Exploiting of Secondary Raw Materials from Fish Processing Industry as a Source of Bioactive Peptide-Rich Protein Hydrolysates
Abstract
:1. Introduction
1.1. Fishery By-Catch and Waste from Fish Processing
1.2. Hydrolysis Mechanism
1.3. Influencing Factors in Hydrolysis
2. Fish Waste Protein Hydrolysates (FWPH)
3. Bioactive Peptides
4. Bioactivities of Fish Waste Protein Hydrolysates
4.1. Antihypertensive Properties of Fish Waste Protein Hydrolysates
The Renin-Angiotensin System’s Mechanism of Action and ACE-I Inhibition
4.2. Antioxidative Properties of Fish Waste Protein Hydrolysates
4.2.1. The Mechanism of Oxidation and Its Impact on Food
4.2.2. Antioxidants
4.2.3. Antioxidative Properties of Fish Waste Protein Hydrolysates
4.3. Anticoagulant Activities of Fish Waste Protein Hydrolysates
4.4. Antimicrobial Properties of Fish Waste Protein Hydrolysates
4.5. Anticancer Activity of Fish Waste Protein Hydrolysates
4.6. Other Bioactive Properties of Fish Waste Protein Hydrolysates
4.6.1. Anti-Inflammatory Property of Fish Waste Protein Hydrolysates
4.6.2. Calcium Binding Property of Fish Waste Protein Hydrolysates
4.6.3. Wound Healing Property of Fish Waste Protein Hydrolysates
4.6.4. Neuroprotective Property of Fish Waste Protein Hydrolysates
5. Bioactivity of Fish Gelatin Hydrolysates
6. Research Gaps, Opportunities, and Challenges for Fish Protein Hydrolysate
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization. The State of World Fisheries and Aquaculture; Food and Agriculture Organization: Rome, Italy, 2012. [Google Scholar]
- Chalamaiah, M.; Hemalatha, R.; Jyothirmayi, T. Fish Protein Hydrolysates: Proximate Composition, Amino Acid Composition, Antioxidant Activities and Applications: A Review. Food Chem. 2012, 135, 3020–3038. [Google Scholar] [CrossRef] [PubMed]
- Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative Green Technologies of Intensification for Valorization of Seafood and Their By-Products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Abdollahi, M.; Undeland, I. Effect of Recovery Technique, Antioxidant Addition and Compositional Features on Lipid Oxidation in Protein Enriched Products from Cod-Salmon and Herring Backbones. Food Chem. 2021, 360, 129973. [Google Scholar] [CrossRef]
- Islam, M.S.; Khan, S.; Tanaka, M. Waste Loading in Shrimp and Fish Processing Effluents: Potential Source of Hazards to the Coastal and Nearshore Environments. Mar. Pollut. Bull. 2004, 49, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Arvanitoyannis, I.S.; Kassaveti, A. Fish Industry Waste: Treatments, Environmental Impacts, Current and Potential Uses. Int. J. Food Sci. Technol. 2008, 43, 726–745. [Google Scholar] [CrossRef]
- He, S.; Franco, C.; Zhang, W. Functions, Applications and Production of Protein Hydrolysates from Fish Processing Co-Products (FPCP). Food Res. Int. 2013, 50, 289–297. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Ramakrishnan, V.V.; Brooks, M.S.; Budge, S.M.; Dave, D. Fish Processing Wastes as a Potential Source of Proteins. Amino Acids Oils Crit. Rev. J. Microb. Biochem. Technol. 2013, 5, 107–129. [Google Scholar]
- Kristinsson, H.G.; Rasco, B.A. Fish Protein Hydrolysates: Production, Biochemical, and Functional Properties. Crit. Rev. Food Sci. Nutr. 2000, 40, 43–81. [Google Scholar] [CrossRef]
- Caruso, G. Fishery Wastes and By-Products: A Resource to Be Valorised. J. Fish Sci. 2015, 9, 80–83. [Google Scholar]
- Rajapakse, N.; Jung, W.-K.; Mendis, E.; Moon, S.-H.; Kim, S.-K. A Novel Anticoagulant Purified from Fish Protein Hydrolysate Inhibits Factor XIIa and Platelet Aggregation. Life Sci. 2005, 76, 2607–2619. [Google Scholar] [CrossRef] [PubMed]
- Mutalipassi, M.; Esposito, R.; Ruocco, N.; Viel, T.; Costantini, M.; Zupo, V. Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards. Foods 2021, 10, 1495. [Google Scholar] [CrossRef]
- Hartmann, R.; Meisel, H. Food-Derived Peptides with Biological Activity: From Research to Food Applications. Curr. Opin. Biotechnol. 2007, 18, 163–169. [Google Scholar] [CrossRef]
- Je, J.-Y.; Qian, Z.-J.; Byun, H.-G.; Kim, S.-K. Purification and Characterization of an Antioxidant Peptide Obtained from Tuna Backbone Protein by Enzymatic Hydrolysis. Process Biochem. 2007, 42, 840–846. [Google Scholar] [CrossRef]
- Nalinanon, S.; Benjakul, S.; Kishimura, H.; Shahidi, F. Functionalities and Antioxidant Properties of Protein Hydrolysates from the Muscle of Ornate Threadfin Bream Treated with Pepsin from Skipjack Tuna. Food Chem. 2011, 124, 1354–1362. [Google Scholar] [CrossRef]
- Shirai, K.; Ramírez-Ramírez, J.C. 10 Utilization of Fish Processing By-Products for Bioactive Compounds. Fish Process. Sustain. New Oppor. 2011, 236. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Enzymic Hydrolysis of Food Proteins; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Naqvi, N.; Liu, K.; Graham, R.M.; Husain, A. Molecular basis of exopeptidase activity in the C-terminal domain of human angiotensin I-converting enzyme: Insights into the origins of its exopeptidase activity. J. Biol. Chem. 2005, 280, 6669–6675. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.I.; Malone, W.T.; Cordle, C.T. Enzymatic Hydrolysis of Casein: Effect of Degree of Hydrolysis on Antigenicity and Physical Properties. J. Food Sci. 1992, 57, 1223–1229. [Google Scholar] [CrossRef]
- Kester, J.J.; Richardson, T. Modification of Whey Proteins to Improve Functionality. J. Dairy Sci. 1984, 67, 2757–2774. [Google Scholar] [CrossRef]
- Phillips, R.D.; Beuchat, L.R. Enzyme Modification of Proteins; ACS Publications: Washington, DC, USA, 1981. [Google Scholar]
- Thiansilakul, Y.; Benjakul, S.; Shahidi, F. Antioxidative Activity of Protein Hydrolysate from Round Scad Muscle Using Alcalase and Flavourzyme. J. Food Biochem. 2007, 31, 266–287. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Food-Derived Bioactive Peptides-Opportunities for Designing Future Foods. Curr. Pharm. Des. 2003, 9, 1297–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, K.-C.; Li-Chan, E.C.; Jao, C.-L. Antiproliferative Activity of Peptides Prepared from Enzymatic Hydrolysates of Tuna Dark Muscle on Human Breast Cancer Cell Line MCF-7. Food Chem. 2011, 126, 617–622. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, M.; Shi, J.; Wang, J.; Jiang, Y.; Cui, C.; Kakuda, Y.; Xue, S.J. Optimization of Antioxidant Peptide Production from Grass Carp Sarcoplasmic Protein Using Response Surface Methodology. LWT Food Sci. Technol. 2008, 41, 1624–1632. [Google Scholar] [CrossRef]
- Wangkheirakpam, M.R.; Mahanand, S.S.; Majumdar, R.K.; Sharma, S.; Hidangmayum, D.D.; Netam, S. Fish Waste Utilization with Reference to Fish Protein Hydrolisate—A Review. Fish Technol. 2019, 56, 169–178. [Google Scholar]
- Dhanabalan, V.; Vinothkumar, L.; Manivannan, M.; KA, M.X. Fish Processing Byproducts Derived Protein Hydrolysates and It’s Potential as Antioxidants. Biot. Res. Today 2021, 3, 276–278. [Google Scholar]
- Fahmi, A.; Morimura, S.; Guo, H.-C.; Shigematsu, T.; Kida, K.; Uemura, Y. Production of Angiotensin I Converting Enzyme Inhibitory Peptides from Sea Bream Scales. Process Biochem. 2004, 39, 1195–1200. [Google Scholar] [CrossRef]
- Je, J.-Y.; Park, P.-J.; Kim, S.-K. Antioxidant Activity of a Peptide Isolated from Alaska Pollack (Theragra chalcogramma) Frame Protein Hydrolysate. Food Res. Int. 2005, 38, 45–50. [Google Scholar] [CrossRef]
- Jung, W.-K.; Kim, S.-K. Calcium-Binding Peptide Derived from Pepsinolytic Hydrolysates of Hoki (Johnius belengerii) Frame. Eur. Food Res. Technol. 2007, 224, 763–767. [Google Scholar] [CrossRef]
- Bhaskar, N.; Mahendrakar, N.S. Protein Hydrolysate from Visceral Waste Proteins of Catla (Catla catla): Optimization of Hydrolysis Conditions for a Commercial Neutral Protease. Bioresour. Technol. 2008, 99, 4105–4111. [Google Scholar] [CrossRef]
- Ovissipour, M.; Abedian, A.; Motamedzadegan, A.; Rasco, B.; Safari, R.; Shahiri, H. The Effect of Enzymatic Hydrolysis Time and Temperature on the Properties of Protein Hydrolysates from Persian Sturgeon (Acipenser persicus) Viscera. Food Chem. 2009, 115, 238–242. [Google Scholar] [CrossRef]
- Je, J.-Y.; Lee, K.-H.; Lee, M.H.; Ahn, C.-B. Antioxidant and Antihypertensive Protein Hydrolysates Produced from Tuna Liver by Enzymatic Hydrolysis. Food Res. Int. 2009, 42, 1266–1272. [Google Scholar] [CrossRef]
- Hou, H.; Li, B.; Zhao, X.; Zhang, Z.; Li, P. Optimization of Enzymatic Hydrolysis of Alaska Pollock Frame for Preparing Protein Hydrolysates with Low-Bitterness. LWT Food Sci. Technol. 2011, 44, 421–428. [Google Scholar] [CrossRef]
- Lee, J.K.; Jeon, J.-K.; Byun, H.-G. Effect of Angiotensin I Converting Enzyme Inhibitory Peptide Purified from Skate Skin Hydrolysate. Food Chem. 2011, 125, 495–499. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Ryu, B.; Vo, T.-S.; Himaya, S.W.A.; Wijesekara, I.; Kim, S.-K. Free Radical Scavenging and Angiotensin-I Converting Enzyme Inhibitory Peptides from Pacific Cod (Gadus macrocephalus) Skin Gelatin. Int. J. Biol. Macromol. 2011, 49, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Galla, N.R.; Pamidighantam, P.R.; Akula, S.; Karakala, B. Functional Properties and in Vitro Antioxidant Activity of Roe Protein Hydrolysates of Channa Striatus and Labeo Rohita. Food Chem. 2012, 135, 1479–1484. [Google Scholar] [CrossRef]
- Bougatef, A.; Balti, R.; Haddar, A.; Jellouli, K.; Souissi, N.; Nasri, M. Protein Hydrolysates from Bluefin Tuna (Thunnus thynnus) Heads as Influenced by the Extent of Enzymatic Hydrolysis. Biotechnol. Bioprocess Eng. 2012, 17, 841–852. [Google Scholar] [CrossRef]
- Ahn, C.-B.; Kim, J.-G.; Je, J.-Y. Purification and Antioxidant Properties of Octapeptide from Salmon Byproduct Protein Hydrolysate by Gastrointestinal Digestion. Food Chem. 2014, 147, 78–83. [Google Scholar] [CrossRef]
- Senphan, T.; Benjakul, S. Antioxidative Activities of Hydrolysates from Seabass Skin Prepared Using Protease from Hepatopancreas of Pacific White Shrimp. J. Funct. Foods 2014, 6, 147–156. [Google Scholar] [CrossRef]
- Chi, C.-F.; Wang, B.; Wang, Y.-M.; Zhang, B.; Deng, S.-G. Isolation and Characterization of Three Antioxidant Peptides from Protein Hydrolysate of Bluefin Leatherjacket (Navodon septentrionalis) Heads. J. Funct. Foods 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Gajanan, P.G.; Elavarasan, K.; Shamasundar, B.A. Bioactive and Functional Properties of Protein Hydrolysates from Fish Frame Processing Waste Using Plant Proteases. Environ. Sci. Pollut. Res. 2016, 23, 24901–24911. [Google Scholar] [CrossRef]
- Wald, M.; Schwarz, K.; Rehbein, H.; Bußmann, B.; Beermann, C. Detection of Antibacterial Activity of an Enzymatic Hydrolysate Generated by Processing Rainbow Trout By-Products with Trout Pepsin. Food Chem. 2016, 205, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, E.; Karayannakidis, P.D.; Lee, C.M. Recovery of Bioactive Peptides and Omega-3 Fatty Acids-Containing Phospholipids from Squid Processing by-Product Hydrolysate. J. Aquat. Food Prod. Technol. 2016, 25, 496–506. [Google Scholar] [CrossRef]
- Prabha, J.; Nithin, A.; Mariarose, L.; Vincent, S. Processing of Nutritive Fish Protein Hydrolysate from Leiognathus splendens. Int. J. Pept. Res. Ther. 2020, 26, 861–871. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Sotelo, C.G.; Sanz, N.; Pérez-Martín, R.I.; Rodríguez-Amado, I.; Valcarcel, J. Valorization of Aquaculture By-Products of Salmonids to Produce Enzymatic Hydrolysates: Process Optimization, Chemical Characterization and Evaluation of Bioactives. Mar. Drugs 2019, 17, 676. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, J.A.; Menduíña, A.; Nogueira, M.; Durán, A.I.; Sanz, N.; Valcarcel, J. Optimal Production of Protein Hydrolysates from Monkfish By-Products: Chemical Features and Associated Biological Activities. Molecules 2020, 25, 4068. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, J.A.; Rodríguez-Amado, I.; Sotelo, C.G.; Sanz, N.; Pérez-Martín, R.I.; Valcárcel, J. Production, Characterization, and Bioactivity of Fish Protein Hydrolysates from Aquaculture Turbot (Scophthalmus maximus) Wastes. Biomolecules 2020, 10, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro-Peraza, R.S.; Osuna-Ruiz, I.; Lugo-Sánchez, M.E.; Pacheco-Aguilar, R.; Ramírez-Suárez, J.C.; Burgos-Hernández, A.; Martínez-Montaño, E.; Salazar-Leyva, J.A. Structural and Biological Properties of Protein Hydrolysates from Seafood By-Products: A Review Focused on Fishery Effluents. Food Sci. Technol. 2020, 40, 1–5. [Google Scholar] [CrossRef]
- Sánchez, A.; Vázquez, A. Bioactive Peptides: A Review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Murray, B.A.; Fitzgerald, R.J. Angiotensin Converting Enzyme Inhibitory Peptides Derived from Food Proteins: Biochemistry, Bioactivity and Production. Curr. Pharm. Des. 2007, 13, 773–791. [Google Scholar] [CrossRef]
- Hermansen, K. Diet, Blood Pressure and Hypertension. Br. J. Nutr. 2000, 83, S113–S119. [Google Scholar] [CrossRef] [Green Version]
- Ahhmed, A.M.; Muguruma, M. A Review of Meat Protein Hydrolysates and Hypertension. Meat Sci. 2010, 86, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Ondetti, M.A.; Cushman, D.W. Enzymes of the Renin-Angiotensin System and Their Inhibitors. Annu. Rev. Biochem. 1982, 51, 283–308. [Google Scholar] [CrossRef]
- Cooper, W.O.; Hernandez-Diaz, S.; Arbogast, P.G.; Dudley, J.A.; Dyer, S.; Gideon, P.S.; Hall, K.; Ray, W.A. Major Congenital Malformations after First-Trimester Exposure to ACE Inhibitors. N. Engl. J. Med. 2006, 354, 2443–2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, J.T.; Ross, R.P.; Bolton, D.; Fitzgerald, G.F.; Stanton, C. Bioactive Peptides from Muscle Sources: Meat and Fish. Nutrients 2011, 3, 765–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vercruysse, L.; van Camp, J.; Smagghe, G. ACE Inhibitory Peptides Derived from Enzymatic Hydrolysates of Animal Muscle Protein: A Review. J. Agric. Food Chem. 2005, 53, 8106–8115. [Google Scholar] [CrossRef]
- Kim, S.-K.; Mendis, E. Bioactive Compounds from Marine Processing Byproducts—A Review. Food Res. Int. 2006, 39, 383–393. [Google Scholar] [CrossRef]
- Tahergorabi, R.; Jaczynski, J. Isoelectric solubilization/precipitation as a means to recover protein and lipids from seafood by-products. In Seafood Processing by-Products; Springer: Berlin, Germany, 2014; pp. 101–123. [Google Scholar]
- Je, J.-Y.; Park, P.-J.; Kwon, J.Y.; Kim, S.-K. A Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Alaska Pollack (Theragra Chalcogramma) Frame Protein Hydrolysate. J. Agric. Food Chem. 2004, 52, 7842–7845. [Google Scholar] [CrossRef]
- Jung, W.-K.; Mendis, E.; Je, J.-Y.; Park, P.-J.; Son, B.W.; Kim, H.C.; Choi, Y.K.; Kim, S.-K. Angiotensin I-Converting Enzyme Inhibitory Peptide from Yellowfin Sole (Limanda aspera) Frame Protein and Its Antihypertensive Effect in Spontaneously Hypertensive Rats. Food Chem. 2006, 94, 26–32. [Google Scholar] [CrossRef]
- Bougatef, A.; Nedjar-Arroume, N.; Ravallec-Plé, R.; Leroy, Y.; Guillochon, D.; Barkia, A.; Nasri, M. Angiotensin I-Converting Enzyme (ACE) Inhibitory Activities of Sardinelle (Sardinella aurita) by-Products Protein Hydrolysates Obtained by Treatment with Microbial and Visceral Fish Serine Proteases. Food Chem. 2008, 111, 350–356. [Google Scholar] [CrossRef]
- Lee, S.-H.; Qian, Z.-J.; Kim, S.-K. A Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Tuna Frame Protein Hydrolysate and Its Antihypertensive Effect in Spontaneously Hypertensive Rats. Food Chem. 2010, 118, 96–102. [Google Scholar] [CrossRef]
- Kumagai, Y.; Toji, K.; Katsukura, S.; Morikawa, R.; Uji, T.; Yasui, H.; Shimizu, T.; Kishimura, H. Characterization of ACE Inhibitory Peptides Prepared from Pyropia Pseudolinearis Protein. Mar. Drugs 2021, 19, 200. [Google Scholar] [CrossRef]
- Kim, S.-K.; Wijesekara, I. Development and Biological Activities of Marine-Derived Bioactive Peptides: A Review. J. Funct. Foods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Fujita, H.; Yoshikawa, M. LKPNM: A Prodrug-Type ACE-Inhibitory Peptide Derived from Fish Protein. Immunopharmacology 1999, 44, 123–127. [Google Scholar] [CrossRef]
- Alemán, A.; Pérez-Santín, E.; Bordenave-Juchereau, S.; Arnaudin, I.; Gómez-Guillén, M.C.; Montero, P. Squid Gelatin Hydrolysates with Antihypertensive, Anticancer and Antioxidant Activity. Food Res. Int. 2011, 44, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Byun, H.-G.; Kim, S.-K. Purification and Characterization of Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Alaska Pollack (Theragra chalcogramma) Skin. Process Biochem. 2001, 36, 1155–1162. [Google Scholar] [CrossRef]
- Cinq-Mars, C.D.; Li-Chan, E.C. Optimizing Angiotensin I-Converting Enzyme Inhibitory Activity of Pacific Hake (Merluccius productus) Fillet Hydrolysate Using Response Surface Methodology and Ultrafiltration. J. Agric. Food Chem. 2007, 55, 9380–9388. [Google Scholar] [CrossRef] [PubMed]
- Gu, R.-Z.; Li, C.-Y.; Liu, W.-Y.; Yi, W.-X.; Cai, M.-Y. Angiotensin I-Converting Enzyme Inhibitory Activity of Low-Molecular-Weight Peptides from Atlantic Salmon (Salmo salar L.) Skin. Food Res. Int. 2011, 44, 1536–1540. [Google Scholar] [CrossRef]
- Hayes, M.; McKeon, K. Advances in the processing of marine discard and by-products. In Seafood Processing By-Products; Springer: Berlin, Germany, 2014; pp. 125–143. [Google Scholar]
- Kawasaki, T.; Seki, E.; Osajima, K.; Yoshida, M.; Asada, K.; Matsui, T.; Osajima, Y. Antihypertensive Effect of Valyl-Tyrosine, a Short Chain Peptide Derived from Sardine Muscle Hydrolyzate, on Mild Hypertensive Subjects. J. Hum. Hypertens. 2000, 14, 519–523. [Google Scholar] [CrossRef] [Green Version]
- Lassoued, I.; Mora, L.; Nasri, R.; Jridi, M.; Toldrá, F.; Aristoy, M.-C.; Barkia, A.; Nasri, M. Characterization and Comparative Assessment of Antioxidant and ACE Inhibitory Activities of Thornback Ray Gelatin Hydrolysates. J. Funct. Foods 2015, 13, 225–238. [Google Scholar] [CrossRef]
- Lee, J.K.; Jeon, J.-K.; Byun, H.-G. Antihypertensive Effect of Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Chum Salmon (Oncorhynchus keta) Skin in Spontaneously Hypertensive Rats. J. Funct. Foods 2014, 7, 381–389. [Google Scholar] [CrossRef]
- Raghavan, S.; Kristinsson, H.G. ACE-Inhibitory Activity of Tilapia Protein Hydrolysates. Food Chem. 2009, 117, 582–588. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Lim, C.-W.; Yeun, S.; Lee, M.-H.; Moon, H.-S.; Cho, H.-A.; Yoon, N.-Y.; Yoon, H.-D.; Park, H.-Y.; Lee, D.-S. Dipeptide (Tyr-Ile) Acting as an Inhibitor of Angiotensin-I-Converting Enzyme (ACE) from the Hydrolysate of Jellyfish Nemopilema nomurai. Fish. Aquat. Sci. 2011, 14, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Hayakawa, S.; Ogawa, M.; Naknukool, S.; Guan, Y.; Matsumoto, Y. Evaluation of Angiotensin I-Converting Enzyme (ACE) Inhibitory Activities of Hydrolysates Generated from Byproducts of Freshwater Clam. Food Sci. Biotechnol. 2011, 20, 303–310. [Google Scholar] [CrossRef]
- Yoon, H.-D.; Kim, Y.-K.; Lim, C.-W.; Yeun, S.; Lee, M.-H.; Moon, H.-S.; Yoon, N.-Y.; Park, H.-Y.; Lee, D.-S. ACE-Inhibitory Properties of Proteolytic Hydrolysates from Giant Jellyfish Nemopilema nomurai. Fish. Aquat. Sci. 2011, 14, 174–178. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Jyothirmayi, T.; Diwan, P.V.; Kumar, B.D. Antiproliferative, ACE-Inhibitory and Functional Properties of Protein Hydrolysates from Rohu (Labeo rohita) Roe (Egg) Prepared by Gastrointestinal Proteases. J. Food Sci. Technol. 2015, 52, 8300–8307. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Alvarez, O.; Batista, I.; Ramos, C.; Montero, P. Enhancement of ACE and Prolyl Oligopeptidase Inhibitory Potency of Protein Hydrolysates from Sardine and Tuna By-Products by Simulated Gastrointestinal Digestion. Food Funct. 2016, 7, 2066–2073. [Google Scholar] [CrossRef] [PubMed]
- Thuanthong, M.; de Gobba, C.; Sirinupong, N.; Youravong, W.; Otte, J. Purification and Characterization of Angiotensin-Converting Enzyme-Inhibitory Peptides from Nile Tilapia (Oreochromis niloticus) Skin Gelatine Produced by an Enzymatic Membrane Reactor. J. Funct. Foods 2017, 36, 243–254. [Google Scholar] [CrossRef]
- Abdelhedi, O.; Jridi, M.; Jemil, I.; Mora, L.; Toldrá, F.; Aristoy, M.-C.; Boualga, A.; Nasri, M.; Nasri, R. Combined Biocatalytic Conversion of Smooth Hound Viscera: Protein Hydrolysates Elaboration and Assessment of Their Antioxidant, Anti-ACE and Antibacterial Activities. Food Res. Int. 2016, 86, 9–23. [Google Scholar] [CrossRef]
- Parkin, K.L.; Damodaran, S. Oxidation of food components. Encycl. Food Sci. Nutr. 2003, 98, 4288–4294. [Google Scholar]
- Di Bernardini, R.; Harnedy, P.; Bolton, D.; Kerry, J.; O’Neill, E.; Mullen, A.M.; Hayes, M. Antioxidant and Antimicrobial Peptidic Hydrolysates from Muscle Protein Sources and By-Products. Food Chem. 2011, 124, 1296–1307. [Google Scholar] [CrossRef]
- Hui, Y.H. Encyclopedia of Food Science and Technology; Wiley: Hoboken, NJ, USA, 1992. [Google Scholar]
- Najafian, L.; Babji, A.S. A Review of Fish-Derived Antioxidant and Antimicrobial Peptides: Their Production, Assessment, and Applications. Peptides 2012, 33, 178–185. [Google Scholar] [CrossRef]
- Harnedy, P.A.; FitzGerald, R.J. Bioactive Peptides from Marine Processing Waste and Shellfish: A Review. J. Funct. Foods 2012, 4, 6–24. [Google Scholar] [CrossRef]
- Klompong, V.; Benjakul, S.; Kantachote, D.; Shahidi, F. Antioxidative Activity and Functional Properties of Protein Hydrolysate of Yellow Stripe Trevally (Selaroides leptolepis) as Influenced by the Degree of Hydrolysis and Enzyme Type. Food Chem. 2007, 102, 1317–1327. [Google Scholar] [CrossRef]
- Benjakul, S.; Yarnpakdee, S.; Senphan, T.; Halldórsdóttir, S.M.; Kristinsson, H.G. Fish Protein Hydrolysates: Production, Bioactivities and Applications. In Antioxidants and Functional Components in Aquatic Foods, 1st ed.; Matil Ltd.: Reykjavik, Iceland, 2014. [Google Scholar]
- Sila, A.; Bougatef, A. Antioxidant Peptides from Marine By-Products: Isolation, Identification and Application in Food Systems. A Review. J. Funct. Foods 2016, 21, 10–26. [Google Scholar] [CrossRef]
- Kumar, N.S.; Nazeer, R.A.; Jaiganesh, R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids 2012, 42, 1641–1649. [Google Scholar] [CrossRef]
- Tanuja, S.; Viji, P.; Zynudheen, A.A.; Joshy, C. Composition, Functional Properties and Antioxidative Activity of Hydrolysates Prepared from the Frame Meat of Striped Catfish (Pangasianodon hypophthalmus). Egypt. J. Biol. 2012, 14, 27–35. [Google Scholar] [CrossRef]
- Nasri, R.; Amor, I.B.; Bougatef, A.; Nedjar-Arroume, N.; Dhulster, P.; Gargouri, J.; Châabouni, M.K.; Nasri, M. Anticoagulant Activities of Goby Muscle Protein Hydrolysates. Food Chem. 2012, 133, 835–841. [Google Scholar] [CrossRef]
- Sheriff, S.A.; Sundaram, B.; Ramamoorthy, B.; Ponnusamy, P. Synthesis and in Vitro Antioxidant Functions of Protein Hydrolysate from Backbones of Rastrelliger Kanagurta by Proteolytic Enzymes. Saudi J. Biol. Sci. 2014, 21, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Girgih, A.T.; Udenigwe, C.C.; Hasan, F.M.; Gill, T.A.; Aluko, R.E. Antioxidant Properties of Salmon (Salmo salar) Protein Hydrolysate and Peptide Fractions Isolated by Reverse-Phase HPLC. Food Res. Int. 2013, 52, 315–322. [Google Scholar] [CrossRef]
- Idowu, A.T.; Benjakul, S.; Sinthusamran, S.; Sookchoo, P.; Kishimura, H. Protein Hydrolysate from Salmon Frames: Production, Characteristics and Antioxidative Activity. J. Food Biochem. 2019, 43, e12734. [Google Scholar] [CrossRef] [PubMed]
- Ngo, D.-H.; Qian, Z.-J.; Ryu, B.; Park, J.W.; Kim, S.-K. In Vitro Antioxidant Activity of a Peptide Isolated from Nile Tilapia (Oreochromis niloticus) Scale Gelatin in Free Radical-Mediated Oxidative Systems. J. Funct. Foods 2010, 2, 107–117. [Google Scholar] [CrossRef]
- Nazeer, R.A.; Kumar, N.S. Purification and Identification of Antioxidant Peptide from Black Pomfret, Parastromateus Niger (Bloch, 1975) Viscera Protein Hydrolysate. Food Sci. Biotechnol. 2011, 20, 1087. [Google Scholar]
- Chi, C.-F.; Wang, B.; Hu, F.-Y.; Wang, Y.-M.; Zhang, B.; Deng, S.-G.; Wu, C.-W. Purification and Identification of Three Novel Antioxidant Peptides from Protein Hydrolysate of Bluefin Leatherjacket (Navodon septentrionalis) Skin. Food Res. Int. 2015, 73, 124–129. [Google Scholar] [CrossRef]
- Ketnawa, S.; Martínez-Alvarez, O.; Benjakul, S.; Rawdkuen, S. Gelatin Hydrolysates from Farmed Giant Catfish Skin Using Alkaline Proteases and Its Antioxidative Function of Simulated Gastro-Intestinal Digestion. Food Chem. 2016, 192, 34–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendis, E.; Rajapakse, N.; Byun, H.-G.; Kim, S.-K. Investigation of Jumbo Squid (Dosidicus gigas) Skin Gelatin Peptides for Their in Vitro Antioxidant Effects. Life Sci. 2005, 77, 2166–2178. [Google Scholar] [CrossRef]
- Erdmann, K.; Cheung, B.W.; Schröder, H. The Possible Roles of Food-Derived Bioactive Peptides in Reducing the Risk of Cardiovascular Disease. J. Nutr. Biochem. 2008, 19, 643–654. [Google Scholar] [CrossRef]
- Yang, Q.; Cai, X.; Yan, A.; Tian, Y.; Du, M.; Wang, S. A Specific Antioxidant Peptide: Its Properties in Controlling Oxidation and Possible Action Mechanism. Food Chem. 2020, 327, 126984. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, Z.; Kamoun, A.S.; Bougatef, A.; Chtourou, Y.; Boudawara, T.; Nasri, M.; Zeghal, N. Efficacy of Sardinelle Protein Hydrolysate to Alleviate Ethanol-Induced Oxidative Stress in the Heart of Adult Rats. J. Food Sci. 2012, 77, T156–T162. [Google Scholar] [CrossRef] [PubMed]
- Sarmadi, B.H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef]
- Qiao, M.; Tu, M.; Chen, H.; Mao, F.; Yu, C.; Du, M. Identification and in Silico Prediction of Anticoagulant Peptides from the Enzymatic Hydrolysates of Mytilus Edulis Proteins. Int. J. Mol. Sci. 2018, 19, 2100. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Tu, M.; Chen, H.; Xu, Z.; Wang, Z.; Liu, H.; Zhao, G.; Zhu, B.; Du, M. Identification and Inhibitory Activity against α-Thrombin of a Novel Anticoagulant Peptide Derived from Oyster (Crassostrea gigas) Protein. Food Funct. 2018, 9, 6391–6400. [Google Scholar] [CrossRef]
- Jung, W.-K.; Je, J.-Y.; Kim, H.-J.; Kim, S.-K. A Novel Anticoagulant Protein from Scapharca broughtonii. BMB Rep. 2002, 35, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ennaas, N.; Hammami, R.; Beaulieu, L.; Fliss, I. Production of Antibacterial Fraction from Atlantic Mackerel (Scomber scombrus) and Its Processing by-Products Using Commercial Enzymes. Food Bioprod. Process. 2015, 96, 145–153. [Google Scholar] [CrossRef]
- Song, R.; Wei, R.-B.; Luo, H.-Y.; Wang, D.-F. Isolation and Characterization of an Antibacterial Peptide Fraction from the Pepsin Hydrolysate of Half-Fin Anchovy (Setipinna taty). Molecules 2012, 17, 2980–2991. [Google Scholar] [CrossRef]
- Ennaas, N.; Hammami, R.; Gomaa, A.; Bédard, F.; Biron, É.; Subirade, M.; Beaulieu, L.; Fliss, I. Collagencin, an Antibacterial Peptide from Fish Collagen: Activity, Structure and Interaction Dynamics with Membrane. Biochem. Biophys. Res. Commun. 2016, 473, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Doyen, A.; Saucier, L.; Beaulieu, L.; Pouliot, Y.; Bazinet, L. Electroseparation of an Antibacterial Peptide Fraction from Snow Crab By-Products Hydrolysate by Electrodialysis with Ultrafiltration Membranes. Food Chem. 2012, 132, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Wei, R.; Zhang, B.; Wang, D. Optimization of the Antibacterial Activity of Half-Fin Anchovy (Setipinna taty) Hydrolysates. Food Bioprocess Technol. 2012, 5, 1979–1989. [Google Scholar] [CrossRef]
- Brogden, K.A. Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Himaya, S.W.A.; Ngo, D.-H.; Ryu, B.; Kim, S.-K. An Active Peptide Purified from Gastrointestinal Enzyme Hydrolysate of Pacific Cod Skin Gelatin Attenuates Angiotensin-1 Converting Enzyme (ACE) Activity and Cellular Oxidative Stress. Food Chem. 2012, 132, 1872–1882. [Google Scholar] [CrossRef]
- Nurdiani, R.; Vasiljevic, T.; Singh, T.K.; Donkor, O.N. Bioactive Peptides from Fish By-Products with Anticarcinogenic Potential. Int. Food Res. J. 2017, 24, 1840–1849. [Google Scholar]
- Picot, L.; Bordenave, S.; Didelot, S.; Fruitier-Arnaudin, I.; Sannier, F.; Thorkelsson, G.; Bergé, J.P.; Guérard, F.; Chabeaud, A.; Piot, J.M. Antiproliferative Activity of Fish Protein Hydrolysates on Human Breast Cancer Cell Lines. Process Biochem. 2006, 41, 1217–1222. [Google Scholar] [CrossRef]
- Guo-Fang, D.; Huang, F.-F.; Zui-Su, Y.; Di, Y.U.; Yong-Fang, Y. Anticancer Activity of an Oligopeptide Isolated from Hydrolysates of Sepia Ink. Chin. J. Nat. Med. 2011, 9, 151–155. [Google Scholar]
- Doyen, A.; Beaulieu, L.; Saucier, L.; Pouliot, Y.; Bazinet, L. Demonstration of in Vitro Anticancer Properties of Peptide Fractions from a Snow Crab By-Products Hydrolysate after Separation by Electrodialysis with Ultrafiltration Membranes. Sep. Purif. Technol. 2011, 78, 321–329. [Google Scholar] [CrossRef]
- Kannan, A.; Hettiarachchy, N.S.; Marshall, M.; Raghavan, S.; Kristinsson, H. Shrimp Shell Peptide Hydrolysates Inhibit Human Cancer Cell Proliferation. J. Sci. Food Agric. 2011, 91, 1920–1924. [Google Scholar] [CrossRef] [PubMed]
- Nurdiani, R.; Vasiljevic, T.; Yeager, T.; Singh, T.K.; Donkor, O.N. Bioactive Peptides with Radical Scavenging and Cancer Cell Cytotoxic Activities Derived from Flathead (Platycephalus fuscus) by-Products. Eur. Food Res. Technol. 2017, 243, 627–637. [Google Scholar] [CrossRef]
- Suarez-Jimenez, G.-M.; Burgos-Hernandez, A.; Ezquerra-Brauer, J.-M. Bioactive Peptides and Depsipeptides with Anticancer Potential: Sources from Marine Animals. Mar. Drugs 2012, 10, 963–986. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-I.; Tang, J.-Y.; Liu, Y.-S.; Wang, H.-R.; Lee, S.-Y.; Yen, C.-Y.; Chang, H.-W. Roe Protein Hydrolysates of Giant Grouper (Epinephelus lanceolatus) Inhibit Cell Proliferation of Oral Cancer Cells Involving Apoptosis and Oxidative Stress. BioMed Res. Int. 2016, 2016, 8305073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, C.-C.; Yang, Y.-H.; Kuo, P.-F.; Hsu, K.-C. Protein Hydrolysates from Tuna Cooking Juice Inhibit Cell Growth and Induce Apoptosis of Human Breast Cancer Cell Line MCF-7. J. Funct. Foods 2014, 11, 563–570. [Google Scholar] [CrossRef]
- Hamzeh, A.; Rezaei, M.; Khodabandeh, S.; Motamedzadegan, A.; Noruzinia, M. Antiproliferative and Antioxidative Activities of Cuttlefish (Sepia pharaonis) Protein Hydrolysates as Affected by Degree of Hydrolysis. J. Food Meas. Charact. 2018, 12, 721–727. [Google Scholar] [CrossRef]
- Kandyliari, A.; Golla, J.P.; Chen, Y.; Papandroulakis, N.; Kapsokefalou, M.; Vasiliou, V. Antiproliferative Activity of Protein Hydrolysates Derived from Fish By-Products on Human Colon and Breast Cancer Cells. Proc. Nutr. Soc. 2020, 79. [Google Scholar] [CrossRef]
- Baehaki, A.; Suhartono, M.T.; Sukarno, S.; Syah, D.; Setyahadi, S. Collagen Peptides from Fish Skin with Angiotensin I-Converting Enzyme (ACE) Inhibitor and Cancer Antiproliferative Activity. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 1994–2000. [Google Scholar]
- Pan, X.; Zhao, Y.-Q.; Hu, F.-Y.; Chi, C.-F.; Wang, B. Anticancer Activity of a Hexapeptide from Skate (Raja porosa) Cartilage Protein Hydrolysate in HeLa Cells. Mar. Drugs 2016, 14, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umayaparvathi, S.; Meenakshi, S.; Vimalraj, V.; Arumugam, M.; Sivagami, G.; Balasubramanian, T. Antioxidant Activity and Anticancer Effect of Bioactive Peptide from Enzymatic Hydrolysate of Oyster (Saccostrea cucullata). Biomed. Prev. Nutr. 2014, 4, 343–353. [Google Scholar] [CrossRef]
- Ishak, N.H.; Sarbon, N.M. A Review of Protein Hydrolysates and Bioactive Peptides Deriving from Wastes Generated by Fish Processing. Food Bioprocess Technol. 2018, 11, 2–16. [Google Scholar] [CrossRef]
- Le Gouic, A.V.; Harnedy, P.A.; FitzGerald, R.J.; Mérillon, J.M.; Ramawat, K.G. Bioactive peptides from fish protein by-products. In Bioactive Molecules in Food; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–35. [Google Scholar]
- Kim, S.-Y.; Je, J.-Y.; Kim, S.-K. Purification and Characterization of Antioxidant Peptide from Hoki (Johnius belengerii) Frame Protein by Gastrointestinal Digestion. J. Nutr. Biochem. 2007, 18, 31–38. [Google Scholar] [CrossRef]
- Calder, P.C.; Ahluwalia, N.; Albers, R.; Bosco, N.; Bourdet-Sicard, R.; Haller, D.; Holgate, S.T.; Jönsson, L.S.; Latulippe, M.E.; Marcos, A. A Consideration of Biomarkers to Be Used for Evaluation of Inflammation in Human Nutritional Studies. Br. J. Nutr. 2013, 109, S1–S34. [Google Scholar] [CrossRef] [Green Version]
- Kemp, D.C.; Kwon, J.Y. Fish and Shellfish-Derived Anti-Inflammatory Protein Products: Properties and Mechanisms. Molecules 2021, 26, 3225. [Google Scholar] [CrossRef]
- Gao, R.; Shu, W.; Shen, Y.; Sun, Q.; Bai, F.; Wang, J.; Li, D.; Li, Y.; Jin, W.; Yuan, L. Sturgeon Protein-Derived Peptides Exert Anti-Inflammatory Effects in LPS-Stimulated RAW264. 7 Macrophages via the MAPK Pathway. J. Funct. Foods 2020, 72, 104044. [Google Scholar] [CrossRef]
- Giannetto, A.; Esposito, E.; Lanza, M.; Oliva, S.; Riolo, K.; Di Pietro, S.; Abbate, J.M.; Briguglio, G.; Cassata, G.; Cicero, L. Protein Hydrolysates from Anchovy (Engraulis encrasicolus) Waste: In Vitro and in Vivo Biological Activities. Mar. Drugs 2020, 18, 86. [Google Scholar] [CrossRef]
- Saisavoey, T.; Sangtanoo, P.; Reamtong, O.; Karnchanatat, A. Free Radical Scavenging and Anti-Inflammatory Potential of a Protein Hydrolysate Derived from Salmon Bones on RAW 264.7 Macrophage Cells. J. Sci. Food Agric. 2019, 99, 5112–5121. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.-B.; Cho, Y.-S.; Je, J.-Y. Purification and Anti-Inflammatory Action of Tripeptide from Salmon Pectoral Fin Byproduct Protein Hydrolysate. Food Chem. 2015, 168, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Lanou, A.J.; Berkow, S.E.; Barnard, N.D. Calcium, Dairy Products, and Bone Health in Children and Young Adults: A Reevaluation of the Evidence. Pediatrics 2005, 115, 736–743. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.V.; Kitts, D.D. Calcium Absorption and Bone Utilization in Spontaneously Hypertensive Rats Fed on Native and Heat-Damaged Casein and Soya-Bean Protein. Br. J. Nutr. 1994, 71, 583–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, W.-K.; Park, P.-J.; Byun, H.-G.; Moon, S.-H.; Kim, S.-K. Preparation of Hoki (Johnius belengerii) Bone Oligophosphopeptide with a High Affinity to Calcium by Carnivorous Intestine Crude Proteinase. Food Chem. 2005, 91, 333–340. [Google Scholar] [CrossRef]
- Jung, W.-K.; Lee, B.-J.; Kim, S.-K. Fish-Bone Peptide Increases Calcium Solubility and Bioavailability in Ovariectomised Rats. Br. J. Nutr. 2006, 95, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Jung, W.-K.; Karawita, R.; Heo, S.-J.; Lee, B.-J.; Kim, S.-K.; Jeon, Y.-J. Recovery of a Novel Ca-Binding Peptide from Alaska Pollack (Theragra chalcogramma) Backbone by Pepsinolytic Hydrolysis. Process Biochem. 2006, 41, 2097–2100. [Google Scholar] [CrossRef]
- Al Guo, S.; di Pietro, L.A. Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H. Clinical Effects of Fish Type I Collagen Hydrolysate on Skin Properties. ITE Lett. Batter New Technol. Med. 2006, 7, 386–390. [Google Scholar]
- Iosageanu, A.; Oancea, A.; Ilie, D.; Anton, E.D.; Craciunescu, O. The Effect of Fish Bone Bioactive Peptides on the Wound Healing Process: An in Vitro Study on Keratinocytes. Rom. Biotechnol. Lett. 2021, 26, 2692–2699. [Google Scholar] [CrossRef]
- Choi, D.-Y.; Choi, H. Natural Products from Marine Organisms with Neuroprotective Activity in the Experimental Models of Alzheimer’s Disease, Parkinson’s Disease and Ischemic Brain Stroke: Their Molecular Targets and Action Mechanisms. Arch. Pharm. Res. 2015, 38, 139–170. [Google Scholar] [CrossRef]
- Lee, J.K.; Li-Chan, E.C.; Byun, H.-G. Characterization of β-Secretase Inhibitory Peptide Purified from Skate Skin Protein Hydrolysate. Eur. Food Res. Technol. 2015, 240, 129–136. [Google Scholar] [CrossRef]
- Cai, L.; Wu, X.; Zhang, Y.; Li, X.; Ma, S.; Li, J. Purification and Characterization of Three Antioxidant Peptides from Protein Hydrolysate of Grass Carp (Ctenopharyngodon idella) Skin. J. Funct. Foods 2015, 16, 234–242. [Google Scholar] [CrossRef]
- Pei, X.; Yang, R.; Zhang, Z.; Gao, L.; Wang, J.; Xu, Y.; Zhao, M.; Han, X.; Liu, Z.; Li, Y. Marine Collagen Peptide Isolated from Chum Salmon (Oncorhynchus keta) Skin Facilitates Learning and Memory in Aged C57BL/6J Mice. Food Chem. 2010, 118, 333–340. [Google Scholar] [CrossRef]
- Jellouli, K.; Balti, R.; Bougatef, A.; Hmidet, N.; Barkia, A.; Nasri, M. Chemical Composition and Characteristics of Skin Gelatin from Grey Triggerfish (Balistes capriscus). LWT Food Sci. Technol. 2011, 44, 1965–1970. [Google Scholar] [CrossRef]
- Mendis, E.; Rajapakse, N.; Kim, S.-K. Antioxidant Properties of a Radical-Scavenging Peptide Purified from Enzymatically Prepared Fish Skin Gelatin Hydrolysate. J. Agric. Food Chem. 2005, 53, 581–587. [Google Scholar] [CrossRef]
- Alemán, A.; Giménez, B.; Pérez-Santin, E.; Gómez-Guillén, M.C.; Montero, P. Contribution of Leu and Hyp Residues to Antioxidant and ACE-Inhibitory Activities of Peptide Sequences Isolated from Squid Gelatin Hydrolysate. Food Chem. 2011, 125, 334–341. [Google Scholar] [CrossRef] [Green Version]
- Alemán, A.; Giménez, B.; Montero, P.; Gómez-Guillén, M.C. Antioxidant Activity of Several Marine Skin Gelatins. LWT Food Sci. Technol. 2011, 44, 407–413. [Google Scholar] [CrossRef]
- Kim, S.-K.; Kim, Y.-T.; Byun, H.-G.; Nam, K.-S.; Joo, D.-S.; Shahidi, F. Isolation and Characterization of Antioxidative Peptides from Gelatin Hydrolysate of Alaska Pollack Skin. J. Agric. Food Chem. 2001, 49, 1984–1989. [Google Scholar] [CrossRef] [PubMed]
- Khantaphant, S.; Benjakul, S. Comparative Study on the Proteases from Fish Pyloric Caeca and the Use for Production of Gelatin Hydrolysate with Antioxidative Activity. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 151, 410–419. [Google Scholar] [CrossRef]
- Yang, J.-I.; Ho, H.-Y.; Chu, Y.-J.; Chow, C.-J. Characteristic and Antioxidant Activity of Retorted Gelatin Hydrolysates from Cobia (Rachycentron canadum) Skin. Food Chem. 2008, 110, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Giménez, B.; Alemán, A.; Montero, P.; Gómez-Guillén, M.C. Antioxidant and Functional Properties of Gelatin Hydrolysates Obtained from Skin of Sole and Squid. Food Chem. 2009, 114, 976–983. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.-H.; Jeon, Y.-J.; Byun, H.-G.; Lee, Y.-S.; Lee, E.-H.; Kim, S.-K. Effect of Calcium Compounds from Oyster Shell Bouind Fish Skin Gelatin Peptide in Calcium Deficient Rats. Korean J. Fish. Aquat. Sci. 1998, 31, 149–159. [Google Scholar]
- Kusumaningtyas, E.; Nurilmala, M.; Sibarani, D. Antioxidant and Antifungal Activities of Collagen Hydrolysates from Skin of Milkfish (Chanos chanos) Hydrolyzed Using Various Bacillus Proteases. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 278, p. 012040. [Google Scholar]
- Qiu, Y.-T.; Wang, Y.-M.; Yang, X.-R.; Zhao, Y.-Q.; Chi, C.-F.; Wang, B. Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Scales: Preparation, Identification and Activity Evaluation. Mar. Drugs 2019, 17, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Nimry, S.; Dayah, A.A.; Hasan, I.; Daghmash, R. Cosmetic, Biomedical and Pharmaceutical Applications of Fish Gelatin/Hydrolysates. Mar. Drugs 2021, 19, 145. [Google Scholar] [CrossRef] [PubMed]
- Ngo, D.-H.; Ryu, B.; Kim, S.-K. Active Peptides from Skate (Okamejei kenojei) Skin Gelatin Diminish Angiotensin-I Converting Enzyme Activity and Intracellular Free Radical-Mediated Oxidation. Food Chem. 2014, 143, 246–255. [Google Scholar] [CrossRef]
Fish | Secondary Raw Material | Reference |
---|---|---|
Sea bream | Fish Scales | [28] |
Alaska pollack (Theragra chalcogramma) | Frame | [29] |
Hoki (Johnius belengerii) | Frame | [30] |
Catla catla | Visceral organs | [31] |
Sturgeon | Visceral organs | [32] |
Tuna | Liver by-products | [33] |
Alaska pollock | Frames/backbones | [34] |
Skate | Skin | [35] |
Cod (Gadus macrocephalus) | Skin | [36] |
Channa striatus | Roe | [37] |
Bluefin tuna | Head | [38] |
Salmon | Pectoral fin | [39] |
Seabass | Skin | [40] |
Leatherjacket | Head waste | [41] |
Japanese threadfin bream | Frame waste | [42] |
Rainbow trout | By-products | [43] |
Squid | By-products | [44] |
Leiognathus splendens | By-catch | [45] |
Salmon | By-products | [46] |
Monkfish | By-products like head and viscera | [47] |
Turbot | By-products | [48] |
Fish | Solid and liquid waste generated from processing operations | [49] |
Substrate | Enzymes | ACE Inhibitory Activity (%) or (IC50 Value) | Reference |
---|---|---|---|
Yellowfin sole frame | Chymotrypsin | Ultrafiltration fractionation- Fraction I: 47.6% Fraction II: 34.5% Fraction III: 68.8% | [61] |
Sardinella byproducts | Protease-K | 47.4% activity | [62] |
Alcalase | 43.0% activity | ||
Sardine visceral enzyme | 63.2% activity | ||
Chymotrypsin | 55.8% activity | ||
Protease ES1 | 13.2% activity | ||
Tilapia | Cryotin | 62–71% activity | [75] |
Flavourzyme | 66–73% activity | ||
Jelly fish | Papain | IC50: 6.56 µM | [76] |
Freshwater clam byproducts | Pepsin Trypsin | IC50: 0.23 mg/mL | [77] |
Giant Jelly fish | Alcalase | 39.61% activity | [78] |
Flavourzyme | 36.36% activity | ||
Neutrase | 62.29% activity | ||
Papain | 76.73% activity | ||
Protamex | 70.01% activity | ||
Trypsin | 68.01% activity | ||
Rohu roe | Pepsin | 47% activity | [79] |
Trypsin | 36% activity | ||
Pink perch fish frame waste | Papain Bromelain | 69% activity | [42] |
Salmon skin | Alcalse, papain | IC50: 60 µM | [70] |
Sea bream scale | Protease | IC50: 7.5 µM | [28] |
Skate (Raja kenojei) | Alcalase, α-chymotrypsin, neutrase, pepsin, papain and trypsin | IC50: 95 µM and 148 µM | [35] |
Tuna (Thunnus obesus) | Alcalase, neutrase, pepsin, papain, α-chymotrypsin and trypsin | IC50: 11.28 µM | [63] |
Tuna heads | Alcalase | 0.27 mg/mL | [62] |
Sardine viscera | Alcalase | 1.16 mg/mL | [80] |
Nile tilapia skin | Alcalase | 1.12 mg/mL | [81] |
Hound fish (Caprosaper linnaeus) viscera | Alkaline protease | 75 µg/mL | [82] |
Alaska Pollock skin gelatin extracts | Alcalase, pronase E, and collagenase | Gly-Pro-Leu and Gly-Pro-Met Peptides IC50: 2.6 and 17.13 µM | [68] |
Substrate | Enzymes | Bioactive Properties Studied and Peptide Sequence | Reference |
---|---|---|---|
Striped catfish frame meat | Papain Bromelain | DPPH radical scavenging activity (90%), ferric reducing antioxidant power | [92] |
Goby muscle proteins | Alcalase | DPPH radical scavenging activity and reducing power | [93] |
Rastrelliger kanagurta backbone | Pepsin Papain | DPPH radical scavenging activity (36–46%) | [94] |
Salmon protein hydrolysate | Pepsin | DPPH radical scavenging activity (55%) | [95] |
Pink perch frame waste hydrolysate | Papain Bromelain | DPPH free radical scavenging activity (up to 90%), ferric reducing antioxidant power | [42] |
Salmon (Salmo salar) frame hydrolysates | Alcalase Papain | DPPH free radical scavenging ability, ABTS activity, ferric reducing antioxidant power (FRAP), metal chelating activity and oxygen radical antioxidant capacity (ORAC) | [96] |
Oreochromis niloticus Scale gelatin hydrolysate | Alcalase Pronase E trypsin pepsin | DPPH radical scavenging activity, hydroxyl radical scavenging activity and superoxide radical anion scavenging activity | [97] |
Black pomfret visceral protein hydrolysate | Pepsin trypsin ά-chymotrypsin | DPPH radical scavenging activity, FRAP and metal chelating activity (Ala-Met-Thr-Gly-Leu-Glu-Ala) | [98] |
Alaska pollack frame protein hydrolysate | Mackerel intestine crude enzyme | Higher antioxidant Activity in terms of ferric thiocyanate for peptide fraction < 1 kDa Peptide sequence: Leu-Pro-His-Ser-Gly-Tyr (627 Da) | [29] |
Tuna backbone protein hydrolysate | Alcalase, a-chymotrypsin, neutrase, papain, pepsin and trypsin | Higher lipid peroxidation inhibition and DPPH free radical scavenging activity for peptide—VKAGFAWTANQQLS (1519 Da) | [14] |
Cod (Gadus macrocephalus) | Alcalase, neutrase, papain, trypsin, pepsin, and α-chymotrypsin | Electron spin resonance technique & Thr-Gly-Gly-Gly-Asn-Val | [36] |
Bluefin leatherjacket (Navodon septentrionalis) heads | Papain | DPPH radical scavenging activity, hydroxyl radicals and ABTS radicals and Trp-Glu-Gly-Pro-Lys, Gly-Pro-Pro, and Gly-Val-Pro-Leu-Thr | [41] |
Bluefin leatherjacket (Navodon septentrionalis) skin | Trypsin, flavourzyme, neutrase, papain, alcalase, and pepsin, | DPPH, hydroxyl radicals and oxygen scavenging assays Gly-Ser-Gly-Gly-Leu, Gly-Pro-Gly-Gly-Phe-Ile, and Phe-Ile-Gly-Pro | [99] |
Salmon by-product | Alcalase, Flavourzyme, Neutrase, pepsin, Protamex, and trypsin | DPPH and ABTS Phe-Leu-Asn-Glu-Phe-Leu-His-Val | [39] |
Horse mackerel (Magalaspis cordyla) viscera | In vitro gastrointestinal digestion | DPPH and hydroxyl radicals Ala—Cys—Phe—Leu (518.5 Da) | [91] |
Giant catfish (Pangasianodon gigas) skin | Visceral alkaline-proteases from Giant catfish, commercial trypsin, Izyme AL® | ABTS radical-scavenging, Ferric reducing antioxidant power (FRAP) and metal (ferrous) chelating ability | [100] |
Aisan seabass (Lates calcarifer) skin | Protease from hepatopancreas of Pacific white shrimp, Alcalase | DPPH and ABTS radical-scavenging activity, Ferric reducing antioxidant power, metal (ferrous) chelating activity, inhibition of lipid peroxidation | [40] |
Croaker (Otolithes ruber) skin | Pepsin, trypsin, α-chymotrypsin | Gly-Asn-Arg-Gly-Phe-Ala-Cys-Arg-His-Ala and DPPH and hydroxyl radical-scavenging activity, ferric-reducing antioxidant power, metal (ferrous) chelating activity, inhibition of lipid peroxidation | [91] |
Jumbo squid skin gelatin | Enzymatic hydrolysis | Good antioxidant activity for isolated peptide Phe-Asp-Ser-Gly-Pro Ala-Gly-Val-Leu | [101] |
By-Product Source for Peptide | Peptide Sequence/Molecular Weight | Anticancer Effect | Researchers |
---|---|---|---|
Sepia Ink oligopeptides due to presence of lysine and proline in sequence | N Gln-Pro-Lys with a molecular mass of 343.4 Da | Inhibition of proliferation of human prostate cancer (DU-145) cells | [118] |
Tuna dark muscle peptides | Leu-Pro-His-Val-Leu-Thr-Pro-Glu-Ala-Gly-Ala-Thr and Pro-Thr-Ala-Glu-Gly-Gly-Val-Tyr-Met-Val-Thr) | Anticarcinogenic activity against breast cancer cell line | [24] |
Snow crab by-product peptides | Two anionic peptides with MW of 537 and 216 Da and three cationic peptides with MW of 228, 241 and 291 Da | anticancer activity on colon, breast, prostate and lung cancer cell lines | [119] |
Shrimp shell peptide | Peptides with fractionation size < 10 and 10–30 kDa | Anticancer activity on colon and liver cancer cell lines | [120] |
Flathead by-product peptides | <3 kDa | Anticancer activity against HT-29 colon cancer cells up to 91.04% | [121] |
Lates calcarifer skin peptides | - | Anti-proliferative activity on human colon and liver cancer cell lines | [117] |
Flying fish frame peptides | - | Anti-proliferative activity against Hep G2 cells | [122] |
Grouper roe peptides | - | Reduced cell viability of oral cancer cells & induced apoptosis of Ca9–22 cells | [123] |
Rohu roe peptides | - | Anti-proliferative activity on Human colon cancer cell line | [124] |
Threadfin bream (Nemipterus japonicus) Back bone peptides | - | Anti-proliferative activity against HepG2 cell lines | [24] |
Cuttlefish mantle protein hydrolysates | - | MDA-231 and T47D cancer cell lines with growth inhibition of 78.2 and 66.2% | [125] |
Gilthead seabream byproduct peptides | - | Antiproliferative activity on human colon and breast cancer cell lines | [126] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phadke, G.G.; Rathod, N.B.; Ozogul, F.; Elavarasan, K.; Karthikeyan, M.; Shin, K.-H.; Kim, S.-K. Exploiting of Secondary Raw Materials from Fish Processing Industry as a Source of Bioactive Peptide-Rich Protein Hydrolysates. Mar. Drugs 2021, 19, 480. https://doi.org/10.3390/md19090480
Phadke GG, Rathod NB, Ozogul F, Elavarasan K, Karthikeyan M, Shin K-H, Kim S-K. Exploiting of Secondary Raw Materials from Fish Processing Industry as a Source of Bioactive Peptide-Rich Protein Hydrolysates. Marine Drugs. 2021; 19(9):480. https://doi.org/10.3390/md19090480
Chicago/Turabian StylePhadke, Girija Gajanan, Nikheel Bhojraj Rathod, Fatih Ozogul, Krishnamoorthy Elavarasan, Muthusamy Karthikeyan, Kyung-Hoon Shin, and Se-Kwon Kim. 2021. "Exploiting of Secondary Raw Materials from Fish Processing Industry as a Source of Bioactive Peptide-Rich Protein Hydrolysates" Marine Drugs 19, no. 9: 480. https://doi.org/10.3390/md19090480
APA StylePhadke, G. G., Rathod, N. B., Ozogul, F., Elavarasan, K., Karthikeyan, M., Shin, K. -H., & Kim, S. -K. (2021). Exploiting of Secondary Raw Materials from Fish Processing Industry as a Source of Bioactive Peptide-Rich Protein Hydrolysates. Marine Drugs, 19(9), 480. https://doi.org/10.3390/md19090480