.; Kurihara, Y.; Kanamoto, A.; Tomoda, H. Graphiumins I and J, new thiodiketopiperazines from the marine-derived fungus Graphium sp. OPMF00224. J. Antibiot. 2015, 21, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.B.; Zhang, Y.Y.; Ding, L.J.; He, S.; Wu, B.; Dong, J.D.; Zhu, P.; Chen, J.J.; Zhang, J.R.; Yan, X.J. Preparative separation of sulfur-containing diketopiperazines from marine fungus Cladosporium sp. using high-speed counter-current chromatography in stepwise elution mode. Mar. Drugs 2015, 13, 354–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.P.; Ding, L.J.; Yi, M.Q.; Xu, J.Z.; Zhou, X.Z.; Zhang, W.Y.; He, S. Separation of five diketopiperazines from the marine fungus Alternaria alternate HK-25 by high-speed counter-current chromatography. J. Sep. Sci. 2019, 42, 2510–2516. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Ko, S.K.; Son, S.; Shin, K.S.; Ryoo, I.J.; Hong, Y.S.; Oh, H.; Hwang, B.Y.; Hirota, H.; Takahashi, S.; et al. Haenamindole, an unusual diketopiperazine derivative from a marine-derived Penicillium sp. KCB12F005. Bioorg. Med. Chem. Lett. 2015, 25, 5398–5401. [Google Scholar] [CrossRef]
- Hawas, U.W.; El-Kassem, L.T.A. Anticancer and antiviral diketopiperazine produced by the Red Sea endophytic fungus Penicillium chrysogenum. Lett. Org. Chem. 2019, 16, 409–414. [Google Scholar] [CrossRef]
- Fan, Z.; Sun, Z.H.; Liu, Z.; Chen, Y.C.; Liu, H.X.; Li, H.H.; Zhang, W.M. Dichotocejpins A–C: New diketopiperazines from a deep-sea-derived fungus Dichotomomyces cejpii FS110. Mar. Drugs 2016, 14, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, K.; Khong, T.T.; Leutou, A.S.; Kim, G.D.; Hong, J.; Lee, C.H.; Son, B.W. Cristazine, a new cytotoxic dioxopiperazinealkaloid from themudflat-sediment-derived fungus Chaetomium cristatum. Chem. Pharm. Bull. 2016, 64, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Jo, M.J.; Patil, M.P.; Jung, H.I.; Seo, Y.B.; Lim, H.K.; Son, B.W.; Kim, G.D. Cristazine, a novel dioxopiperazine alkaloid, induces apoptosis via the death receptor pathway in A431 cells. Drug. Dev. Res. 2019, 80, 504–512. [Google Scholar] [CrossRef]
- Niu, S.W.; Liu, D.; Shao, Z.Z.; Proksch, P.; Lin, W.H. Eutypellazines N–S, new thiodiketopiperazines from a deep sea sediment derived fungus Eutypella sp. with anti-VRE activities. Tetrahedron Lett. 2017, 58, 3695–3699. [Google Scholar] [CrossRef]
- Niu, S.W.; Liu, D.; Shao, Z.Z.; Proksch, P.; Lin, W.H. Eutypellazines A-M, thiodiketopiperazine-type alkaloids from deep sea derived fungus Eutypella sp. MCCC 3A00281. RSC. Adv. 2017, 7, 33580–33590. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.C.; Zhang, Z.Z.; Feng, Y.Y.; Gu, Q.Q.; Li, D.H.; Zhu, T.J. Secondary metabolites from Antarctic marine-derived fungus Penicillium crustosum HDN153086. Nat. Prod. Res. 2018, 33, 414–419. [Google Scholar] [CrossRef]
- Niu, S.W.; Wang, N.; Xie, C.L.; Fan, Z.W.; Luo, Z.H.; Chen, H.F.; Yang, X.W. Roquefortine J, a novel roquefortine alkaloid, from the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475. J. Antibiot. 2018, 71, 658–661. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.W.; Fan, Z.W.; Xie, C.L.; Liu, Q.M.; Luo, Z.H.; Liu, G.M.; Yang, X.W. Spirograterpene A, a tetracyclic spiro-diterpene with a fused 5/5/5/5 ring system from the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475. J. Nat. Prod. 2017, 80, 2174–2177. [Google Scholar] [CrossRef]
- Hu, J.S.; Li, Z.; Gao, J.Y.; He, H.T.; Dai, H.Q.; Xia, X.K.; Liu, C.H.; Zhang, L.X.; Song, F.H. New diketopiperazines from a marine-derived fungus strain Aspergillus versicolor MF180151. Mar. Drugs 2019, 17, 262. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Hu, Y.Y.; Hao, X.M.; Tan, J.L.; Li, F.; Qiao, X.R.; Chen, S.Z.; Xiao, C.L.; Chen, M.H.; Peng, Z.G.; et al. Raistrickindole A, an anti-HCV oxazinoindole alkaloid from Penicillium raistrickii IMB17-034. J. Nat. Prod. 2019, 82, 1391–1395. [Google Scholar] [CrossRef]
- Chi, L.P.; Li, X.M.; Li, L.; Li, X.; Wang, B.G. Cytotoxic thiodiketopiperazine derivatives from the deep sea-derived fungus Epicoccum nigrum SD-388. Mar. Drugs 2020, 18, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, W.M.; Wang, J.F.; Wei, X.Y.; Fu, T.D.; Chen, Y.C.; Zeng, Q.; Huang, Z.H.; Huang, X.N.; Zhang, W.M.; Zhang, S.; et al. Three pairs of new spirocyclic alkaloid enantiomers from the marine-derived fungus Eurotium sp. SCSIO F452. Front. Chem. 2019, 7, 350. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.X.; Gao, H.Q.; Li, J.; Ai, J.; Geng, M.Y.; Zhang, G.J.; Zhu, T.J.; Gu, Q.Q.; Li, D.H. Prenylated indole diketopiperazines from the marine-derived fungus Aspergillus versicolor. J. Org. Chem. 2014, 79, 7895–7904. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Si, L.L.; Liu, D.; Proksch, P.; Zhang, L.H.; Zhou, D.M.; Lin, W.H. Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin. Eur. J. Med. Chem. 2015, 93, 182–195. [Google Scholar] [CrossRef]
- Yu, L.Y.; Ding, W.J.; Wang, Q.Q.; Ma, Z.J.; Xu, X.W.; Zhao, X.F.; Chen, Z. Induction of cryptic bioactive 2,5-diketopiperazines in fungus Penicillium sp. DT-F29 by microbial co-culture. Tetrahedron 2017, 73, 907–914. [Google Scholar] [CrossRef]
- Zhong, W.M.; Wang, J.F.; Shi, X.F.; Wei, X.Y.; Chen, Y.C.; Zeng, Q.; Xiang, Y.; Chen, X.Y.; Tian, X.P.; Xiao, Z.H.; et al. Eurotiumins A–E, five new alkaloids from the marine-derived fungus Eurotium sp. SCSIO F452. Mar. Drugs 2018, 16, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, W.M.; Wang, J.F.; Wei, X.Y.; Chen, Y.C.; Fu, T.D.; Xiang, Y.; Huang, X.N.; Tian, X.P.; Xiao, Z.H.; Zhang, W.M.; et al. Variecolortins A–C, three pairs of spirocyclic diketopiperazine enantiomers from the marine-derived fungus Eurotium sp. SCSIO F452. Org. Lett. 2018, 20, 4593–4596. [Google Scholar] [CrossRef] [PubMed]
- Harms, H.; Orlikova, B.; Ji, S.; Nesaei-Mosaferan, D.; Konig, G.M.; Diederich, M. Epipolythiodiketopiperazines from the marine derived fungus Dichotomomyces cejpii with NF-kappa B inhibitory potential. Mar. Drugs 2015, 13, 4949–4966. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Mandi, A.; Li, X.M.; Meng, L.H.; Kurtan, T.; Wang, B.G. Peniciadametizine A, a dithiodiketopiperazine with a unique spiro furan-2,7 ‘-pyrazino 1,2-b 1,2 oxazine skeleton, and a related analogue, peniciadametizine B, from the marine sponge-derived fungus Penicillium adametzioides. Mar. Drugs 2015, 13, 3640–3652. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.F.; Fang, S.T.; Li, W.Z.; Liu, S.J.; Wang, J.H.; Xia, C.H. A new minor diketopiperazine from the sponge-derived fungus Simplicillium sp. YZ-11. Nat. Prod. Res. 2015, 29, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Zin, W.W.M.; Buttachon, S.; Dethoup, T.; Fernandes, C.; Cravo, S.; Pinto, M.M.M.; Gales, L.; Pereira, J.A.; Silva, A.M.S.; Sekeroglu, N.; et al. New cyclotetrapeptides and a new diketopiperzine derivative from the marine sponge-associated fungus Neosartorya glabra KUFA 0702. Mar. Drugs 2016, 14, 136. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.B.; Gui, Y.H.; Liu, L.; Su, Z.Y.; Jiao, W.H.; Li, L.; Sun, F.; Wang, S.P.; Yang, F.; Lin, H.W. A new asymmetric diketopiperazine dimer from the sponge-associated fungus Aspergillus versicolor 16F-11. Magn. Reson. Chem. 2019, 57, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.T.; Gu, B.B.; Yang, L.J.; Yang, F.; Lin, H.W. New Anti-inflammatory cyclopeptides from a sponge-derived fungus Aspergillus violaceofuscus. Front. Chem. 2018, 6, 226. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.; Ozkaya, F.C.; Muller, W.E.G.; Hamacher, A.; Kassack, M.U.; Lin, W.H.; Liu, Z.; Proksch, P. Cryptic secondary metabolites from the sponge-associated fungus Aspergillus ochraceus. Mar. Drugs 2019, 17, 99. [Google Scholar] [CrossRef] [Green Version]
- Asiri, I.A.M.; Badr, J.M.; Youssef, D.T.A. Penicillivinacine, antimigratory diketopiperazine alkaloid from the marine-derived fungus Penicillium vinaceum. Phytochem. Lett. 2015, 13, 53–58. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.M.; Meng, L.H.; Jiang, W.L.; Xu, G.M.; Huang, C.G.; Wang, B.G. Bisthiodiketopiperazines and acorane sesquiterpenes produced by the marine-derived fungus Penicillium adametzioides AS-53 on different culture media. J. Nat. Prod. 2015, 78, 1294–1299. [Google Scholar] [CrossRef]
- Cho, K.H.; Sohn, J.H.; Oh, H. Isolation and structure determination of a new diketopiperazine dimer from marine-derived fungus Aspergillus sp. SF-5280. Nat. Prod. Res. 2017, 32, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Cui, C.B.; Li, C.W. A new cyclic dipeptide penicimutide: The activated production of cyclic dipeptides by introduction of neomycin-resistance in the marine-derived fungus Penicillium purpurogenum G59. Arch. Pharm. Res. 2016, 39, 762–770. [Google Scholar] [CrossRef]
- Wang, N.; Dong, Y.; Yang, Y.; Xu, R.; Li, C.W.; Cui, C.B. Penicimutanin C, a new alkaloidal compound, isolated from a neomycin-resistant mutant 3-f-31 of Penicillium purpurogenum G59. Chem. Biodivers. 2020, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Q.; Sarotti, A.M.; Jiang, G.D.; Huguet-Tapia, J.C.; Zheng, S.L.; Wu, X.H.; Li, C.S.; Ding, Y.S.; Cao, S.G. Waikikiamides A–C: Complex diketopiperazine dimer and diketopiperazine-polyketide hybrids from a hawaiian marine fungal strain Aspergillus sp. FM242. Org. Lett. 2020, 22, 4408–4412. [Google Scholar] [CrossRef]
- Jiang, C.S.; Zhou, Z.F.; Yang, X.H.; Lan, L.F.; Gu, Y.C.; Ye, B.P.; Guo, Y.W. Antibacterial sorbicillin and diketopiperazines from the endogenous fungus Penicillium sp. GD6 associated Chinese mangrove Bruguiera gymnorrhiza. Chin. J. Nat. Med. 2018, 16, 358–365. [Google Scholar] [CrossRef]
- Cai, R.L.; Jiang, H.M.; Xiao, Z.; Cao, W.H.; Yang, T.; Liu, Z.M.; Lin, S.E.; Long, Y.H.; She, Z.G. (−)- and (+)-Asperginulin A, a pair of indole diketopiperazine alkaloid dimers with a 6/5/4/5/6 pentacyclic skeleton from the mangrove endophytic fungus Aspergillus sp. SK-28. Org. Lett. 2019, 21, 9633–9636. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Guo, W.Q.; Wu, L.; Zhu, T.J.; Gu, Q.Q.; Li, D.H.; Che, Q. Saroclazines A–C, thio-diketopiperazines from mangrove-derived fungi Sarocladium kiliense HDN11-84. Arch. Pharm. Res. 2017, 41, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.H.; Li, X.M.; Lv, C.T.; Huang, C.G.; Wang, B.G. Brocazines A–F, cytotoxic bisthiodiketopiperazine derivatives from Penicillium brocae MA-231, an endophytic fungus derived from the marine mangrove plant Avicennia marina. J. Nat. Prod. 2014, 77, 1921–1927. [Google Scholar] [CrossRef]
- Meng, L.H.; Zhang, P.; Li, X.M.; Wang, B.G. Penicibrocazines A–E, five new sulfide diketopiperazines from the marine-derived endophytic fungus Penicillium brocae. Mar. Drugs 2015, 13, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.H.; Wang, C.Y.; Mandi, A.; Li, X.M.; Hu, X.Y.; Kassack, M.U.; Kurtan, T.; Wang, B.G. Three diketopiperazine alkaloids with spirocyclic skeletons and one bisthiodiketopiperazine derivative from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Org. Lett. 2016, 18, 5304–5307. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, H.J.; Xu, M.Y.; Ju, Y.C.; Wang, L.Y.; Xu, J.; Yang, D.P.; Lan, W.J. Pseudellones A–C, three alkaloids from the marine-derived fungus Pseudallescheria ellipsoidea F42-3. Org. Lett. 2015, 17, 5156–5159. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.J.; Wang, K.T.; Xu, M.Y.; Zhang, J.J.; Lam, C.K.; Zhong, G.H.; Xu, J.; Yang, D.P.; Li, H.J.; Wang, L.Y. Secondary metabolites with chemical diversity from the marine-derived fungus Pseudallescheria boydii F19-1 and their cytotoxic activity. RSC Adv. 2016, 6, 76206–76213. [Google Scholar] [CrossRef]
- Chen, Y.X.; Xu, M.Y.; Li, H.J.; Zeng, K.J.; Ma, W.Z.; Tian, G.B.; Xu, J.; Yang, D.P.; Lan, W.J. Diverse secondary metabolites from the marine-derived fungus Dichotomomyces cejpii F31-1. Mar. Drugs 2017, 15, 339. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Feng, C.; Wang, S.Y.; Zhang, D.M.; Li, X.H.; Zhang, C.X. New indole diketopiperazine alkaloids from soft coral-associated epiphytic fungus Aspergillus sp. EGF 15-0-3. Chem. Biodivers. 2020, 17, 11. [Google Scholar] [CrossRef]
- Zhuravleva, O.I.; Antonov, A.S.; Trang, V.T.D.; Pivkin, M.V.; Khudyakova, Y.V.; Denisenko, V.A.; Popov, R.S.; Kim, N.Y.; Yurchenko, E.A.; Gerasimenko, A.V.; et al. New deoxyisoaustamide derivatives from the coral-derived fungus Penicillium dimorphosporum KMM 4689. Mar. Drugs 2021, 19, 32. [Google Scholar] [CrossRef]
- Wang, K.T.; Xu, M.Y.; Liu, W.; Li, H.J.; Xu, J.; Yang, D.P.; Lan, W.J.; Wang, L.Y. Two additional new compounds from the marine-derived fungus Pseudallescheria ellipsoidea F42-3. Molecules 2016, 21, 442. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.Z.; Miao, F.P.; Fang, S.T.; Yin, X.L.; Ji, N.Y. Sulfurated diketopiperazines from an algicolous isolate of Trichoderma virens. Phytochem. Lett. 2018, 27, 101–104. [Google Scholar] [CrossRef]
- Song, Y.P.; Miao, F.P.; Fang, S.T.; Yin, X.L.; Ji, N.Y. Halogenated and nonhalogenated metabolites from the marine-alga-endophytic fungus Trichoderma asperellum cf44-2. Mar. Drugs 2018, 16, 266. [Google Scholar] [CrossRef] [Green Version]
- Yurchenko, A.N.; Berdyshev, D.V.; Smetanina, O.F.; Ivanets, E.V.; Zhuravleva, O.I.; Rasin, A.B.; Khudyakova, Y.V.; Popov, R.S.; Dyshlovoy, S.A.; von Amsberg, G.; et al. Citriperazines A–D produced by a marine algae-derived fungus Penicillium sp. KMM 4672. Nat. Prod. Res. 2019, 34, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Li, X.M.; Meng, L.H.; Konuklugil, B.; Li, X.; Li, H.L.; Wang, B.G. Isolation and characterization of three pairs of indolediketopiperazine enantiomers containing infrequent N-methoxy substitution from the marine algal-derived endophytic fungus Acrostalagmus luteoalbus TK-43. Bioorg. Chem. 2019, 90, 103030. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Miao, F.; Yin, X.; Ji, N. Three nitrogen-containing metabolites from an algicolous isolate of Trichoderma asperellum. Mar. Life Sci. Technol. 2020, 2, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Yurchenko, A.N.; Smetanina, O.F.; Ivanets, E.V.; Kalinovsky, A.I.; Khudyakova, Y.V.; Kirichuk, N.N.; Popov, R.S.; Bokemeyer, C.; von Amsberg, G.; Chingizova, E.A.; et al. Pretrichodermamides D–F from a marine algicolous fungus Penicillium sp. KMM 4672. Mar. Drugs 2016, 14, 122. [Google Scholar] [CrossRef] [PubMed]
- Du, F.Y.; Li, X.; Li, X.M.; Zhu, L.W.; Wang, B.G. Indolediketopiperazine alkaloids from Eurotium cristatum EN-220, an endophytic fungus isolated from the marine alga Sargassum thunbergii. Mar. Drugs 2017, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, L.P.; Wang, B.; Xu, Y.C.; Zhu, G.L.; Lan, M.M.; Zhu, W.M.; Sun, K.L. Diketopiperazine and diphenylether derivatives from marine algae-derived Aspergillus versicolor OUCMDZ-2738 by epigenetic activation. Mar. Drugs 2018, 17, 6. [Google Scholar] [CrossRef] [Green Version]
- Kamauchi, H.; Kinoshita, K.; Sugita, T.; Koyama, K. Conditional changes enhanced production of bioactive metabolites of marine derived fungus Eurotium rubrum. Bioorg. Med. Chem. Lett. 2016, 26, 4911–4914. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Geng, C.; Zhang, X.W.; Zhu, H.J.; Shao, C.L.; Cao, F.; Wang, C.Y. Discovery of bioactive indole-diketopiperazines from the marine-derived fungus Penicillium brasilianum aided by genomic information. Mar. Drugs 2019, 17, 514. [Google Scholar] [CrossRef] [Green Version]
- Han, W.R.; Cai, J.; Zhong, W.M.; Xu, G.M.; Wang, F.Z.; Tian, X.P.; Zhou, X.J.; Liu, Q.C.; Liu, Y.H.; Wang, J.F. Protein tyrosine phosphatase 1B (PTP1B) inhibitors from the deep-sea fungus Penicillium chrysogenum SCSIO 07007. Bioorg. Chem. 2020, 96, 103646. [Google Scholar] [CrossRef]
- Wu, J.S.; Shi, X.H.; Yao, G.S.; Shao, C.L.; Fu, X.M.; Zhang, X.L.; Guan, H.S.; Wang, C.Y. New thiodiketopiperazine and 3,4-dihydroisocoumarin derivatives from the marine-derived fungus Aspergillus terreus. Mar. Drugs 2020, 18, 132. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Zhu, X.J.; Hao, L.L.; Zhao, M.Y.; Hua, Q.; An, F.L. Bioactive indolyl diketopiperazines from the marine derived endophytic Aspergillus versicolor DY180635. Mar. Drugs 2020, 18, 338. [Google Scholar] [CrossRef]
- Youssef, D.T.A.; Alahdal, A.M. Cytotoxic and antimicrobial compounds from the marine-derived fungus, Penicillium Species. Molecules 2018, 23, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, T.; Takahashi, M.; Nagai, K.; Harunari, E.; Imada, C.; Tomoda, H. Isomethoxyneihumicin, a new cytotoxic agent produced by marine Nocardiopsis alba KM6-1. J. Antibiot. 2017, 70, 590–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, P.; Liu, P.P.; Qu, H.J.; Wang, Y.; Chen, D.F.; Wang, H.; Li, J.; Zhu, W.M. Alpha-pyrones and diketopiperazine derivatives from the marine-derived actinomycete Nocardiopsis dassonvillei HR10-5. J. Nat. Prod. 2011, 74, 2219–2223. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.W.; Chen, X.T.; Li, W.J.; Lu, C.H.; Shen, Y.M. New diketopiperazine derivatives with cytotoxicity from Nocardiopsis sp YIM M13066. J. Antibiot. 2017, 70, 795–797. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, L.L.; Wang, G.F.; Yang, Q.L.; Fu, X.Z.; Li, Z.; Liu, M.; Kou, L.J.; Xu, B.; Xie, Z.P.; et al. Strepyrazinone, a tricyclic diketopiperazine derivative with cytotoxicity from a marine-derived actinobacterium. J. Asian Nat. Prod. Res. 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, X.M.; Wang, J.N.; Wang, B.G. Oxepine-containing diketopiperazine alkaloids from the algal-derived endophytic fungus Paecilomyces variotii EN-291. Helv.Chim. Acta. 2015, 98, 800–804. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, X.L.; Lu, X.H.; Zheng, Z.H.; Ma, X.; Qi, S.H. Diketopiperazine-type alkaloids from a deep-sea-derived Aspergillus puniceus fungus and their effects on liver X receptor alpha. J. Nat. Prod. 2019, 82, 1558–1564. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Lin, S.N.; Zhou, H.; Lin, S.T.; Wang, S.Y.; Liu, Y.H. Protuboxepin C and protuboxepin D from the sponge-derived fungus Aspergillus sp. SCSIO XWS02F40. Nat. Prod. Res. 2018, 32, 2510–2515. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.Q.; Lin, X.P.; Wang, Z.; Zhou, X.F.; Qin, X.C.; Kaliyaperumal, K.; Zhang, T.Y.; Tu, Z.C.; Liu, Y.H. Asteltoxins with antiviral activities from the marine sponge-derived fungus Aspergillus sp. SCSIO XWS02F40. Molecules 2015, 21, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.W.; Chen, C.M.; Tao, H.M.; Lin, X.P.; Yang, B.; Zhou, X.F.; Liu, Y.H. Structurally diverse diketopiperazine alkaloids from the marine-derived fungus Aspergillus versicolor SCSIO 41016. Org. Chem. Front. 2019, 6, 736–740. [Google Scholar] [CrossRef]
- Xu, W.F.; Mao, N.; Xue, X.J.; Qi, Y.X.; Wei, M.Y.; Wang, C.Y.; Shao, C.L. Structures and absolute configurations of diketopiperazine alkaloids chrysopiperazines A–C from the gorgonian-derived Penicillium chrysogenum fungus. Mar. Drugs 2019, 17, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.M.; Ju, C.X.; Li, G.; Sun, Y.; Peng, Y.; Li, Y.X.; Peng, X.P.; Lou, H.X. Dimeric 1,4-benzoquinone derivatives with cytotoxic activities from the marine-derived fungus Penicillium sp. L129. Mar. Drugs 2019, 17, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.C.; Zhang, Y.H.; Gao, W.B.; Pan, L.; Zhu, H.J.; Cao, F. Absolute configurations and chitinase inhibitions of quinazoline-containing diketopiperazines from the marine-derived fungus Penicillium polonicum. Mar. Drugs 2020, 18, 479. [Google Scholar] [CrossRef]
- Ohte, S.; Shiokawa, T.; Koyama, N.; Katagiri, T.; Imada, C.; Tomoda, H. A new diketopiperazine-like inhibitor of bone morphogenetic protein-induced osteoblastic differentiation produced by marine-derived Aspergillus sp. BFM-0085. J. Antibiot. 2020, 73, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.X.; Tan, X.S.; Shi, Z.Y.; Feng, H.; Sun, L.J.; Hu, Z.X.; Chen, G.; Zhang, Y.H. Discovery of an oxepine-containing diketopiperazine derivative active against Concanavalin A-Induced Hepatitis. J. Nat. Prod. 2020, 83, 2672–2678. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-L.; Yang, S.-Q.; Li, X.-M.; Li, X.; Wang, B.-G. Structurally diverse alkaloids produced by Aspergillus creber EN-602, an endophytic fungus obtained from the marine red alga Rhodomela confervoides. Bioorg. Chem. 2021, 110, 104822. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.U.; Asami, Y.; Lee, D.; Jang, J.-H.; Ahn, J.S.; Oh, H. Protuboxepins A and B and Protubonines A and B from the Marine-Derived Fungus Aspergillus sp. SF-5044. J. Nat. Prod. 2011, 74, 1284–1287. [Google Scholar] [CrossRef]
- Asami, Y.; Jang, J.H.; Soung, N.K.; He, L.; Moon, D.O.; Kim, J.W.; Oh, H.; Muroi, M.; Osada, H.; Kim, B.Y.; et al. Protuboxepin A, a marine fungal metabolite, inducing metaphase arrest and chromosomal misalignment in tumor cells. Bioorg. Med. Chem. 2012, 20, 3799–3806. [Google Scholar] [CrossRef]
- Zhuravleva, O.I.; Afiyatullov, S.S.; Denisenko, V.A.; Ermakova, S.P.; Slinkina, N.N.; Dmitrenok, P.S.; Kim, N.Y. Secondary metabolites from a marine-derived fungus Aspergillus carneus blochwitz. Phytochemistry 2012, 80, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Afiyatullov, S.S.; Zhuravleva, O.I.; Antonov, A.S.; Kalinovsky, A.I.; Pivkin, M.V.; Menchinskaya, E.S.; Aminin, D.L. New metabolites from the marine-derived fungus Aspergillus fumigatus. Nat. Prod. Commun. 2012, 7, 497–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.Q.; Wang, M.Y.; Fu, Y.D.; Huang, P.J.; Kong, D.K.; Niu, G.Q. Engineered biosynthesis of thaxtomin phytotoxins. Crit. Rev. Biotechnol. 2020, 40, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.X.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sources | Compounds | Bioactivities | Species | Habitats | Refs |
---|---|---|---|---|---|
Sponge | Cyclo-(R-Pro-6-hydroxyl-S-Ile) (1) | - a | Callyspongia sp. | South China Sea | [30] |
Geobarrettin A (2) | - | G. barrette | Iceland | [31] | |
Geobarrettin B (3) | Anti-inflammatory | G. barrette | Iceland | [32] | |
Tedanizaine A (4) | - | Tedania sp. | Guangdong | [32] | |
(−)-Cyclo(L-trans-Hyp-L-Ile) (5) | - | A. sinoxea | Larak Island | [33] | |
Bacteria | Cyclo(Trp-Ser) (6) | Antimicrobial Antiquorum sensing | R. aquimaris QSI02 | Yellow Sea | [34] |
Cyclo(Pro-Val) (7) | - | G. antarctica PI12 | Antarctica | [35] | |
(−)-Cyclo(Pro-Tyr) (8) | - | G. antarctica PI12 | Antarctica | [35] | |
(−)-Cyclo(Pro-Phe) (9) | - | G. antarctica PI12 | Antarctica | [35] | |
(+)-Cyclo(Pro-Leu) (10) | - | G. antarctica PI12 | Antarctica | [35] | |
(3S,6S)-3,6-Diisobutylpiperazine-2,5-dione (11) | Antimicrobial | Bacillus sp. SPB7 | S. officinalis | [36] | |
Gallaecimonamide A (12) | Antimicrobial | G. mangrovi HK-28 | Mangrove sediment | [37] | |
Gallaecimonamide A (13) | - | G. mangrovi HK-28 | Mangrove sediment | [37] | |
Gallaecimonamide A (14) | - | G. mangrovi HK-28 | Mangrove sediment | [37] | |
cis-Cyclo(Pro-3-chloro-Tyr) (15) | - | B. subtilis BI0980 | Kerkyra and Erikoussa | [38] | |
trans-Cyclo(Pro-3-chloro-Tyr) (16) | - | B. subtilis BI0980 | Kerkyra and Erikoussa | [38] | |
cis-Cyclo(3-chloro-Tyr-Ile) (17) | - | B. subtilis BI0980 | Kerkyra and Erikoussa | [38] | |
Actinomycetes | iso-Naseseazine B (18) | Antimicrobial | Streptomyces sp. SMA-1 | Yellow Sea | [39] |
Naseseazine A (19) | Antiplasmodial | Streptomyces sp. USC-636 | Marine sediment | [40] | |
Naseseazine B (20) | Antiplasmodial | Streptomyces sp. USC-636 | Marine sediment | [40] | |
Naseseazine C (21) | Antiplasmodial | Streptomyces sp. USC-636 | Marine sediment | [40] | |
(6R,3Z)-3-Benzylidene-6-isobutyl-1-methyl piperazine-2,5-dione (22) | - | Streptomyces sp. strain SCSIO 04496 | South China Sea | [41] | |
Demethylmaremycins (23–28) | - | Streptomyces sp. B9173 | Pacific coast | [42] | |
3-(3-Hydroxy-4-methoxybenzyl)-6-isobutyl-2,5-diketopiperazine (29) | Cytotoxicity | Streptomyces sp. MNU FJ-36 | Katsuwonus sp. | [43] | |
3-(1,3-Benzodioxol-5-ylmethyl)-6-isobutyl-2,5-diketopiperazine (30) | Cytotoxicity | Streptomyces sp. MNU FJ-36 | Katsuwonus sp. | [43] | |
3-(1,3-Benzodioxol-5-ylmethyl)-6-isopropyl-2,5-diketopiperazine (31) | Cytotoxicity | Streptomyces sp. MNU FJ-36 | Katsuwonus sp. | [43] | |
maculosin-O-α-L-rhamnopyranoside (32) | Antimicrobial | Streptomyces sp. ZZ446 | Coastal soil | [44,45] | |
Actinozine A (33) | Antimicrobial Cytotoxicity | Streptomyces species Call-36 | Callyspongia species | [46] | |
Streptodiketopiperazine A (34) | Antimicrobial | Streptomyces sp. SY1965 | Mariana Trench sediment | [47] | |
Streptodiketopiperazine A (35) | Antimicrobial | Streptomyces sp. SY1965 | Mariana Trench sediment | [47] | |
Cyclo-(4-trans-6-dihydroxy-proline-D-leucine) (36) | - | M. variabilis C-03 | Palythoa tuberculosa | [48] | |
Nocarazepine A (37) | - | A. caerulea | Anthogorgia caerulea | [49] | |
Photopiperazine A (38) | Cytotoxicity | Strain AJS-327 | Sponge fragment | [50] | |
Photopiperazine B (39) | Cytotoxicity | Strain AJS-327 | Sponge fragment | [50] | |
Photopiperazine C (40) | Cytotoxicity | Strain AJS-327 | Sponge fragment | [50] | |
Photopiperazine D (41) | Cytotoxicity | Strain AJS-327 | Sponge fragment | [50] | |
Cyclo-(D-8-acetoxyl-Pro-L-Leu) (42) | Pancreatic lipase enzyme inhibition | Treptomyces sp. SCSIO 41400 | Mangrove derived-soil | [51] | |
Fungus | Graphiumin A (43) | - | Graphium sp. OPMF00224 | Sediment | [52] |
Graphiumin B (44) | - | Graphium sp. OPMF00224 | Sediment | [52] | |
Graphiumin C (45) | Virulence factors inhibitor | Graphium sp. OPMF00224 | Sediment | [52] | |
Graphiumin D (46) | Virulence factors inhibitor | Graphium sp. OPMF00224 | Sediment | [52] | |
Graphiumin E (47) | Virulence factors inhibitor | Graphium sp. OPMF00224 | Sediment | [52] | |
Graphiumin F (48) | - | Graphium sp. OPMF00224 | Sediment | [52] | |
Graphiumin G (49) | Virulence factors inhibitor | Graphium sp. OPMF00224 | Sediment | [52] | |
Graphiumin H (50) | Virulence factors inhibitor | Graphium sp. OPMF00224 | Sediment | [52] | |
Graphiumin I (51) | Virulence factors inhibitor | Graphium sp. OPMF00224 | Sediment | [53] | |
Graphiumin J (52) | Virulence factors inhibitor | Graphium sp. OPMF00224 | Sediment | [53] | |
Cladosporin A (53) | Cytotoxicity | Cladosporium sp. | Sediment | [54] | |
Cladosporin B (54) | Cytotoxicity | Cladosporium sp. | Sediment | [54] | |
12,13-Dihydroxy-fumitremorgin C (55) | - | A. alternate HK-25 | Sediment | [55] | |
Gliotoxin (56) | - | A. alternate HK-25 | Sediment | [55] | |
Demethoxyfumitremorgin C (57) | - | A. alternate HK-25 | Sediment | [55] | |
Bisdethiobis(methylthio)gliotoxin (58) | - | A. alternate HK-25 | Sediment | [55] | |
Fumitremorgin C (59) | - | A. alternate HK-25 | Sediment | [55] | |
Haenamindole (60) | Antiviral | Penicillium sp. KCB12F005 | Sediment | [56] | |
Dichotocejpin A (61) | Cytotoxicity α-glucosidase inhibitor | D. cejpii FS110 | Sediment | [57,58] | |
Dichotocejpin B (62) | - | D. cejpii FS110 | Sediment | [57,58] | |
Dichotocejpin C (63) | - | D. cejpii FS110 | Sediment | [57,58] | |
Cristazine (64) | Antioxidant Cytotoxicity | C. cristatum | Sediment | [59,60] | |
Eutypellazine A (65) | Antiviral | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine B (66) | Antiviral | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine C (67) | Antiviral | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine D (68) | Antiviral | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine E (69) | Antiviral | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine F (70) | Antiviral | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine G (71) | Antiviral | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine H (72) | Antiviral | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine I (73) | Antiviral | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine J (74) | Antiviral | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine K (75) | Antiviral | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine L (76) | Antiviral | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine M (77) | - | Eutypella sp. MCCC 3A00281 | Sediment | [61] | |
Eutypellazine N (78) | - | Eutypella sp. MCCC 3A00281 | Sediment | [62] | |
Eutypellazine O (79) | - | Eutypella sp. MCCC 3A00281 | Sediment | [62] | |
Eutypellazine P (80) | - | Eutypella sp. MCCC 3A00281 | Sediment | [62] | |
Eutypellazine Q (81) | - | Eutypella sp. MCCC 3A00281 | Sediment | [62] | |
Eutypellazine R (82) | - | Eutypella sp. MCCC 3A00281 | Sediment | [62] | |
Eutypellazine S (83) | - | Eutypella sp. MCCC 3A00281 | Sediment | [62] | |
Fusaperazine F (84) | Cytotoxicity | P. crustosum HDN153086 | Sediment | [63] | |
Roquefortine J (85) | Cytotoxicity | P. granulatum MCCC 3A00475 | Sediment | [64,65] | |
(+)-7,8-Epoxy-brevianamide Q (86) | - | A. versicolor MF180151 | Sediment | [66] | |
(−)-7,8-Epoxy-brevianamide Q (87) | - | A. versicolor MF180151 | Sediment | [66] | |
(+)-8-Hydroxy-brevianamide R (88) | - | A. versicolor MF180151 | Sediment | [66] | |
(−)-8-Hydroxy-brevianamide R (89) | - | A. versicolor MF180151 | Sediment | [66] | |
(+)-8-Epihydroxy-brevianamide R (90) | - | A. versicolor MF180151 | Sediment | [66] | |
(−)-8-Epihydroxy-brevianamide R (91) | - | A. versicolor MF180151 | Sediment | [66] | |
Raistrickindole A (92) | Antiviral | P. raistrickii IMB17-034 | Sediment | [67] | |
5′-Hydroxy-6′-ene-epicoccin G (93) | - | E. nigrum SD-388 | Sediment | [68] | |
7-Methoxy-7′-hydroxyepicoccin G (94) | - | E. nigrum SD-388 | Sediment | [68] | |
8′-Acetoxyepicoccin D (95) | - | E. nigrum SD-388 | Sediment | [68] | |
7′-Demethoxyrostratin C (96) | Cytotoxicity | E. nigrum SD-388 | Sediment | [68] | |
(+)-5-hydroxydiphenylalazine A (97) | - | E. nigrum SD-388 | Sediment | [68] | |
(−)-5-hydroxydiphenylalazine A (98) | - | E. nigrum SD-388 | Sediment | [68] | |
(+) Eurotinoid A (99) | Antioxidant | Eurotium sp. SCSIO F452 | Sediment | [69] | |
(−) Eurotinoid A (100) | Antioxidant | Eurotium sp. SCSIO F452 | Sediment | [69] | |
(+) Eurotinoid B (101) | Antioxidant | Eurotium sp. SCSIO F452 | Sediment | [69] | |
(−) Eurotinoid B (102) | Antioxidant | Eurotium sp. SCSIO F452 | Sediment | [69] | |
(+) Eurotinoid C (103) | Antioxidant | Eurotium sp. SCSIO F452 | Sediment | [69] | |
(−) Eurotinoid C (104) | Antioxidant | Eurotium sp. SCSIO F452 | Sediment | [69] | |
Versicamide A (105) | - | A. versicolor HDN08-60 | Sediment | [70] | |
Versicamide B (106) | - | A. versicolor HDN08-60 | Sediment | [70] | |
Versicamide C (107) | - | A. versicolor HDN08-60 | Sediment | [70] | |
Versicamide D (108) | - | A. versicolor HDN08-60 | Sediment | [70] | |
Versicamide E (109) | - | A. versicolor HDN08-60 | Sediment | [70] | |
Versicamide F (110) | - | A. versicolor HDN08-60 | Sediment | [70] | |
Versicamide G (111) | - | A. versicolor HDN08-60 | Sediment | [70] | |
Versicamide H (112) | Cytotoxicity | A. versicolor HDN08-60 | Sediment | [70] | |
Rubrumline A (113) | - | E. rubrum | Sediment | [71] | |
Rubrumline B (114) | - | E. rubrum | Sediment | [71] | |
Rubrumline C (115) | - | E. rubrum | Sediment | [71] | |
Rubrumline D (116) | Antiviral | E. rubrum | Sediment | [71] | |
Rubrumline E (117) | - | E. rubrum | Sediment | [71] | |
Rubrumline F (118) | - | E. rubrum | Sediment | [71] | |
Rubrumline G (119) | - | E. rubrum | Sediment | [71] | |
Rubrumline H (120) | - | E. rubrum | Sediment | [71] | |
Rubrumline I (121) | - | E. rubrum | Sediment | [71] | |
Rubrumline J (122) | - | E. rubrum | Sediment | [71] | |
Rubrumline K (123) | - | E. rubrum | Sediment | [71] | |
Rubrumline L (124) | - | E. rubrum | Sediment | [71] | |
Rubrumline M (125) | - | E. rubrum | Sediment | [71] | |
Rubrumline N (126) | - | E. rubrum | Sediment | [71] | |
Rubrumline O (127) | - | E. rubrum | Sediment | [71] | |
12β-Hydroxy-13α-ethoxyverruculogen TR-2 (128) | - | Penicillium sp. DT-F29 | Sediment | [72] | |
12β-Hydroxy-13α-butoxyethoxyverruculogen TR-2 (129) | - | Penicillium sp. DT-F29 | Sediment | [72] | |
Hydrocycloprostatin A (130) | - | Penicillium sp. DT-F29 | Sediment | [72] | |
Hydrocycloprostatin B (131) | - | Penicillium sp. DT-F29 | Sediment | [72] | |
25-Hydroxyfumitremorgin B (132) | - | Penicillium sp. DT-F29 | Sediment | [72] | |
12β-Hydroxy-13α-butoxyethoxyfumitremorgin B (133) | - | Penicillium sp. DT-F29 | Sediment | [72] | |
12β-Hydroxy-13α-methoxyverruculogen (134) | BRD4 protein inhibition | Penicillium sp. DT-F29 | Sediment | [72] | |
26α-Hydroxyfumitremorgin A (135) | - | Penicillium sp. DT-F29 | Sediment | [72] | |
25-Hydroxyfumitremorgin A (136) | - | Penicillium sp. DT-F29 | Sediment | [72] | |
Diprostatin A (137) | BRD4 protein inhibition | Penicillium sp. DT-F29 | Sediment | [72] | |
(+) variecolortin A (138) | Antioxidant | Eurotium sp. SCSIO F452 | Sediment | [73] | |
(−) variecolortin A (139) | - | Eurotium sp. SCSIO F452 | Sediment | [73] | |
(+) variecolortin B (140) | Cytotoxicity | Eurotium sp. SCSIO F452 | Sediment | [73] | |
(−) variecolortin B (141) | - | Eurotium sp. SCSIO F452 | Sediment | [73] | |
(+) variecolortin C (142) | Cytotoxicity | Eurotium sp. SCSIO F452 | Sediment | [73] | |
(−) variecolortin C (143) | - | Eurotium sp. SCSIO F452 | Sediment | [73] | |
Eurotiumin A (144) | Antioxidant | Eurotium sp. SCSIO F452 | Sediment | [74] | |
Eurotiumin B (145) | Antioxidant | Eurotium sp. SCSIO F452 | Sediment | [74] | |
Eurotiumin C (146) | Antioxidant | Eurotium sp. SCSIO F452 | Sediment | [74] | |
6-Acetylmonodethiogliotoxin (147) | NF-κB inhibitor | D. cejpii | Callyspongia cf. C. flammea | [75] | |
6-Acetylbisdethiobis(methylthio)gliotoxin (148) | NF-κB inhibitor | D. cejpii | Callyspongia cf. C. flammea | [75] | |
5a,6-Anhydrobisdethiobis(methyl-thio)gliotoxin (149) | NF-κB inhibitor | D. cejpii | Callyspongia cf. C. flammea | [75] | |
Peniciadametizine A (150) | Antimicrobial | P. adametzioides AS-53 | Unidentified sponge | [76] | |
peniciadametizine B (151) | Antimicrobial | P. adametzioides AS-53 | Unidentified sponge | [76] | |
Cyclo-(2-hydroxy-Pro-Gly) (152) | - | Simplicillium sp. YZ-11 | H. perleve | [77] | |
Fellutanine A (153) | - | N. glabra KUFA 0702 | Mycale sp. | [78] | |
Asperflocin (154) | Cytotoxicity | A. versicolor 16F-11 | P. fusca | [79] | |
Unnamed diketopiperazine dimer (155) | Anti-inflammatory | A. violaceofuscus | Reniochalina sp. | [80] | |
Waspergillamide B (156) | - | A. ochraceus | A. oroides | [81] | |
Penicillivinacine (157) | Cytotoxicity | P. vinaceum | H. erectus | [82] | |
Adametizine A (158) | Antimicrobial Brine shrimp lethality | P. adametzioides AS-53 | unidentified sponge | [83] | |
Adametizine B (159) | Antimicrobial Brine shrimp lethality | P. adametzioides AS-53 | unidentified sponge | [83] | |
SF5280-415 (160) | Enzyme inhibition | Aspergillus sp. SF-5280 | unidentified sponge | [84] | |
Penicimutide (161) | Cytotoxicity | P. purpurogenum G59 | Bohai Bay | [85] | |
Penicimutanin C (162) | Cytotoxicity | P. purpurogenum G59 | Bohai Bay | [86] | |
Waikikiamide A (163) | Cytotoxicity | Aspergillus sp. FM242 | Waikiki beach | [87] | |
Waikikiamide B (164) | - | Aspergillus sp. FM242 | Waikiki beach | [87] | |
Waikikiamide C (165) | Cytotoxicity | Aspergillus sp. FM242 | Waikiki beach | [87] | |
5S-Hydroxynorvaline-S-Ile (166) | - | Penicillium sp. GD6 | B. gymnorrhiza | [88] | |
3S-Hydroxylcyclo(S-Pro-S-Phe) (167) | - | Penicillium sp. GD6 | B. gymnorrhiza | [88] | |
Cyclo(S-Phe-S-Gln) (168) | - | Penicillium sp. GD6 | B. gymnorrhiza | [88] | |
(−)-Asperginulin A (169) | - | Aspergillus sp. SK-28 | K. candel | [89] | |
(+)-Asperginulin A (170) | Antifouling | Aspergillus sp. SK-28 | K. candel | [89] | |
Saroclazine A (171) | Cytotoxicity | S. kiliense HDN11-84 | T. populnea | [90] | |
Saroclazine B (172) | - | S. kiliense HDN11-84 | T. populnea | [90] | |
Saroclazine C (173) | - | S. kiliense HDN11-84 | T. populnea | [90] | |
Brocazine A (174) | Cytotoxicity | P. brocae MA-231 | A. marina | [91] | |
Brocazine B (175) | Cytotoxicity | P. brocae MA-231 | A. marina | [91] | |
Brocazine C (176) | Cytotoxicity | P. brocae MA-231 | A. marina | [91] | |
Brocazine D (177) | Cytotoxicity | P. brocae MA-231 | A. marina | [91] | |
Brocazine E (178) | - | P. brocae MA-231 | A. marina | [91] | |
Brocazine F (179) | - | P. brocae MA-231 | A. marina | [91] | |
Penicibrocazine A (180) | - | P. brocae MA-231 | A. marina | [92] | |
Penicibrocazine B (181) | - | P. brocae MA-231 | A. marina | [92] | |
Penicibrocazine C (182) | Antimicrobial | P. brocae MA-231 | A. marina | [92] | |
Penicibrocazine D (183) | - | P. brocae MA-231 | A. marina | [92] | |
Penicibrocazine E (184) | Antimicrobial | P. brocae MA-231 | A. marina | [92] | |
Spirobrocazine A (185) | Antimicrobial | P. brocae MA-231 | A. marina | [93] | |
Spirobrocazine B (186) | - | P. brocae MA-231 | A. marina | [93] | |
Spirobrocazine C (187) | Antimicrobial | P. brocae MA-231 | A. marina | [93] | |
Brocazine G (188) | Antimicrobial Cytotoxicity | P. brocae MA-231 | A. marina | [93] | |
Pseudellone A (189) | - | P. ellipsoidea F42−3 | L. crassum | [94] | |
Pseudellone B (190) | - | P. ellipsoidea F42−3 | L. crassum | [94] | |
Pseuboydone C (191) | Cytotoxicity | P. boydii F19-1 | L. crassum | [95] | |
Pseuboydone D (192) | - | P. boydii F19-1 | L. crassum | [95] | |
Dichocerazine A (193) | - | D. cejpii F31-1 | L. crassum | [96] | |
Dichocerazine B (194) | - | D. cejpii F31-1 | L. crassum | [96] | |
11-Methylneoechinulin E (195) | Cytotoxicity | Aspergillus sp. EGF 15-0-3 | South China Sea | [97] | |
Variecolorin M (196) | Cytotoxicity | Aspergillus sp. EGF 15-0-3 | South China Sea | [97] | |
(+)-Variecolorin G (197) | Cytotoxicity | Aspergillus sp. EGF 15-0-3 | South China Sea | [97] | |
(+)-Neoechinulin A (198) | Cytotoxicity | Aspergillus sp. EGF 15-0-3 | South China Sea | [97] | |
16α-Hydroxy-17β-methoxy-deoxydihydroisoaustamide (199) | - | P. dimorphosporum KMM 4689 | South China Sea | [98] | |
16β-Hydroxy-17α-methoxy-deoxydihydroisoaustamide (200) | - | P. dimorphosporum KMM 4689 | South China Sea | [98] | |
16β,17α-dihydroxy-deoxydihydroisoaustamide (201) | - | P. dimorphosporum KMM 4689 | South China Sea | [98] | |
16α-hydroxy-17α-methoxy-deoxydihydroisoaustamide (202) | Enhance cell viability | P. dimorphosporum KMM 4689 | South China Sea | [98] | |
16α,17α-dihydroxy-deoxydihydroisoaustamide (203) | Enhance cell viability | P. dimorphosporum KMM 4689 | South China Sea | [98] | |
16,17-dihydroxy-deoxydihydroisoaustamide (204) | Enhance cell viability | P. dimorphosporum KMM 4689 | South China Sea | [98] | |
3β-Hydroxy-deoxyisoaustamide (205) | - | P. dimorphosporum KMM 4689 | South China Sea | [98] | |
Pseudellone D (206) | - | P. ellipsoidea F42-3 | L. crissum | [99] | |
Dehydroxymethylbis(dethio)bis(methylthio)gliotoxin (207) | - | T. virens Y13-3 | G. vermiculoph-ylla | [100] | |
(3S,6R)-6-(Para-hydroxybenzyl)-1,4-dimethyl-3,6-bis(methylthio)pip-erazine-2,5-dione (208) | - | T. virens Y13-3 | G. vermiculoph-ylla | [100] | |
Methylcordysinin A (209) | - | T. asperellum cf44-2 | Sargassum sp. | [101] | |
Citriperazine A (210) | - | Penicillium sp. KMM 4672 | Padina sp. | [102] | |
Citriperazine B (211) | - | Penicillium sp. KMM 4672 | Padina sp. | [102] | |
Citriperazine C (212) | - | Penicillium sp. KMM 4672 | Padina sp. | [102] | |
Citriperazine D (213) | - | Penicillium sp. KMM 4672 | Padina sp. | [102] | |
(+) Acrozines A (214) | Antiacetylcholinesterase | A. luteoalbus TK-43 | C. fragile | [103] | |
(−) Acrozines A (215) | Antiacetylcholinesterase | A. luteoalbus TK-43 | C. fragile | [103] | |
(+) Acrozines B (216) | Antimicrobial | A. luteoalbus TK-43 | C. fragile | [103] | |
(−) Acrozines B (217) | - | A. luteoalbus TK-43 | C. fragile | [103] | |
(+) Acrozines C (218) | - | A. luteoalbus TK-43 | C. fragile | [103] | |
(−) Acrozines C (219) | - | A. luteoalbus TK-43 | C. fragile | [103] | |
Cyclo(L-5-MeO-Pro-L-5-MeO-Pro) (220) | Antimicrobial | T. asperellum A-YMD-9-2 | G. verrucose | [104] | |
Pretrichodermamide D (221) | - | Penicillium sp. KMM 4672 | Padina sp. | [105] | |
Pretrichodermamide E (222) | - | Penicillium sp. KMM 4672 | Padina sp. | [105] | |
Pretrichodermamide F (223) | - | Penicillium sp. KMM 4672 | Padina sp. | [105] | |
N-(4′-hydroxyprenyl)-cyclo(alanyltryptophyl) (224) | - | E. cristatum EN-220 | S. thunbergia | [106] | |
Isovariecolorin I (225) | Brine shrimp lethal | E. cristatum EN-220 | S. thunbergia | [106] | |
30-Hydroxyechinulin (226) | - | E. cristatum EN-220 | S. thunbergia | [106] | |
29-Hydroxyechinulin (227) | - | E. cristatum EN-220 | S. thunbergia | [106] | |
(+)-Brevianamide X (228) | - | A. versicolor OUCMDZ-2738 | E. prolifera | [107] | |
(−)-Brevianamide X (229) | - | A. versicolor OUCMDZ-2738 | E. prolifera | [107] | |
Isoechinulin D (230) | - | E. rubrum MPUC136 | / b | [108] | |
Spirotryprostatin G (231) | Cytotoxicity | P. brasilianum HBU-136 | Bohai Sea | [109] | |
Cyclotryprostatin F (232) | Cytotoxicity | P. brasilianum HBU-136 | Bohai Sea | [109] | |
Cyclotryprostatin G (233) | Cytotoxicity | P. brasilianum HBU-136 | Bohai Sea | [109] | |
Penilline C (234) | - | P. chrysogenum SCSIO 07007 | Western Atlantic | [110] | |
Emestrin L (235) | - | A. terreus RA2905 | A. pulmonica | [111] | |
Emestrin M (236) | Antimicrobial | A. terreus RA2905 | A. pulmonica | [111] | |
Aspamide A (237) | - | A. versicolor DY180635 | C. haematocheir | [112] | |
Aspamide B (238) | - | A. versicolor DY180635 | C. haematocheir | [112] | |
Aspamide C (239) | - | A. versicolor DY180635 | C. haematocheir | [112] | |
Aspamide D (240) | - | A. versicolor DY180635 | C. haematocheir | [112] | |
Penicillatide B (241) | Cytotoxicity Antimicrobial | Penicillium sp. | Didemnum sp. | [113] |
Sources | Compounds | Bioactivities | Species | Habitats | Refs |
---|---|---|---|---|---|
Actinomycetes | Isomethoxyneihumicin (242 and 243) | Cytotoxicity | N. alba KM6-1 | Marine sediment | [114] |
Nocazine F (244) | Cytotoxicity | Nocardiopsis sp. YIM M13066 | Deep-sea sediment | [115] | |
Nocazine G (245) | Cytotoxicity Antimicrobial | Nocardiopsis sp. YIM M13066 | Deep-sea sediment | [115] | |
Streptopyrazinone A (246) | Antimicrobial | Streptomyces sp. ZZ446 | Coastal soil | [44] | |
Streptopyrazinone B (247) | Antimicrobial | Streptomyces sp. ZZ446 | Coastal soil | [44] | |
Streptopyrazinone C (248) | Antimicrobial | Streptomyces sp. ZZ446 | Coastal soil | [44] | |
Streptopyrazinone D (249) | Antimicrobial | Streptomyces sp. ZZ446 | Coastal soil | [44] | |
Streptopyrazinone (250) | Cytotoxicity | Streptomyces sp. B223 | Marine sediment | [116] | |
Nocazine A (251) | - | N. dassonvillei HR10-5 | Estuary of Yellow River | [117] | |
Nocazine B (252) | - | N. dassonvillei HR10-5 | Estuary of Yellow River | [117] | |
Fungus | Varioloid A (253) | Antimicrobial | P. variotii EN-291 | G. turuturu | [118] |
Varioloid B (254) | Antimicrobial | P. variotii EN-291 | G. turuturu | [118] | |
Oxepinamide H (255) | Transcriptional activation | A. puniceus SCSIO z021 | Deep-sea sediment | [119] | |
Oxepinamide I (256) | Transcriptional activation | A. puniceus SCSIO z021 | Deep-sea sediment | [119] | |
Oxepinamide J (257) | Transcriptional activation | A. puniceus SCSIO z021 | Deep-sea sediment | [119] | |
Oxepinamide K (258) | - | A. puniceus SCSIO z021 | Deep-sea sediment | [119] | |
Puniceloid A (259) | Transcriptional activation | A. puniceus SCSIO z021 | Deep-sea sediment | [119] | |
Puniceloid B (260) | Transcriptional activation | A. puniceus SCSIO z021 | Deep-sea sediment | [119] | |
Puniceloid C (261) | Transcriptional activation | A. puniceus SCSIO z021 | Deep-sea sediment | [119] | |
Puniceloid D (262) | Transcriptional activation Enzyme inhibition | A. puniceus SCSIO z021 | Deep-sea sediment | [119] | |
Protuboxepin C (263) | Cytotoxicity | Aspergillus sp. SCSIO XWS02F40 | Callyspongia sp. | [120,121] | |
Protuboxepin D (264) | Cytotoxicity | Aspergillus sp. SCSIO XWS02F40 | Callyspongia sp. | [120,121] | |
Pyranamide A (265) | - | A. versicolor SCSIO 41016 | Sponge | [122] | |
Pyranamide A (266) | - | A. versicolor SCSIO 41016 | Sponge | [122] | |
Pyranamide A (267) | - | A. versicolor SCSIO 41016 | Sponge | [122] | |
Pyranamide A (268) | - | A. versicolor SCSIO 41016 | Sponge | [122] | |
Secopyranamide C (269) | - | A. versicolor SCSIO 41016 | Sponge | [122] | |
Protuboxepin F (270) | Cytotoxicity | A. versicolor SCSIO 41016 | Sponge | [122] | |
Protuboxepin G (271) | - | A. versicolor SCSIO 41016 | Sponge | [122] | |
Protuboxepin H (272) | - | A. versicolor SCSIO 41016 | Sponge | [122] | |
Protuboxepin I (273) | - | A. versicolor SCSIO 41016 | Sponge | [122] | |
Protuboxepin J (274) | - | A. versicolor SCSIO 41016 | Sponge | [122] | |
Chrysopiperazine A (275) | - | P. chrysogenum | D. gemmacea | [123] | |
Chrysopiperazine B (276) | - | P. chrysogenum | D. gemmacea | [123] | |
Chrysopiperazine C (277) | - | P. chrysogenum | D. gemmacea | [123] | |
Quinadoline D (278) | - | Penicillium sp. L129 | L. sinense | [124] | |
Aspamide F (279) | - | A. versicolor DY180635 | C. haematocheir | [110] | |
Aspamide G (280) | - | A. versicolor DY180635 | C. haematocheir | [110] | |
Polonimide A (281) | Enzyme inhibition | P. polonicum | Bohai Sea | [125] | |
Polonimide B (282) | Enzyme inhibition | P. polonicum | Bohai Sea | [125] | |
Polonimide C (283) | Enzyme inhibition | P. polonicum | Bohai Sea | [125] | |
Protuboxepin K (284) | Enzyme inhibition | Aspergillus sp. BFM-0085 | Marine sediment | [126] | |
Varioxepine B (285) | Cytotoxicity | A. terreus | S. subviride | [127] | |
3-Hydroxyprotuboxepin K (286) | Enzyme inhibition | A. creber EN-602 | R. confervoides | [128] | |
3,15-Hehydroprotuboxepin K (287) | Antimicrobial | A. creber EN-602 | R. confervoides | [128] | |
Versiamide A (288) | Antimicrobial | A. creber EN-602 | R. confervoides | [128] | |
Protuboxepin A (289) | Cytotoxicity | Aspergillus sp. SF-5044 | Sediment | [129,130] | |
Protuboxepin B (290) | - | Aspergillus sp. SF-5044 | Sediment | [129,130] | |
Carnequinazoline A (291) | - | A. carneus KMM 4638 | L. sachalinensis | [131] | |
Carnequinazoline B (292) | - | A. carneus KMM 4638 | L. sachalinensis | [131] | |
Carnequinazoline C (293) | - | A. carneus KMM 4638 | L. sachalinensis | [131] | |
Fumiquinazoline K (294) | - | A. fumigatus KMM 4631 | Sinularia sp. | [132] | |
3-[6-(2-Methylpropyl)-2-oxo-1H-pyrazin-3-yl]propanamide (295) | - | A. versicolor OUCMDZ-2738 | E. prolifera | [107] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Hou, Y.; Yang, Q.; Li, X.; Wu, S. Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review. Mar. Drugs 2021, 19, 403. https://doi.org/10.3390/md19080403
Song Z, Hou Y, Yang Q, Li X, Wu S. Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review. Marine Drugs. 2021; 19(8):403. https://doi.org/10.3390/md19080403
Chicago/Turabian StyleSong, Zhiqiang, Yage Hou, Qingrong Yang, Xinpeng Li, and Shaohua Wu. 2021. "Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review" Marine Drugs 19, no. 8: 403. https://doi.org/10.3390/md19080403
APA StyleSong, Z., Hou, Y., Yang, Q., Li, X., & Wu, S. (2021). Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review. Marine Drugs, 19(8), 403. https://doi.org/10.3390/md19080403