Isolation and Characterization of a Yellow Xanthophyll Pigment-Producing Marine Bacterium, Erythrobacter sp. SDW2 Strain, in Coastal Seawater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Characterization of a Yellow-Pigmented Marine Bacterium
2.2. Characterization of an SDW2-Derived Xanthophyll Pigment
2.3. Optimization of Carbon Source for Efficient Production of a Yellow Xanthophyll Pigment
2.4. Evaluation of Antioxidative Activity of a Yellow Xanthophyll Pigment
3. Materials and Methods
3.1. Sample Collection and Isolation of Yellow-Pigmented Marine Bacterium
3.2. Identification and Characterization of an Isolated Strain
3.3. Xanthophyll Pigment Extraction and Analytical Methods
3.4. Xanthophyll Pigment Production
3.5. Evaluation of Antioxidation Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nisar, N.; Li, L.; Lu, S.; Khin, N.C.; Pogson, B.J. Carotenoid metabolism in plants. Mol. Plants 2015, 8, 68–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Berg, H.; Faulk, R.; Granado, H.F.; Hirschberg, J.; Olmedilla, B.; Sandmann, G.; Southon, S.; Stahl, W. The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J. Sci. Food Agric. 2000, 80, 880–912. [Google Scholar] [CrossRef]
- Fernández-Sevilla, J.M.; Acién Fernández, F.G.; Grima, E.M. Biotechnological production of lutein and its application. Appl. Microbiol. Biotechnol. 2010, 86, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Jaswir, I.; Noviendri, D.; Hasrini, R.F.; Octavianti, F. Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plant Res. 2011, 5, 7119–7131. [Google Scholar]
- Saini, R.K.; Keum, Y.-S. Microbial platforms to produce commercially vital carotenoids at industrial scale: An updated review of critical issues. J. Ind. Microbiol. Biotechnol. 2019, 46, 657–674. [Google Scholar] [CrossRef]
- Ram, S.; Mitra, M.; Shah, F.; Tirkey, S.R.; Mishra, S. Bacteria as an alternative biofactory for carotenoid production: A review of its applications, opportunities and challenges. J. Funct. Foods 2020, 67, 103867. [Google Scholar] [CrossRef]
- Li, C.; Swofford, C.A.; Sinskey, A.J. Modular engineering for microbial production of carotenoids. Metab. Eng. Commun. 2020, 10, e00118. [Google Scholar] [CrossRef]
- Asker, D. Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium. J. Agric. Food Chem. 2017, 65, 9101–9109. [Google Scholar] [CrossRef]
- Galasso, G.; Corinaldesi, C.; Sansone, C. Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants 2017, 6, 96. [Google Scholar] [CrossRef] [Green Version]
- Méresse, S.; Fodil, M.; Fleury, F.; Chénais, B. Fucoxanthin, a marine-derived carotenoid from brown seaweeds and microalgae: A promising bioactive compound for cancer therapy. Int. J. Mol. Sci. 2020, 21, 9273. [Google Scholar] [CrossRef]
- Kim, S.M.; Jung, Y.-J.; Kwon, O.-N.; Cha, K.H.; Um, B.-H.; Chung, D.H.; Pan, C.-H. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum triconutum. Appl. Biochem. Biotechnol. 2012, 166, 1843–1855. [Google Scholar] [CrossRef]
- Komba, S.; Korake-Nara, E.; Tsuzuki, W. Degradation of fucoxanthin to elucidate the relationship between the fucoxanthin molecular structure and its antiproliferative effect on Caco-2 cell. Mar. Drugs 2018, 16, 275. [Google Scholar] [CrossRef] [Green Version]
- Setiyono, E.; Heriyanto; Pringgenies, D.; Shioi, Y.; Kanesaki, Y.; Awai, K.; Brotosudarmo, T.H.P. Sulfur-containing carotenoids from a marine coral symbiont Erythrobacter flavus strain KJ5. Mar. Drugs 2019, 17, 349. [Google Scholar] [CrossRef] [Green Version]
- Torregrosa-Crespo, J.; Montero, Z.; Fuentes, J.L.; Garcia-Galbis, M.R.; Garbayo, I.; Vilchez, C.; Martinez-Espinosa, R.M. Exploring the valuable carotenoids for the large-scale production by marine microorganisms. Mar. Drugs 2018, 16, 203. [Google Scholar] [CrossRef] [Green Version]
- Dieser, M.; Greenwood, M.; Foreman, C.M. Carotenoid pigmentation in antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct. Antarct. Alp. Res. 2010, 42, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Shindo, K.; Kikuta, K.; Suzuki, A.; Katsuta, A.; Kasai, H.; Yasumoto-Hirose, M.; Matsuo, Y.; Misawa, N.; Takaichi, S. Rare carotenoids, (3R)-saproxanthin and (3R,2′S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Appl. Microbiol. Biotechnol. 2007, 74, 1350–1357. [Google Scholar] [CrossRef]
- Choi, J.Y.; Lee, K.J.; Lee, P.C. Characterization of carotenoid biosynthesis in newly isolated Deinococcus sp. AJ005 and investigation of the effects of environmental conditions on cell growth and carotenoid biosynthesis. Mar. Drugs 2019, 17, 705. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.-W.; Kim, J.-H.; Kim, C.Y.; Kim, S.Y.; Choi, Y.J. Metabolic engineering of extremophilic bacterium Deinococcus radiodurans for the production of the novel carotenoid deinoxanthin. Microorganisms 2021, 9, 44. [Google Scholar] [CrossRef]
- Widomska, J.; Gruszecki, W.I.; Subczynski, W.K. Factors differentiating the antioxidant activity of macular xanthophylls in the human eye retina. Antioxidants 2021, 10, 601. [Google Scholar] [CrossRef]
- Kikukawa, H.; Okaya, T.; Maoka, T.; Miyazaki, M.; Murofushi, K.; Kato, T.; Hirono-Hara, Y.; Katsumata, M.; Miyahara, S.; Hara, K.Y. Carotenoid nostoxanthin production by Sphingomonas sp. SG73 isolated from deep sea sediment. Mar. Drugs 2021, 19, 274. [Google Scholar] [CrossRef]
- Takaichi, S.; Furihata, K.; Ishidsu, J.-I.; Shimada, K. Carotenoid sulphates from aerobic photosynthetic bacterium, Erythrobacter longus. Phytochemistry 1991, 30, 3411–3415. [Google Scholar] [CrossRef]
- Liu, Z.; Van den Berg, C.; Weusthuis, R.A.; Dragone, G.; Mussatto, S.I. Strategies for an improved extraction and separation of lipids and carotenoids from oleginous yeast. Sep. Purif. Technol. 2021, 257, 117946. [Google Scholar] [CrossRef]
- Shibata, S.; Ishihara, C.; Matsumoto, K. Improved separation method for highly purified lutein from Chlorella powder using jet mill and flash column chromatography on silica gel. J. Agric. Food Chem. 2004, 52, 6283–6286. [Google Scholar] [CrossRef]
- Herrero, M. Food application. In Liquid Chromatography. Reference Module in Chemistry, Molecular Science and Chemical Engineering, Encyclopedia of Analytical Science, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 67–74. [Google Scholar]
- Zhong, Y.-J.; Huang, J.-C.; Liu, J.; Li, Y.; Jiang, Y.; Xu, Z.-F.; Sandmann, G.; Chen, F. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J. Exp. Bot. 2011, 62, 3659–3669. [Google Scholar] [CrossRef]
- Kildegaard, K.; Adiego-Peres, B.; Belda, D.D.; Khangura, J.K.; Holkenbrink, C.; Borodina, I. Engineering of Yarrowia lipotica for production of astaxanthin. Synth. Syst. 2017, 2, 287–294. [Google Scholar]
- Sowmya, R.; Sachindra, N.M. Carotenoid production by Formosa sp. KMW, a marine bacteria of Flavobacteriaceae family: Influence of culture conditions and nutrient composition. Biocatal. Agric. Biotechnol. 2015, 4, 559–567. [Google Scholar] [CrossRef]
- Kim, O.S.; Cho, Y.J.; Lee, K.H.; Yoon, S.H.; Kim, M.C.; Na, H.S.; Park, S.-C.; Yoon, S.J.; Lee, J.H.; Yi, H.N.; et al. Introducing EzTaxon-e: A prokaryotic 16s rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012, 62, 716–721. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Gerhardt, P.; Murray, R.G.E.; Wood, W.A.; Kreig, N.R. Phenotypic characterization. In Methods for General and Molecular Bacteriology; American Society for Microbiology: Washington, DC, USA, 1994; pp. 607–654. [Google Scholar]
- McCarthy, A. Third generation DNA sequencing: Pacific biosciences’ single molecule real time technology. Chem. Biol. 2010, 17, 675–676. [Google Scholar] [CrossRef] [Green Version]
- Hyatt, D.; Chen, G.L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Müller, L.; Fröhlich, K.; Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2011, 129, 139–148. [Google Scholar] [CrossRef]
Test | Strain SDW2 |
---|---|
Production of acid from glucose | − |
Indole production | − |
Nitrate reduction | + |
Enzyme activity | |
Catalase | + |
Oxidase | + |
Arginine dihydrolase | − |
Urease | − |
Beta-glucosidase | + |
Beta-galactosidase | + |
Protease | − |
Assimilation | |
D-glucose | + |
L-arabinose | + |
D-mannose | + |
D-mannitol | + |
N-acetyl-glucosamine | − |
D-maltose | + |
Potassium gluconate | + |
Capric acid | − |
Adipic acid | + |
Maleic acid | + |
Trisodium citrate | − |
Phenylacetic acid | − |
Carotenoids | Scavenging Activity (%) | |
---|---|---|
DPPH | ABTS | |
Fucoxanthin | 16.7 ± 4 | 32.1 ± 2.7 |
Fucoxanthinol | 13.5 ± 2.7 | 24.3 ± 2.9 |
Lutein | 23.7 ± 2.6 | 38.1 ± 0.7 |
Astaxanthin | 32.5 ± 2.1 | 35.3 ± 2.8 |
Deinoxanthin | 47.6 ± 1.7 | 54.7 ± 3.6 |
Xanthophyll pigment extracts (Erythrobacter sp. SDW2) | 73.4 ± 1.4% | 84.9 ± 0.7% |
Ascorbic acid (positive control) | 86.6 ± 4.9 | 92.9 ± 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.W.; Yang, J.E.; Choi, Y.J. Isolation and Characterization of a Yellow Xanthophyll Pigment-Producing Marine Bacterium, Erythrobacter sp. SDW2 Strain, in Coastal Seawater. Mar. Drugs 2022, 20, 73. https://doi.org/10.3390/md20010073
Jeong SW, Yang JE, Choi YJ. Isolation and Characterization of a Yellow Xanthophyll Pigment-Producing Marine Bacterium, Erythrobacter sp. SDW2 Strain, in Coastal Seawater. Marine Drugs. 2022; 20(1):73. https://doi.org/10.3390/md20010073
Chicago/Turabian StyleJeong, Sun Wook, Jung Eun Yang, and Yong Jun Choi. 2022. "Isolation and Characterization of a Yellow Xanthophyll Pigment-Producing Marine Bacterium, Erythrobacter sp. SDW2 Strain, in Coastal Seawater" Marine Drugs 20, no. 1: 73. https://doi.org/10.3390/md20010073
APA StyleJeong, S. W., Yang, J. E., & Choi, Y. J. (2022). Isolation and Characterization of a Yellow Xanthophyll Pigment-Producing Marine Bacterium, Erythrobacter sp. SDW2 Strain, in Coastal Seawater. Marine Drugs, 20(1), 73. https://doi.org/10.3390/md20010073