Interactions of Globular and Ribbon [γ4E]GID with α4β2 Neuronal Nicotinic Acetylcholine Receptor
Abstract
:1. Introduction
2. Results
2.1. Binding Modes of GID*
2.1.1. Binding Modes of gGID* at the Rat α4(+)β2(−) and α4(+)α4(−) Interfaces
2.1.2. Binding Modes of gGID* at the Rat α3(+)β2(−) and α3(+)α3(−) Interfaces
2.1.3. Binding Modes of gGID* at the Rat α7(+)α7(−) Interface
2.1.4. Binding Modes of rGID* at the Human α3(+)α3(−), α4(+)α4(−) and α7(+)α7(−) Interfaces
2.2. ΔΔGs Prediction
2.2.1. Full Sequence Amino Acid Scanning of gGID* at Rat α3β2, α4β2 and α7 nAChR
2.2.2. Full Sequence Amino Acid Scanning of rGID* at the Human α4(+)α4(−), α3(+)α3(−) and α7(+)α7(−) nAChR Binding Sites
3. Discussion
3.1. Quality of Molecular Models and Activity Predictions
3.2. The N- or C-Terminal Tail of the α-Conotoxin Can Modulate Activity on nAChRs
3.3. Potential (α4)3(β2)2 nAChR Inhibitors Suggested by FoldX
4. Materials and Methods
4.1. Homology Modeling and Molecular Dynamics Simulation
4.2. Mutational Energy Calculation
4.3. Analysis of Energy Prediction Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laikowski, M.M.; Reisdorfer, F.; Moura, S. NAChR alpha4beta2 subtype and their relation with nicotine addiction, cognition, depression and hyperactivity disorder. Curr. Med. Chem. 2019, 26, 3792–3811. [Google Scholar] [CrossRef]
- Gonzales, D.; Rennard, S.I.; Nides, M.; Oncken, C.; Azoulay, S.; Billing, C.B.; Watsky, E.J.; Gong, J.; Williams, K.E.; Reeves, K.R. Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: A randomized controlled trial. JAMA 2006, 296, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Crunelle, C.L.; Miller, M.L.; Booij, J.; van den Brink, W. The nicotinic acetylcholine receptor partial agonist varenicline and the treatment of drug dependence: A review. Eur. Neuropsychopharmacol. 2010, 20, 69–79. [Google Scholar] [CrossRef]
- Picciotto, M.R.; Caldarone, B.J.; Brunzell, D.H.; Zachariou, V.; Stevens, T.R.; King, S.L. Neuronal nicotinic acetylcholine receptor subunit knockout mice: Physiological and behavioral phenotypes and possible clinical implications. Pharmacol. Ther. 2001, 92, 89–108. [Google Scholar] [CrossRef]
- Rueter, L.E.; Donnelly-Roberts, D.L.; Curzon, P.; Briggs, C.A.; Anderson, D.J.; Bitner, R.S. A-85380: A pharmacological probe for the preclinical and clinical investigation of the alpha4beta2 neuronal nicotinic acetylcholine receptor. CNS Drug Rev. 2006, 12, 100–112. [Google Scholar] [CrossRef]
- Zwart, R.; Vijverberg, H.P. Four pharmacologically distinct subtypes of alpha4beta2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Mol. Pharmacol. 1998, 54, 1124–1131. [Google Scholar] [CrossRef] [Green Version]
- Moroni, M.; Zwart, R.; Sher, E.; Cassels, B.K.; Bermudez, I. Alpha4beta2 nicotinic receptors with high and low acetylcholine sensitivity: Pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine. Mol. Pharmacol. 2006, 70, 755–768. [Google Scholar] [CrossRef]
- Weltzin, M.M.; George, A.A.; Lukas, R.J.; Whiteaker, P. Distinctive single-channel properties of alpha4beta2-nicotinic acetylcholine receptor isoforms. PLoS ONE 2019, 14, e0213143. [Google Scholar] [CrossRef]
- Mazzaferro, S.; Bermudez, I.; Sine, S.M. Alpha4beta2 nicotinic acetylcholine receptors: Relationship between subunit stoichiometry and function at the single channel level. J. Biol. Chem. 2017, 292, 2729–2740. [Google Scholar] [CrossRef] [Green Version]
- Son, C.D.; Moss, F.J.; Cohen, B.N.; Lester, H.A. Nicotine normalizes intracellular subunit stoichiometry of nicotinic receptors carrying mutations linked to autosomal dominant nocturnal frontal lobe epilepsy. Mol. Pharmacol. 2009, 75, 1137–1148. [Google Scholar] [CrossRef]
- Weltzin, M.M.; Lindstrom, J.M.; Lukas, R.J.; Whiteaker, P. Distinctive effects of nicotinic receptor intracellular-loop mutations associated with nocturnal frontal lobe epilepsy. Neuropharmacology 2016, 102, 158–173. [Google Scholar] [CrossRef] [Green Version]
- Arthur, D.; Levin, E.D. Chronic inhibition of alpha4beta2 nicotinic receptors in the ventral hippocampus of rats: Impacts on memory and nicotine response. Psychopharmacology 2002, 160, 140–145. [Google Scholar] [CrossRef]
- Nikiforuk, A.; Litwa, E.; Krawczyk, M.; Popik, P.; Arias, H. Desformylflustrabromine, a positive allosteric modulator of alpha4beta2-containing nicotinic acetylcholine receptors, enhances cognition in rats. Pharmacol. Rep. 2020, 72, 589–599. [Google Scholar] [CrossRef] [Green Version]
- Lebbe, E.K.; Peigneur, S.; Wijesekara, I.; Tytgat, J. Conotoxins targeting nicotinic acetylcholine receptors: An overview. Mar. Drugs 2014, 12, 2970–3004. [Google Scholar] [CrossRef] [Green Version]
- Jin, A.H.; Muttenthaler, M.; Dutertre, S.; Himaya, S.W.A.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Conotoxins: Chemistry and biology. Chem. Rev. 2019, 119, 11510–11549. [Google Scholar] [CrossRef]
- Cartier, G.E.; Yoshikami, D.; Gray, W.R.; Luo, S.; Olivera, B.M.; McIntosh, J.M. A new alpha-conotoxin which targets alpha3beta2 nicotinic acetylcholine receptors. J. Biol. Chem. 1996, 271, 7522–7528. [Google Scholar] [CrossRef] [Green Version]
- Nicke, A.; Loughnan, M.L.; Millard, E.L.; Alewood, P.F.; Adams, D.J.; Daly, N.L.; Craik, D.J.; Lewis, R.J. Isolation, structure, and activity of GID, a novel alpha 4/7-conotoxin with an extended N-terminal sequence. J. Biol. Chem. 2003, 278, 3137–3144. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, J.M.; Dowell, C.; Watkins, M.; Garrett, J.E.; Yoshikami, D.; Olivera, B.M. Alpha-conotoxin GIC from Conus geographus, a novel peptide antagonist of nicotinic acetylcholine receptors. J. Biol. Chem. 2002, 277, 33610–33615. [Google Scholar] [CrossRef] [Green Version]
- Loughnan, M.L.; Nicke, A.; Jones, A.; Adams, D.J.; Alewood, P.F.; Lewis, R.J. Chemical and functional identification and characterization of novel sulfated alpha-conotoxins from the cone snail Conus anemone. J. Med. Chem. 2004, 47, 1234–1241. [Google Scholar] [CrossRef]
- Millard, E.L.; Nevin, S.T.; Loughnan, M.L.; Nicke, A.; Clark, R.J.; Alewood, P.F.; Lewis, R.J.; Adams, D.J.; Craik, D.J.; Daly, N.L. Inhibition of neuronal nicotinic acetylcholine receptor subtypes by alpha-Conotoxin GID and analogues. J. Biol. Chem. 2009, 284, 4944–4951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, J.; Yongye, A.B.; Chang, Y.P.; Gyanda, R.; Medina-Franco, J.L.; Armishaw, C.J. Design and synthesis of alpha-conotoxin GID analogues as selective alpha4beta2 nicotinic acetylcholine receptor antagonists. Biopolymers 2014, 102, 78–87. [Google Scholar] [CrossRef]
- Leffler, A.E.; Kuryatov, A.; Zebroski, H.A.; Powell, S.R.; Filipenko, P.; Hussein, A.K.; Gorson, J.; Heizmann, A.; Lyskov, S.; Tsien, R.W.; et al. Discovery of peptide ligands through docking and virtual screening at nicotinic acetylcholine receptor homology models. Proc. Natl. Acad. Sci. USA 2017, 114, E8100–E8109. [Google Scholar] [CrossRef] [Green Version]
- Morales-Perez, C.L.; Noviello, C.M.; Hibbs, R.E. X-ray structure of the human alpha4beta2 nicotinic receptor. Nature 2016, 538, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Walsh, R.M., Jr.; Roh, S.H.; Gharpure, A.; Morales-Perez, C.L.; Teng, J.; Hibbs, R.E. Structural principles of distinct assemblies of the human alpha4beta2 nicotinic receptor. Nature 2018, 557, 261–265. [Google Scholar] [CrossRef]
- Wu, X.; Tae, H.S.; Huang, Y.H.; Adams, D.J.; Craik, D.J.; Kaas, Q. Stoichiometry dependent inhibition of rat α3β4 nicotinic acetylcholine receptor by the ribbon isomer of alpha-conotoxin AuIB. Biochem. Pharmacol. 2018, 155, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Kompella, S.N.; Adams, D.J.; Craik, D.J.; Kaas, Q. Determination of the alpha-conotoxin Vc1.1 binding site on the alpha9alpha10 nicotinic acetylcholine receptor. J. Med. Chem. 2013, 56, 3557–3567. [Google Scholar] [CrossRef]
- Grishin, A.A.; Cuny, H.; Hung, A.; Clark, R.J.; Brust, A.; Akondi, K.; Alewood, P.F.; Craik, D.J.; Adams, D.J. Identifying key amino acid residues that affect alpha-conotoxin AuIB inhibition of alpha3beta4 nicotinic acetylcholine receptors. J. Biol. Chem. 2013, 288, 34428–34442. [Google Scholar] [CrossRef] [Green Version]
- Servent, D.; Thanh, H.L.; Antil, S.; Bertrand, D.; Corringer, P.-J.; Changeux, J.-P.; Ménez, A. Functional determinants by which snake and cone snail toxins block the alpha7 neuronal nicotinic acetylcholine receptors. J. Phys.-Paris 1998, 92, 107–111. [Google Scholar] [CrossRef]
- Everhart, D.; Cartier, G.E.; Malhotra, A.; Gomes, A.V.; McIntosh, J.M.; Luetje, C.W. Determinants of potency on alpha-conotoxin MII, a peptide antagonist of neuronal nicotinic receptors. Biochemistry 2004, 43, 2732–2737. [Google Scholar] [CrossRef] [PubMed]
- Quiram, P.A.; Sine, S.M. Structural elements in alpha-conotoxin ImI essential for binding to neuronal alpha7 receptors. J. Biol. Chem. 1998, 273, 11007–11011. [Google Scholar] [CrossRef] [Green Version]
- Hone, A.J.; Ruiz, M.; Scadden, M.; Christensen, S.; Gajewiak, J.; Azam, L.; McIntosh, J.M. Positional scanning mutagenesis of alpha-conotoxin PeIA identifies critical residues that confer potency and selectivity for alpha6/alpha3beta2beta3 and alpha3beta2 nicotinic acetylcholine receptors. J. Biol. Chem. 2013, 288, 25428–25439. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, J.M.; Azam, L.; Staheli, S.; Dowell, C.; Lindstrom, J.M.; Kuryatov, A.; Garrett, J.E.; Marks, M.J.; Whiteaker, P. Analogs of alpha-conotoxin MII are selective for alpha6-containing nicotinic acetylcholine receptors. Mol. Pharmacol. 2004, 65, 944–952. [Google Scholar] [CrossRef]
- Jacobsen, R.B.; DelaCruz, R.G.; Grose, J.H.; McIntosh, J.M.; Yoshikami, D.; Olivera, B.M. Critical residues influence the affinity and selectivity of alpha-conotoxin MI for nicotinic acetylcholine receptors. Biochemistry 1999, 38, 13310–13315. [Google Scholar] [CrossRef]
- Wu, Y.; Zhangsun, D.; Zhu, X.; Kaas, Q.; Zhangsun, M.; Harvey, P.J.; Craik, D.J.; McIntosh, J.M.; Luo, S. Alpha-conotoxin [S9A]TxID potently discriminates between alpha3beta4 and alpha6/alpha3beta4 nicotinic acetylcholine receptors. J. Med. Chem. 2017, 60, 5826–5833. [Google Scholar] [CrossRef] [PubMed]
- Grishin, A.A.; Wang, C.I.; Muttenthaler, M.; Alewood, P.F.; Lewis, R.J.; Adams, D.J. Alpha-conotoxin AuIB isomers exhibit distinct inhibitory mechanisms and differential sensitivity to stoichiometry of alpha3beta4 nicotinic acetylcholine receptors. J. Biol. Chem. 2010, 285, 22254–22263. [Google Scholar] [CrossRef] [Green Version]
- Noviello, C.M.; Gharpure, A.; Mukhtasimova, N.; Cabuco, R.; Baxter, L.; Borek, D.; Sine, S.M.; Hibbs, R.E. Structure and gating mechanism of the alpha7 nicotinic acetylcholine receptor. Cell 2021, 184, 2121–2134. [Google Scholar] [CrossRef]
- Gharpure, A.; Teng, J.; Zhuang, Y.; Noviello, C.M.; Walsh, R.M., Jr.; Cabuco, R.; Howard, R.J.; Zaveri, N.T.; Lindahl, E.; Hibbs, R.E. Agonist selectivity and Ion permeation in the alpha3beta4 ganglionic nicotinic receptor. Neuron 2019, 104, 501–511.e506. [Google Scholar] [CrossRef]
- Yu, R.; Craik, D.J.; Kaas, Q. Blockade of neuronal alpha7-nAChR by alpha-conotoxin ImI explained by computational scanning and energy calculations. PLoS Comput. Biol. 2011, 7, e1002011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaas, Q.; Westermann, J.C.; Halai, R.; Wang, C.K.; Craik, D.J. ConoServer, a database for conopeptide sequences and structures. Bioinformatics 2008, 24, 445–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beissner, M.; Dutertre, S.; Schemm, R.; Danker, T.; Sporning, A.; Grubmuller, H.; Nicke, A. Efficient binding of 4/7 alpha-conotoxins to nicotinic alpha4beta2 receptors is prevented by Arg185 and Pro195 in the alpha4 subunit. Mol. Pharmacol. 2012, 82, 711–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inserra, M.C.; Kompella, S.N.; Vetter, I.; Brust, A.; Daly, N.L.; Cuny, H.; Craik, D.J.; Alewood, P.F.; Adams, D.J.; Lewis, R.J. Isolation and characterization of alpha-conotoxin LsIA with potent activity at nicotinic acetylcholine receptors. Biochem. Pharmacol. 2013, 86, 791–799. [Google Scholar] [CrossRef]
- Lebbe, E.K.; Peigneur, S.; Maiti, M.; Devi, P.; Ravichandran, S.; Lescrinier, E.; Ulens, C.; Waelkens, E.; D’Souza, L.; Herdewijn, P.; et al. Structure-function elucidation of a new alpha-conotoxin, Lo1a, from Conus longurionis. J. Biol. Chem. 2014, 289, 9573–9583. [Google Scholar] [CrossRef] [Green Version]
- Hopping, G.; Wang, C.I.; Hogg, R.C.; Nevin, S.T.; Lewis, R.J.; Adams, D.J.; Alewood, P.F. Hydrophobic residues at position 10 of alpha-conotoxin PnIA influence subtype selectivity between alpha7 and alpha3beta2 neuronal nicotinic acetylcholine receptors. Biochem. Pharmacol. 2014, 91, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Šali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006, 15, 2507–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [Green Version]
- Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
Substitution | α4β2 nAChR | α3β2 nAChR | α7 nAChR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IC50 Ratio a | ΔΔG at the α4(+)β2(−) | ΔΔG at the α4(+)α4(−) | IC50 Ratio a | ΔΔG at the α3(+)β2(−) | ΔΔG at the α3(+)α3(−) | IC50 Ratio a | ΔΔG at the α7(+)α7(−) | ||||||
S7A | 7.6 | −0.2 b | TP c | 0.0 | TP | 0.9 | 0.0 | TP | 0.2 | TP | 2.2 | 0.2 | TP |
N8A | >17 | 2.3 | TN | 1.8 | FP | 1.4 | 2.2 | TP | 1.8 | TP | > 10 | 1.8 | FP |
P9A | >17 | 2.7 | TN | 2.9 | TN | 59 | 2.6 | TN | 2.8 | TN | 15 | 2.6 | TN |
A10S | 0.8 | 0.7 | TP | 0.9 | TP | 6.4 | 1.0 | TP | 1.9 | TP | - | - | - |
A10T | >20 | 0.8 | FP | 2.5 | TN | >2700 | 2.1 | FP | 3.2 | TN | - | - | - |
R12A | >17 | 1.8 | FP | 2.5 | TN | 3.6 | 2.2 | TP | 1.2 | TP | 8.3 | 1.5 | TP |
V13A | 2.0 | 1.3 | TP | 1.5 | TP | 0.2 | 1.1 | TP | 2.3 | TP | 1.9 | 1.6 | TP |
V13F | >20 | 2.4 | TN | 8.3 | TN | 111 | 2.7 | TN | 10.5 | TN | - | - | - |
V13W | >20 | 6.7 | TN | 16.2 | TN | >2700 | 8.2 | TN | 16.9 | TN | - | - | - |
V13L | >20 | −0.5 | FP | −0.7 | FP | >2700 | −0.7 | FP | −0.2 | FP | - | - | - |
V13I | 1.3 | −0.3 | TP | −0.3 | TP | 3.6 | −0.5 | TP | −0.3 | TP | - | - | - |
V13S | 1.0 | 2.1 | TP | 1.9 | TP | 0.4 | 1.8 | TP | 2.3 | FN | - | - | - |
V13T | 1.2 | 1.5 | TP | 1.1 | TP | 1.3 | 1.3 | TP | 1.4 | TP | - | - | - |
N14A | >17 | 1.5 | FP | −0.2 | FP | 0.4 | 1.7 | TP | 1.9 | TP | 8.7 | 1.2 | TP |
N15A | >17 | 1.2 | FP | 1.1 | FP | 1.1 | 1.3 | TP | 0.8 | TP | 1.0 | 1.0 | TP |
N15K | >20 | 0.0 | FP | −0.1 | FP | >2700 | 0.2 | FP | 0.0 | FP | - | - | - |
N15H | >20 | 1.2 | FP | 2.0 | FP | 44 | 0.9 | FP | 3.4 | TN | - | - | - |
O16A | 11 | 1.5 | TP | 2.4 | FN | 4.7 | 1.6 | TP | 1.2 | TP | 2.2 | 2.2 | TP |
H17A | 11 | 0.4 | TP | 0.3 | TP | 0.9 | 0.2 | TP | 0.3 | TP | 0.8 | 0.1 | TP |
V18A | >17 | 1.4 | FP | 1.2 | FP | 14 | 1.0 | TP | 1.2 | TP | 1.3 | 1.2 | TP |
V18Y | >20 | 4.2 | TN | 1.8 | FP | >2700 | 3.4 | TN | 1.0 | FP | - | - | - |
V18Q | >20 | 1.6 | FP | 0.7 | FP | >2700 | 0.6 | FP | 0.7 | FP | - | - | - |
V18N | 0.4 | 2.0 | TP | 1.1 | TP | >2700 | 1.3 | FP | 1.0 | FP | - | - | - |
Accuracy | 61% | 57% | 74% | 74% | 90% | ||||||||
MCC d | 0.42 | 0.27 | 0.52 | 0.48 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Craik, D.J.; Kaas, Q. Interactions of Globular and Ribbon [γ4E]GID with α4β2 Neuronal Nicotinic Acetylcholine Receptor. Mar. Drugs 2021, 19, 482. https://doi.org/10.3390/md19090482
Wu X, Craik DJ, Kaas Q. Interactions of Globular and Ribbon [γ4E]GID with α4β2 Neuronal Nicotinic Acetylcholine Receptor. Marine Drugs. 2021; 19(9):482. https://doi.org/10.3390/md19090482
Chicago/Turabian StyleWu, Xiaosa, David J. Craik, and Quentin Kaas. 2021. "Interactions of Globular and Ribbon [γ4E]GID with α4β2 Neuronal Nicotinic Acetylcholine Receptor" Marine Drugs 19, no. 9: 482. https://doi.org/10.3390/md19090482
APA StyleWu, X., Craik, D. J., & Kaas, Q. (2021). Interactions of Globular and Ribbon [γ4E]GID with α4β2 Neuronal Nicotinic Acetylcholine Receptor. Marine Drugs, 19(9), 482. https://doi.org/10.3390/md19090482