Marine Microbial Fibrinolytic Enzymes: An Overview of Source, Production, Biochemical Properties and Thrombolytic Activity
Abstract
:1. Introduction
2. Marine Microorganisms as Sources of Fibrinolytic Enzyme
3. Purification of Fibrinolytic Enzymes
4. Biochemical Characterization of Marine Microbial Fibrinolytic Enzymes
4.1. Physicochemical Properties of Fibrinolytic Enzymes
4.1.1. Molecular Weight and Effect of pH, Temperature, Inhibitors and Ions
4.1.2. Fibrinogen Lytic Activity
4.2. Amidolytic and Kinetic Properties of Marine Microbial Fibrinolytic Enzymes
5. Production of Marine Microbial Fibrinolytic Enzymes
5.1. Construction of Genetically Engineered Strains
5.2. Fermentation Approach
6. Thrombolytic Activity of Marine Microbial Fibrinolytic Enzymes
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raskob, G.; Angchaisuksiri, P.; Blanco, A.; Buller, H.; Gallus, A.; Hunt, B.; Hylek, E.; Kakkar, A.; Konstantinides, S.; McCumber, M. Isth steering committee for world thrombosis day. Thrombosis: A major contributor to global disease burden. Arter. Thromb Vasc Biol. 2014, 34, 2363–2371. [Google Scholar] [CrossRef] [Green Version]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the gbd 2019 study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Winter, W.E.; Flax, S.D.; Harris, N.S. Coagulation testing in the core laboratory. Lab. Med. 2017, 48, 295–313. [Google Scholar] [CrossRef]
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). NCDs Mortality and Morbidity. 2016 [Updated 2016; Cited]. Available online: http://www.who.int/gho/ncd/mortality_morbidity/en/ (accessed on 20 November 2021).
- Kotb, E. Activity assessment of microbial fibrinolytic enzymes. Appl. Microbiol. Biotechnol. 2013, 97, 6647–6665. [Google Scholar] [CrossRef] [PubMed]
- Chapin, J.C.; Hajjar, K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015, 29, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Yang, X.; Zhang, Y. Microbial fibrinolytic enzymes: An overview of source, production, properties, and thrombolytic activity in vivo. Appl. Microbiol. Biotechnol. 2005, 69, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Chitte, R.R.; Deshmukh, S.V.; Kanekar, P.P. Production, purification, and biochemical characterization of a fibrinolytic enzyme from thermophilic Streptomyces sp. MCMB-379. Appl. Biochem. Biotechnol. 2011, 165, 1406–1413. [Google Scholar] [CrossRef]
- Simoons, M.L.; de Jaegere, P.; van Domburg, R.; Boersma, E.; Maggioni, A.; Franzosi, M.; Leimberger, J.; Califf, R.; Schröder, R.; Knatterud, G. Individual risk assessment for intracranial haemorrhage during thrombolytic therapy. Lancet 1993, 342, 1523–1528. [Google Scholar] [CrossRef] [Green Version]
- Fromm, R.E., Jr.; Hoskins, E.; Cronin, L.; Pratt, C.M.; Spencer, W.H., III; Roberts, R. Bleeding complications following initiation of thrombolytic therapy for acute myocardial infarction: A comparison of helicopter-transported and nontransported patients. Ann. Emerg. Med. 1991, 20, 892–895. [Google Scholar] [CrossRef]
- Niego, B.e.; Freeman, R.; Puschmann, T.B.; Turnley, A.M.; Medcalf, R.L. t-PA–specific modulation of a human blood-brain barrier model involves plasmin-mediated activation of the Rho kinase pathway in astrocytes. Blood J. Am. Soc. Hematol. 2012, 119, 4752–4761. [Google Scholar] [CrossRef]
- Eisenberg, P.R.; Sherman, L.A.; Tiefenbrunn, A.J.; Ludbrook, P.A.; Sobel, B.E.; Jaffe, A.S. Sustained fibrinolysis after administration of t-PA despite its short half-life in the circulation. Thromb. Haemost. 1987, 57, 035–040. [Google Scholar] [CrossRef]
- Nilsson, T.; Wallén, P.; Mellbring, G. In vivo metabolism of human tissue-type plasminogen activator. Scand. J. Haematol. 1984, 33, 49–53. [Google Scholar] [CrossRef]
- Tsikouris, J.P.; Tsikouris, A.P. A review of available fibrin-specific thrombolytic agents used in acute myocardial infarction. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2001, 21, 207–217. [Google Scholar] [CrossRef]
- Matsuo, O.; Rijken, D.; Collen, D. Comparison of the relative fibrinogenolytic, fibrinolytic and thrombolytic properties of tissue plasminogen activator and urokinase in vitro. Thromb. Haemost. 1981, 45, 225–229. [Google Scholar] [CrossRef]
- Lu, F.; Lu, Z.; Bie, X.; Yao, Z.; Wang, Y.; Lu, Y.; Guo, Y. Purification and characterization of a novel anticoagulant and fibrinolytic enzyme produced by endophytic bacterium Paenibacillus polymyxa EJS-3. Thromb. Res. 2010, 126, e349–e355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wisner, A.; Xiong, Y.; Bon, C. A novel plasminogen activator from snake venom: Purification, characterization, and molecular cloning. J. Biol. Chem. 1995, 270, 10246–10255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.X.; Zhao, X.Y.; Pan, R.; He, R.Q. Glycosylated trypsin-like proteases from earthworm Eisenia fetida. Int. J. Biol. Macromol. 2007, 40, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Iannucci, N.; Camperi, S.; Cascone, O. Purification of lumbrokinase from Eisenia fetida using aqueous two-phase systems and anion-exchange chromatography. Sep. Purif. Technol. 2008, 64, 131–134. [Google Scholar] [CrossRef]
- Ahn, M.Y.; Hahn, B.-S.; Ryu, K.S.; Kim, J.W.; Kim, I.; Kim, Y.S. Purification and characterization of a serine protease with fibrinolytic activity from the dung beetles, Catharsius molossus. Thromb. Res. 2003, 112, 339–347. [Google Scholar] [CrossRef]
- Chung, D.-M.; Choi, N.-S.; Maeng, P.J.; Chun, H.K.; Kim, S.-H. Purification and characterization of a novel fibrinolytic enzyme from chive (Allium tuberosum). Food Sci. Biotechnol. 2010, 19, 697–702. [Google Scholar] [CrossRef]
- Katrolia, P.; Liu, X.; Zhao, Y.; Kopparapu, N.K.; Zheng, X. Gene cloning, expression and homology modeling of first fibrinolytic enzyme from mushroom (Cordyceps militaris). Int. J. Biol. Macromol. 2020, 146, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Zhang, C.; Guo, F.; Lu, Y.; Bie, X.; Qian, H.; Lu, Z. Expression, purification, and characterization of a recombined fibrinolytic enzyme from endophytic Paenibacillus polymyxa EJS-3 in Escherichia coli. Food Sci. Biotechnol. 2015, 24, 125–131. [Google Scholar] [CrossRef]
- Taneja, K.; Bajaj, B.K.; Kumar, S.; Dilbaghi, N. Production, purification and characterization of fibrinolytic enzyme from Serratia sp. KG-2-1 using optimized media. 3 Biotech 2017, 7, 184. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Choi, K.; Kim, Y.; Park, H.; Choi, J.; Lee, Y.; Oh, H.; Kwon, I.; Lee, S. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain ck 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 1996, 62, 2482–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, S.; Fujii, T.; Morimiya, T.; Johdo, O.; Nakamura, T. The fibrinolytic activity of a novel protease derived from a tempeh producing fungus, Fusarium sp. BLB. Biosci. Biotechnol. Biochem. 2007, 71, 2184–2189. [Google Scholar] [CrossRef] [Green Version]
- Mine, Y.; Wong, A.H.K.; Jiang, B. Fibrinolytic enzymes in asian traditional fermented foods. Food Res. Int. 2005, 38, 243–250. [Google Scholar] [CrossRef]
- Yao, Z.; Kim, J.A.; Kim, J.H. Gene cloning, expression, and properties of a fibrinolytic enzyme secreted by Bacillus pumilus bs15 isolated from gul (oyster) jeotgal. Biotechnol. Bioprocess Eng. 2018, 23, 293–301. [Google Scholar] [CrossRef]
- Barzkar, N.; Sohail, M.; Jahromi, S.T.; Nahavandi, R.; Khodadadi, M. Marine microbial l-glutaminase: From pharmaceutical to food industry. Appl. Microbiol. Biotechnol. 2021, 105, 4453–4466. [Google Scholar] [CrossRef]
- Barzkar, N.; Sohail, M.; Jahromi, S.T.; Gozari, M.; Poormozaffar, S.; Nahavandi, R.; Hafezieh, M. Marine bacterial esterases: Emerging biocatalysts for industrial applications. Appl. Biochem. Biotechnol. 2021, 193, 1187–1214. [Google Scholar] [CrossRef]
- Barzkar, N.; Khan, Z.; Jahromi, S.T.; Poormozaffar, S.; Gozari, M.; Nahavandi, R. A critical review on marine serine protease and its inhibitors: A new wave of drugs? Int. J. Biol. Macromol. 2020, 170, 674–687. [Google Scholar] [CrossRef]
- Barzkar, N.; Sohail, M. An overview on marine cellulolytic enzymes and their potential applications. Appl. Microbiol. Biotechnol. 2020, 104, 6873–6892. [Google Scholar] [CrossRef]
- Barzkar, N. Marine microbial alkaline protease: An efficient and essential tool for various industrial applications. Int. J. Biol. Macromol. 2020, 161, 1216–1229. [Google Scholar] [CrossRef] [PubMed]
- Barzkar, N.; Jahromi, S.T.; Poorsaheli, H.B.; Vianello, F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Mar. Drugs 2019, 17, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahromi, S.T.; Barzkar, N. Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. Int. J. Biol. Macromol. 2018, 120, 2147–2154. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, S.T.; Barzkar, N. Future direction in marine bacterial agarases for industrial applications. Appl. Microbiol. Biotechnol. 2018, 102, 6847–6863. [Google Scholar] [CrossRef] [PubMed]
- Barzkar, N.; Homaei, A.; Hemmati, R.; Patel, S. Thermostable marine microbial proteases for industrial applications: Scopes and risks. Extremophiles 2018, 22, 335–346. [Google Scholar] [CrossRef]
- Izadpanah Qeshmi, F.; Javadpour, S.; Malekzadeh, K.; Tamadoni Jahromi, S.; Rahimzadeh, M. Persian gulf is a bioresource of potent l-asparaginase producing bacteria: Isolation & molecular differentiating. Int. J. Environ. Res 2014, 8, 813–818. [Google Scholar]
- Sabu, A. Sources, properties and applications of microbial therapeutic enzymes. Indian J. Biotechnol. 2003, 2, 334–341. [Google Scholar]
- Mahajan, P.M.; Nayak, S.; Lele, S.S. Fibrinolytic enzyme from newly isolated marine bacterium Bacillus subtilis ictf-1: Media optimization, purification and characterization. J. Biosci. Bioeng. 2012, 113, 307–314. [Google Scholar] [CrossRef]
- Sharma, C.; Osmolovskiy, A.; Singh, R. Microbial fibrinolytic enzymes as anti-thrombotics: Production, characterisation and prodigious biopharmaceutical applications. Pharmaceutics 2021, 13, 1880. [Google Scholar] [CrossRef]
- SudeshWarma, S.; Devi, C.S. Production of Fibrinolytic Protease from Streptomyces Lusitanus Isolated from Marine Sediments; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; p. 022048. [Google Scholar]
- Dhamodharan, D. Novel fibrinolytic protease producing Streptomyces radiopugnans VITSD8 from marine sponges. Mar. Drugs 2019, 17, 164. [Google Scholar]
- Mohanasrinivasan, V.; Yogesh, S.; Govindaraj, A.; Jemimah Naine, S.; Subathra Devi, C. In vitro thrombolytic potential of actinoprotease from marine Streptomyces violaceus VITYGM. Cardiovasc. Hematol. Agents Med. Chem. (Former. Curr. Med. Chem.-Cardiovasc. Hematol. Agents) 2016, 14, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.S.; Haridas, M.; Sabu, A. Process optimization for production of a fibrinolytic enzyme from newly isolated marine bacterium Pseudomonas aeruginosa KU1. Biocatal. Agric. Biotechnol. 2018, 14, 33–39. [Google Scholar] [CrossRef]
- Kumar, S.S.; Haridas, M.; Abdulhameed, S. A novel fibrinolytic enzyme from marine Pseudomonas aeruginosa KU1 and its rapid in vivo thrombolysis with little haemolysis. Int. J. Biol. Macromol. 2020, 162, 470–479. [Google Scholar] [CrossRef]
- Demina, N.; Veslopolova, E.; Gaenko, G. The marine bacterium Alteromonas piscicida--a producer of enzymes with thrombolytic action. Izv. Akad. Nauk SSSR. Seriia Biol. 1990, 3, 415–419. [Google Scholar]
- Vijayaraghavan, P.; Vincent, S.G.P. Statistical optimization of fibrinolytic enzyme production by Pseudoalteromonas sp. IND11 using cow dung substrate by response surface methodology. SpringerPlus 2014, 3, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gowthami, K.; Madhuri, R.J. Optimization of cultural conditions for maximum production of fibrinolytic enzymes from the local marine bacterial isolates and evaluation of their wound healing and clot dissolving properties. J. Pharm. Res. Int. 2021, 33, 246–255. [Google Scholar] [CrossRef]
- Masilamani, R.; Natarajan, S. Molecular cloning, overexpression and characterization of a new thiol-dependent, alkaline serine protease with destaining function and fibrinolytic potential from Marinobacter aquaeolei MS2-1. Biologia 2015, 70, 1143–1149. [Google Scholar] [CrossRef]
- Al Farraj, D.A.; Kumar, T.S.J.; Vijayaraghavan, P.; Elshikh, M.S.; Alkufeidy, R.M.; Alkubaisi, N.A.; Alshammari, M.K. Enhanced production, purification and biochemical characterization of therapeutic potential fibrinolytic enzyme from a new Bacillus flexus from marine environment. J. King Saud Univ.-Sci. 2020, 32, 3174–3180. [Google Scholar] [CrossRef]
- Pan, S.; Chen, G.; Zeng, J.; Cao, X.; Zheng, X.; Zeng, W.; Liang, Z. Fibrinolytic enzyme production from low-cost substrates by marine Bacillus subtilis: Process optimization and kinetic modeling. Biochem. Eng. J. 2019, 141, 268–277. [Google Scholar] [CrossRef]
- Huang, S.; Pan, S.; Chen, G.; Huang, S.; Zhang, Z.; Li, Y.; Liang, Z. Biochemical characteristics of a fibrinolytic enzyme purified from a marine bacterium, Bacillus subtilis HQS-3. Int. J. Biol. Macromol. 2013, 62, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Xu, F.; Hu, N.; Liu, X.; Liu, Z. A novel Ca2+-dependent alkaline serine-protease (Bvsp) from Bacillus sp. With high fibrinolytic activity. J. Mol. Catal. B Enzym. 2015, 117, 69–74. [Google Scholar] [CrossRef]
- Pan, S.; Chen, G.; Wu, R.; Cao, X.; Liang, Z. Non-sterile submerged fermentation of fibrinolytic enzyme by marine Bacillus subtilis harboring antibacterial activity with starvation strategy. Front. Microbiol. 2019, 10, 1025. [Google Scholar] [CrossRef]
- Wu, R.; Chen, G.; Pan, S.; Zeng, J.; Liang, Z. Cost-effective fibrinolytic enzyme production by Bacillus subtilis WR350 using medium supplemented with corn steep powder and sucrose. Sci. Rep. 2019, 9, 6824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Z.; Kim, J.A.; Kim, J.H. Properties of a fibrinolytic enzyme secreted by Bacillus subtilis JS2 isolated from saeu (small shrimp) jeotgal. Food Sci. Biotechnol. 2018, 27, 765–772. [Google Scholar] [CrossRef]
- Yao, Z.; Kim, J.A.; Kim, J.H. Characterization of a fibrinolytic enzyme secreted by Bacillus velezensis BS2 isolated from sea squirt jeotgal. J. Microbiol. Biotechnol. 2019, 29, 347–356. [Google Scholar] [CrossRef]
- Vijayaraghavan, P.; Vincent, S.P. A low cost fermentation medium for potential fibrinolytic enzyme production by a newly isolated marine bacterium, Shewanella sp. IND20. Biotechnol. Rep. 2015, 7, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Anusree, M.; Swapna, K.; Aguilar, C.; Sabu, A. Optimization of process parameters for the enhanced production of fibrinolytic enzyme by a newly isolated marine bacterium. Bioresour. Technol. Rep. 2020, 11, 100436. [Google Scholar] [CrossRef]
- Krishnamurthy, A.; Belur, P.D. A novel fibrinolytic serine metalloprotease from the marine Serratia marcescens subsp. Sakuensis: Purification and characterization. Int. J. Biol. Macromol. 2018, 112, 110–118. [Google Scholar] [CrossRef]
- Krishnamurthy, A.; Belur, P.D.; Rai, P. Studies on fibrinolytic enzyme from marine Serratia marcescens subsp. Sakuensis (KU296189. 1). Int. J. Appl. Bioeng. 2017, 11, 1–5. [Google Scholar]
- Krishnamurthy, A.; Belur, P.D.; Rai, P.; Rekha, P.D. Production of fibrinolytic enzyme by the marine isolate Serratia marcescens subsp. sakuensis and its in-vitro anticoagulant and thrombolytic potential. Pure Appl. Microbiol 2017, 11, 1987–1998. [Google Scholar] [CrossRef]
- de Barros, P.D.S.; e Silva, P.E.C.; Nascimento, T.P.; Costa, R.M.P.B.; Bezerra, R.P.; Porto, A.L.F. Fibrinolytic enzyme from Arthrospira platensis cultivated in medium culture supplemented with corn steep liquor. Int. J. Biol. Macromol. 2020, 164, 3446–3453. [Google Scholar] [CrossRef] [PubMed]
- e Silva, P.E.d.C.; de Barros, R.C.; Albuquerque, W.W.C.; Brandão, R.M.P.; Bezerra, R.P.; Porto, A.L.F. In vitro thrombolytic activity of a purified fibrinolytic enzyme from Chlorella vulgaris. J. Chromatogr. B 2018, 1092, 524–529. [Google Scholar] [CrossRef]
- Páblo, E.; de Souza, F.; de Barros, R.; Marques, D.; Porto, A.; Bezerra, R. Enhanced production of fibrinolytic protease from microalgae Chlorella vulgaris using glycerol and corn steep liquor as nutrient. Ann. Microbiol. Res. 2017, 1, 9–19. [Google Scholar]
- Silva, T.; Barros, P.; Silva, P.; Bezerra, R.; Porto, A. Effects of Metal Ions and Proteases Inhibitors on Fibrinolytic. Available online: https://www.sbmicrobiologia.org.br/29cbm-anais/resumos/15/R0528-2.PDF (accessed on 20 November 2021).
- Wu, C.; Zheng, C.; Wang, J.; Jiang, P. Recombinant expression of thrombolytic agent reteplase in marine microalga Tetraselmis subcordiformis (Chlorodendrales, Chlorophyta). Mar. Drugs 2021, 19, 315. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, A.; Mundra, S.; Belur, P.D. Improving the catalytic efficiency of fibrinolytic enzyme from Serratia marcescens subsp. sakuensis by chemical modification. Process Biochem. 2018, 72, 79–85. [Google Scholar] [CrossRef]
- Che, Z.; Cao, X.; Chen, G.; Liang, Z. An effective combination of codon optimization, gene dosage, and process optimization for high-level production of fibrinolytic enzyme in Komagataella phaffii (Pichia pastoris). BMC Biotechnol. 2020, 20, 63. [Google Scholar] [CrossRef]
- Verma, P.; Chatterjee, S.; Keziah, M.S.; Devi, S.C. Fibrinolytic protease from marine Streptomyces rubiginosus VITPSS1. Cardiovasc. Hematol. Agents Med. Chem. (Former. Curr. Med. Chem.-Cardiovasc. Hematol. Agents) 2018, 16, 44–55. [Google Scholar] [CrossRef]
- Naveena, B.; Gopinath, K.P.; Sakthiselvan, P.; Partha, N. Enhanced production of thrombinase by Streptomyces venezuelae: Kinetic studies on growth and enzyme production of mutant strain. Bioresour. Technol. 2012, 111, 417–424. [Google Scholar] [CrossRef]
- Sadeesh Kumar, R.; Rajesh, R.; Gokulakrishnan, S.; Subramanian, J. Screening and characterization of fibrinolytic protease producing Bacillus circulans from mangrove sediments pitchavaram, South east coast of India. Int. Lett. Nat. Sci. 2015, 28, 10–16. [Google Scholar]
- Hwang, K.-J.; Choi, K.-H.; Kim, M.-J.; Park, C.-S.; Cha, J.-H. Purification and characterization of a new fibrinolytic enzyme of Bacillus licheniformis KJ-31, isolated from korean traditional Jeot-gal. J. Microbiol. Biotechnol. 2007, 17, 1469–1476. [Google Scholar] [PubMed]
- Bajpai, P. Xylanolytic Enzymes; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Koffman, B.; Modarress, K.; Bashirelahi, N. The effects of various serine protease inhibitors on estrogen receptor steroid binding. J. Steroid Biochem. Mol. Biol. 1991, 38, 569–574. [Google Scholar] [CrossRef]
- Weisel, J.W.; Litvinov, R.I. Fibrin formation, structure and properties. Fibrous Proteins: Struct. Mech. 2017, 82, 405–456. [Google Scholar]
- Lam, K.; Lloyd, G.; Neuteboom, S.; Palladino, M.; Sethna, K.; Spear, M.; Potts, B. Natural Product Chemistry for Drug Discovery; Buss, A.D., Butler, M.S., Eds.; Royal Society of Chemistry Cambridge: Cambridge, UK, 2010. [Google Scholar]
- Silva, R.; Ferreira, H.; Little, C.; Cavaco-Paulo, A. Effect of ultrasound parameters for unilamellar liposome preparation. Ultrason. Sonochemistry 2010, 17, 628–632. [Google Scholar] [CrossRef] [Green Version]
- Agrebi, R.; Haddar, A.; Hajji, M.; Frikha, F.; Manni, L.; Jellouli, K.; Nasri, M. Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: Characterization and statistical media optimization. Can. J. Microbiol. 2009, 55, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.-k.; Kim, J.H.; Gal, S.-w.; Kim, J.-e.; Park, S.-s.; Chung, K.-t.; Kim, Y.-H.; Kim, B.-W.; Joo, W.-H. Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis strain A1. World J. Microbiol. Biotechnol. 2004, 20, 711–717. [Google Scholar] [CrossRef]
- Mukherjee, A.K.; Rai, S.K.; Thakur, R.; Chattopadhyay, P.; Kar, S.K. Bafibrinase: A non-toxic, non-hemorrhagic, direct-acting fibrinolytic serine protease from Bacillus sp. strain AS-S20-I exhibits in vivo anticoagulant activity and thrombolytic potency. Biochimie 2012, 94, 1300–1308. [Google Scholar] [CrossRef]
Isolated From | Microorganism | Enzyme | Reference |
---|---|---|---|
Marine sediment from Kovalam beach, Chennai, Tamil Nadu | Streptomyces lusitanus | - | [43] |
Marine brown tube sponges Agelas conifera | Streptomyces radiopugnans VITSD8 | - | [44] |
Soil samples from South East Coast of India, Chennai | Streptomyces rubiginosus VITPSS1 | [72] | |
Marine water sample | Streptomyces venezuelae | Thrombinase | [73] |
Mangrove Sediments Pitchavaram, South East Coast of India | Bacillus circulans | - | [74] |
Marine sediments of Ezhara beach, Kannur District, Kerala, India | Pseudomonas aeruginosa KU1 | - | [46,47] |
Mangrove sediments of Pulicat Lake, India | Bacterial strain GPJ3 | - | [50] |
South West Coast of India | Bacillus flexus | - | [52] |
Mutagenesis of B. subtilis HQS-3 | Bacillus subtilis | - | [53] |
Surface seawater | Bacillus vallismortis | Bvsp | [55] |
Fish scales, Kanyakumari, India | Pseudoalteromonas sp. IND11 | - | [49] |
Coast of Beihai prefecture of China | Bacillus subtilis HQS-3 | - | [54] |
Deep-sea sediment of Bay of Bengal | Marinobacter aquaeolei MS2-1 | - | [51] |
Jeotgal from gul (Oyster, Crassostrea gigas), korean fermented food | Bacillus pumilus BS15 | AprEBS15 | [29] |
Marine niches covering 300 km of the western seacoast of Maharashtra, India | Bacillus subtilis ICTF-1 | - | [41] |
Oriyara beach in Kasargod district, Kerala, India | Serratia rubidaea KUAS001 | - | [61] |
Jeotgal from munggae (sea squirt), Korean fermented seafood | Bacillus velezensis BS2 | AprEBS2 | [59] |
Sea mud | Bacillus subtilis WR350 | - | [57] |
Sea water collected from a depth of 10 m, 5 km away from Surathkal Coast in the Arabian Sea | Serratia marcescens subsp. sakuensis (KU296189.1) | - | [62,63,64,70] |
Jeotgals from salted saeu (small shrimp), Korean fermented seafoods | Bacillus subtilis JS2 | AprEJS2 | [58] |
Marine isolate | Shewanella sp. IND20 | - | [60] |
Jeotgal, Korean fermented seafood | Bacillus licheniformis KJ-31 | BpKJ-31 | [75] |
Culture Collection of Algae, University of Texas, Austin | Arthrospira (Spirulina) platensis | - | [65] |
University of Texas, Austin | Chlorella vulgaris | - | [66,67] |
Dalian Institute of Chemical Physics, Chinese Academy of Sciences | Tetraselmis subcordiformis | - | [69] |
Source | Enzyme | Purification Methods | Total Protein (mg) | Specific Activity (U mg−1) | Purification (Fold) | Yield (%) | References |
---|---|---|---|---|---|---|---|
Bacillus flexus | - | Ammonium sulphate precipitation (20%, 40% and 60%), Sephadex G-75 chromatography | 4.4 | 315.2 | 5.2 | 10.8 | [52] |
Bacillus pumilus BS15 | AprEBS15 | Affinity chromatography by HiTrap IMAC FF column | - | - | - | - | [29] |
Bacillus velezensis BS2 | AprEBS2 | Affinity chromatography by HiTrap IMAC FF column | - | 131.15 m | - | - | [59] |
Bacillus subtilis HQS-3 | - | Ammonium sulphate precipitation, alkaline solution treatment, membrane concentration, dialysis, ion exchange and gel filtration chromatography | 12 | 62,745 | 30 | 13 | [54] |
Bacillus subtilis JS2 | AprEJS2 | Affinity chromatography by HiTrap IMAC FF column | - | - | - | - | [58] |
Serratia marcescens subsp. sakuensi | - | Ammonium sulfate precipitation (40%), dialysis, Fast protein liquid chromatograghy | 0.03 | 1033 | 21.08 | 19.38 | [62] |
Pseudomonas aeruginosa KU1 | - | Ammonium sulphate precipitation (50–80%), DEAE Sepharose, Sepharose 6B chromatography | 0.8 mg∙mL−1 | 1491.50 | 13.52 | 17.79 | [47] |
Bacillus licheniformis KJ-31 | BpKJ-31 | DEAE-Sepharose FF column and gel filtration chromatography (HiPrep 16/60 Sephacryl S-200 HR column) | 3.2 | 242.8 | 19 | 0.2 | [75] |
Bacillus subtilis ICTF-1 | - | Ammonium sulfate precipitation (0–60%), UnoQ Sepharose Strong Anion Exchanger, Butyl Sepharose FF chromatography | 0.669 | 280 | 32.42 | 7.5 | [41] |
Streptomyces lusitanus | - | Ammonium sulfate precipitation (60%), dialysis, size exclusion gel filtration chromatography | - | - | - | - | [43] |
Streptomyces radiopugnans VITSD8 | - | Ammonium sulphate precipitation (0–85%), dialysis, ion-exchange chromatography, Size exclusion chromatography | 1.1 | 3891 | 22.36 | 35 | [44] |
Arthrospira platensis | - | Ammonium sulfate precipitation (40–70%), anion exchange (DEAE-Sephadex), size exclusion (Superdex 75) chromatography | 0.02 mg∙mL−1 | 7988 | 32.72 | 28.85 | [65] |
Chlorella vulgaris | - | Acetone precipitation, anion exchange chromatography HiTrapTM DEAE FF cloumn | 2.0 | 1834.6 | 2 | 4.0 | [66] |
Source | Enzyme | Molecular Weight (kDa) | pH Opt. | Temp. Opt. (°C) | Activator/Co-Factor (Metal Ions) | Inhibitor | Class | References |
---|---|---|---|---|---|---|---|---|
Bacillus flexus | - | 32 | 8 | 60 | Mg2+, Mn2+ | Zn2+, Fe2+ and Hg2+ | - | [52] |
Bacillus pumilus BS15 | AprEBS15 | 27 | 8 | 40 | K+, Mg2+, Zn2+ | Na+, Fe3+, Mn2+, Co2+, PMSF, SDS, EDTA and EGTA | Serine protease | [29] |
Bacillus velezensis BS2 | AprEBS2 | 27 | 8 | 37 | Mg2+, Ca2+, Mn2+ | Fe3+, Zn2+, K+, Co2+, PMSF, EDTA, SDS | Serine protease | [59] |
Bacillus licheniformis KJ-31 | BpKJ-31 | 37 | 9 | 40 | - | PMSF | Alkaline serine protease | [75] |
Bacillus subtilis JS2 | AprEJS2 | 24 | 8 | 40 | K+, Mn2+, Mg2+, Zn2+ | PMSF, EDTA, EGTA | Serine protease | [58] |
Bacillus subtilis HQS-3 | - | 26 | 8 | 45–50 | Mn2+,Ca2+, Mg2+ | PMSF, EDTA, Cu2+, Zn2+ and Co2+ | Serine metalloprotease | [54] |
Marinobacter aquaeolei MS2-1 | - | 39 | 8 | 50 | DTT | PMSF | Thiol-dependent serine protease | [51] |
Bacillus subtilis ICTF-1 | - | 28 | 9 | 50 | Ca2+ | Zn2+, Fe3+, Hg2+ and PMSF | Serine protease | [41] |
Bacillus vallismortis | Bvsp | 34.4 | 6.5 | 54 | Ca2+, Zn2+ and Ba2+ | Na+, K+, NH4+ and Mg2+, PMSF, AEBSF, SDS, Guanidine-HCL, Urea and Isopropyl alcohol | Alkaline serine protease | [55] |
Serratia marcescens subsp. sakuensi | - | 43 | 7 | 55 | Mn2+, Mg2+, Zn2+ | PMSF, EDTA | Serine metalloprotease | [62] |
Pseudomonas aeruginosa KU1 | - | ~50 | - | - | Na+, K+ and Co2+ | Fe2+, Mn2+ and Zn2+ | Metalloprotease | [47] |
Shewanella sp. IND20 | - | 55.5 | 8 | 50 | Ca2+ and Mg2+ | - | - | [60] |
Streptomyces lusitanus | - | 21 | 7 | 37 | - | - | - | [43] |
Streptomyces radiopugnans VITSD8 | - | 38 | 7 | 33 | - | - | Serine endopeptidase | [44] |
Streptomyces rubiginosus VITPSS1 | - | 45 | - | - | - | - | - | [72] |
Arthrospira platensis | - | 72 | 6 | 40 | Fe2+ | PMSF | Serine metalloprotease | [65] |
Chlorella vulgaris | - | 45 | - | - | Fe2+ | PMSF, EDTA | Serine metalloprotease | [66] |
Source | Enzyme | Reference | Mode of Action | References |
---|---|---|---|---|
Bacillus velezensis BS2 | AprEBS2 | Strong α-fibrinogenase and moderate β-fibrinogenase | Direct | [59] |
Bacillus pumilus BS15 | AprEBS15 | Strong α-fibrinogenase and moderate β-fibrinogenase activities | Direct | [29] |
Bacillus subtilis JS2 | AprEJS2 | Strong α-fibrinogenase and moderate β -fibrinogenase activities | Direct | [58] |
Bacillus licheniformis KJ-31 | BpKJ-31 | Strong Aα and fibrino (geno) lytic activity | Direct | [75] |
Bacillus subtilis HQS-3 | - | Hydrolyzed α chain of fibrin, followed by the β chain and finally the γ–γ chain | Direct | [54] |
Bacillus vallismortis | Bvsp | Digest Aα- and Bβ-chains readily, but the γ-chain of fibrinogen slowly | Direct | [55] |
Source | Enzyme | Substrate Specificity | Vmax | Km | kcat | kcat/Km | Reference |
---|---|---|---|---|---|---|---|
Bacillus velezensis BS2 | AprEBS2 | N-Succ-Ala-Ala-Pro-Phe-pNA | 39.68 μM min−1 | 0.15 mM | 18.14 s−1 | 1.25 × 105 M−1s−1 | [59] |
Bacillus pumilus BS15 | AprEBS15 | N-succinyl-ala-ala-pro-phe- pNA | 21.88 μM min−1 | 0.26 mM | 10.02 s−1 | 3.83 × 104 M−1s−1 | [29] |
Bacillus subtilis JS2 | AprEJS2 | N-Succ-Ala-Ala-Pro-Phe-pNA | 16.71 μM min−1 | 0.09 mM | 7.66 s−1 | 8.51 × 104 M−1s−1 | [58] |
Bacillus subtilis ICTF-1 | - | N-Succ-Ala-Ala-Pro-Phe-pNA | - | - | - | - | [41] |
Bacillus licheniformis KJ-31 | BpKJ-31 | N-Succ-Ala-Ala-Pro-Phe-pNA | - | - | - | - | [75] |
Serratia marcescens subsp. sakuensis | - | Fibrin | 15.873 µmol min−1 | 0.66 mg mL−1 | 12.21 min−1 | 18.32 mL mg−1 min−1 | [62] |
Bacillus subtilis | Fibase | - | 0.03 mM min−1 | 2.7 mmol L−1 | - | - | [71] |
Bacillus vallismortis | Bvsp | Fibrin | 49.8 g mL−1 min−1 | 0.319 g mL−1 | 4.35 min−1 | 13.63 mL mg−1 min−1 | [55] |
Bacterial Strain | Gene | Primer | Cloning Host | Cloning Vector | Expression Host | Expression Vector | References |
---|---|---|---|---|---|---|---|
Bacillus velezensis BS2 | aprEBS2 | CH51-F (5′-AGGATCCCAAGAGAGCGATTGCGGCTGTGTAC-3′, BamHI site underlined) CH51-R (5′-AGAATTCTTCAGAGGGAGCCACCCGTCGATCA-3′, EcoRI site underlined) | B. subtilis WB600 | pHY300PLK | E. coli BL21 (DE3) | pETBS2 | [59] |
Bacillus subtilis JS2 | aprEJS2 | CH51-F (5′-AGGATCCCAAGAGAGCGATTGCGGCTGTGTAC-3′, BamHI site underlined) and CH51-R (5′-AGAATTCTTCAGAGGGAGCCACCCGTCGATCA-3′, EcoRI site underlined) | B. subtilis WB600 | pHY300PLK | E. coli BL21 (DE3) | pHYJS2 | [58] |
Bacillus pumilus BS15 | aprEBS15 | CH51-F (5′-AGGATC CCAAGAGAGCGATTGCGGCTGTGTAC-3′, BamHI site underlined) and CH51-R (5′-AGAATTCTTCAGAGG GAGCCACCCGTCGATCA-3′, EcoRI site underlined) | B. subtilis WB600 | pHY300PLK | E. coli BL21 (DE3) | pHYBS15 | [29] |
Bacillus vallismortis | Bvsp | BVSPF (5′-CGCGGATCC-ATGCAAGGTGAAATTAGGTTAATTCCATATTT-3′) containing BamH I and BVSPR (5′-CCGCTCGAGTCAGCCAATCTGTGCAAGTGGC-3′, Xho I sites (underlined) | - | - | E. coli BL21 (DE3) | pGEX-6P-bvsp | [55] |
Marinobacter aquaeolei MS2-1 | - | SPro F (5′-CCG GAT CCA TGG CGT TCA GCA AC-3′) and SPro R (5′-GGC TCG AGT TAG CGG GCA GGT GC-3′) | E. coli | pGEM-T | E. coli BL21 (DE3) | pET-28a-(+) | [51] |
Tetraselmis subcordiformis | rt-PA | bar1F (5′-TCTGCACCATCGTCAACCACTACA-3′), bar1R (5′-TCAAATCTCGGTGACGGGCAGGAC-3′), rpa3F (5′-TCTTGGGCAGAACATACC-3′) and rpa3R (5′ -TCCCCCTGAACCTGAAAC-3′) | - | - | E. coli Top10 | pSVrPA/CaMVbar | [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barzkar, N.; Jahromi, S.T.; Vianello, F. Marine Microbial Fibrinolytic Enzymes: An Overview of Source, Production, Biochemical Properties and Thrombolytic Activity. Mar. Drugs 2022, 20, 46. https://doi.org/10.3390/md20010046
Barzkar N, Jahromi ST, Vianello F. Marine Microbial Fibrinolytic Enzymes: An Overview of Source, Production, Biochemical Properties and Thrombolytic Activity. Marine Drugs. 2022; 20(1):46. https://doi.org/10.3390/md20010046
Chicago/Turabian StyleBarzkar, Noora, Saeid Tamadoni Jahromi, and Fabio Vianello. 2022. "Marine Microbial Fibrinolytic Enzymes: An Overview of Source, Production, Biochemical Properties and Thrombolytic Activity" Marine Drugs 20, no. 1: 46. https://doi.org/10.3390/md20010046
APA StyleBarzkar, N., Jahromi, S. T., & Vianello, F. (2022). Marine Microbial Fibrinolytic Enzymes: An Overview of Source, Production, Biochemical Properties and Thrombolytic Activity. Marine Drugs, 20(1), 46. https://doi.org/10.3390/md20010046