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Abstract: The demand for novel sources of marine oils, which contain polyunsaturated fatty acids
(PUFAs), has increased due to the realization of the importance of PUFAs, e.g., docosahexaenoic acid
(DHA), in the human diet. However, the natural supply is limited. By-product peptones (BYPP)
intended as a growth medium for the PUFA-producing strain Sicyoidochytrium minutum of family
Thraustochytriaceae were produced after several experiments on the pancreatic digestion of bovine
lungs and spleens. S. minutum was able to grow in a medium containing BYPP made from the
pancreatic digestion of lung and spleen with glycerol, resulting in 1.14 ± 0.03 g cell dry weight
(CDW)/L and 1.44 ± 0.24 g CDW/L, respectively, after 5 days of incubation at 25 ◦C, compared to
1.92 ± 0.25 g CDW/L in Basal Medium (BM) containing tryptone, peptone, and glycerol. The lipid
content, obtained after growth in lung BYPP media with glycerol as a carbon source, was significantly
higher (28.17% ± 1.33 of dry weight) than in the control basal medium (BM) (21.72% ± 2.45); however,
DHA as a percentage of total fatty acids was lower in BYPP than in the control BM (25.24% ± 1.56
and 33.02% ± 2.37, respectively). It is concluded that low-value by-products from abattoirs can be
used as ingredients for the cultivation of oligogenic Thraustochytriaceae.
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1. Introduction

Marine oils are important ingredients in food, feed, and as dietary supplements (e.g.,
omega-3 fatty acids). The natural supply of marine oils and omega-3-rich oils is from fatty
fish. However, as this supply is limited and there is a growing demand for marine oils (e.g.,
for aquaculture feed) [1], novel sources are needed. Marine algae and heterotrophic protists
have been identified as alternative candidates for the production of marine oils.

Both hetero- and phototrophic microorganisms produce lipids during their lifecycles,
but the amounts and types of lipids vary between species. Phototrophic organisms, such
as algae, use light as an energy source [2]. Light can be limited during winter at high lati-
tudes, thus making heterotrophic microorganisms more attractive for biomass production.
Thraustochytriaceae are heterotrophs that secrete extracellular hydrolytic enzymes, such as
amylase, lipase, cellulase, and protease, and can utilize organic and decaying materials to
produce oils [3]. Some strains can produce high amounts of long-chain polyunsaturated
fatty acids (LC-PUFAs), e.g., omega-3 (n − 3) fatty acids such as docosahexaenoic acid
(DHA) [2,4].

Thraustochytriaceae were first described by Sparrow [5], and exist in variable sea en-
vironments [2,4]. Thraustochytriaceae were originally classified within the kingdom Fungi,
but genetically Thraustochytriaceae are not related to fungi, though they are chemoorgan-
otrophic [6]. Thraustochytriaceae belong to the kingdom Chromista and class Labyrinthu-
lomycetes. They are classified under phylum Stramenopiles (Heterokonts), which are
characterized by zoospores with two differently sized flagella [2,3,7].
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Different strains of Thraustochytriaceae have been used worldwide to enrich products
with DHA, e.g., eggs, meat, and milk [8–10]. Either extracted oil or whole biomass from
microorganism cultivation can be added to poultry feed and feed for dairy cows [10,11].
Previously, rotifers and Artemia nauplii, both important components of a live diet for fish
in aquaculture, were fed with a spray-dried DHA-rich strain of Schizochytrium sp. [12].
The results showed that it was possible to enrich both rotifers and Artemia nauplii with
DHA. The demand for PUFAs, e.g., DHA and arachidonic acid (AA), for the production of
human diet products has increased due to greater knowledge of their essential roles in the
functional development and growth of the brain [13].

The cultivation of heterotrophic organisms requires nutrients such as peptones, carbo-
hydrates, vitamins, and minerals. These ingredients can be expensive and cheaper sources
should be considered to lower the production cost [14]. By-products from food industries
(agriculture and aquaculture) are rich in protein, carbohydrates, and fat, and could provide
valuable ingredients for the cultivation of heterotrophic microorganisms. Several kinds
of by-products have been used to cultivate oil-producing microorganisms, e.g., bread-
crumbs [15,16], soymilk residues [17], organic waste from brewery operations [18,19], and
sorghum juice [20]. By-products received from beef production are about 40% of live weight.
Some parts of the by-products are disposed of, but other parts have been used as feed for
fish farming and as mink feed [21]. By-products from abattoirs could similarly be used as a
source of nutrients (e.g., peptones) for microbial growth media.

The aim of this project was to produce by-product peptones (BYPP) from abattoir
material (lung, spleen, and pancreas), and to use the BYPP to cultivate the oil-producing
strain Sicyoidochytrium minutum.

2. Results and Discussion
2.1. Preparation of BYPP and Protein Measurements for Growth Studies

After several experiments using different enzymes and technologies, a method for the
production of a clear peptone solution for microbial growth media using the pancreatic
digestion of bovine lungs and spleens was selected. The method was based on post-
digestion filtration, heating, and centrifugation. Initial experiments showed better yields (g
protein in solution/g raw material) in diluted solutions. More diluted solutions were easier
to mix, thus giving the enzymes better access to the raw material. Therefore, pancreatic
digestion was performed using different raw material/H2O ratios. The peptide contents in
solutions with different by-products/H2O ratios are shown in Figure 1.
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Figure 1. Peptide content in BYPP solutions obtained after pancreatic digestion of lung (a) and spleen
(b) in lung:H2O ratios (1:4–1:15) estimated using OD280nm measurements (dashes –) and Bradford‘s
method (triangles N). Calculated maximum theoretical protein concentration (from Table 1) is also
shown (rhombuses �).
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During the preparation of BYPP, especially through filtering using two-layered cheese
cloth, undigested tissues and precipitation were filtered away, most likely containing
protein, which explains why the maximum theoretical yield (g peptides in solution/g raw
material) was not obtained. BYPP solutions were measured at an optical density (OD) of
280 nm, where three amino acids, cysteine, tyrosine and tryptophan, absorbs significantly
at 280 nm [22]. Therefore, the Kjeldahl method, along with the OD280 nm measurements,
were used to standardize the unknown BYPP solutions received after pancreatic digestion
using linear regression, and this gave Equations (1) and (2). The difference between the
protein content in the solutions and the initial protein content in the raw material decreased
with increased dilution, indicating that the enzyme digestion was more effective in the
more diluted solutions. For both lungs and spleen, the protein recovery was approximately
45% in the highest dilution (Figure 1).

Bradford’s method proved unsuitable for measuring the soluble protein content in
these experiments (triangle in Figure 1). This may be because the BYPP solutions did
not contain enough aromatic residues; therefore, the dye would not bind to the proteins,
leading to an underestimation of the protein concentration [23]. It could also be that the
pancreas was able to digest the by-products forming BYPP with proteins smaller than
3–5 kDalton; therefore, Bradford’s method would be unable to detect the proteins [24].

2.2. Growth Studies

The results from the growth studies can be seen in Figure 2.
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Figure 2. Average dry weight biomass using different lung (a) and spleen (b) to H2O ratios (grown
at 25 ◦C for 7 days) in medium containing 2.18 (±0.25) g/L (lung BYPP) and 2.48 (±0.30) g/L (spleen
BYPP). Sample size was n = 3 for each ratio. Standard deviation is shown in error bars. ANOVA test
(p = 0.00194). The letters show statistically significant differences (p < 0.05, Tukey’s test) between
measurements, where “a” shows the lowest value and “c” the highest.

Significant differences in biomass were obtained in media made from different ratios
of by-products:H2O (Figure 2). Tukey’s test indicated that the highest dry weight biomass
was in the ratio 1:12, and the four lowest dry weight biomasses were in the ratios 1:6, 1:7,
1:8, and 1:9. For growth in spleen:H2O media, the ratio 1:14 led to the highest biomass
(Figure 2). It is not clear what the main source of variation between the dilution ratios was.

Figure 3 shows a comparison between the highest dry weight biomass obtained in
BYPP media, with a lung:H2O ratio of 1:12 and spleen:H2O ratio of 1:14, and the dry
weight biomass obtained in glycerol BM. These results indicate the utilization of abattoir by-
products by S. minutum. The dry weight biomass was 1.44 (±0.24) g/L in media made with
a spleen:H2O ratio of 1:14. No significant difference was observed between the spleen:H2O
ratio and the BM (1.92 ± 0.25 g/L) dry weight biomasses. On the other hand, dry weight
biomass in media made with a lung:H2O ratio of 1:12 was lower (1.14 ± 0.03 g/L) and
significantly lower than the dry weight biomass in BM. There was no significant difference
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between the highest dry weight biomasses in media using the by-product:H2O ratio
(Figure 3). Dry weight biomass after growth in spleen BYPP media was on average higher
than the dry weight biomass obtained in lung BYPP media, indicating that the spleen was
a better nitrogen source for S. minutum cultivation.
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BYPP media was selected, lung:H2O ratio—1:12 and spleen:H2O ratio—1:14, and are compared to
dry weight biomass in glycerol BM. Sample size is three for all media. Standard deviation is shown
in error bars. ANOVA test (p = 0.00926). The letters show statistically significant differences (p < 0.05,
Tukey’s test) between measurements, where “a” shows the lowest value and “b” the highest.

In spite of the attempt to have the same protein concentration at the start of each growth
study, the initial protein concentrations varied and were on average 2.18 (±0.25) g/L in
media made from lung BYPP and 2.48 (±0.30) g/L in media made from spleen BYPP.
Therefore, the effect of the initial protein concentration on biomass production was tested
(Figure 4). This initial variation did not significantly affect the final dry weight biomass.
A possible explanation could be that these protein concentrations are close to a level that
would be limiting to growth in the tested range (1.6–3.4 g protein/L) and growth conditions.
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Several different types of by-products have been used for growth experiments in other
studies. Some by-products contain nitrogen in the form of proteins, peptides, or free amino
acids, whilst others include more carbohydrates. A by-product from the soymilk industry,
called Okara powder, contained approximately 4.5% nitrogen and 47% carbon [17], which
was calculated, with a Jonas factor of 5.71, to be equivalent to 25.7% protein [25]. Different
strains of Schizochytrium mangrovei cultivated in media containing Okara powder for four
days yielded a biomass of 7.51–7.86 g/L [16]. Thus, a greater dry weight biomass than
that achieved in the current project was obtained, possibly because of the better growth
conditions or due to different strains used. Okara powder media contained a protein
concentration of around 2.5 g/L which was similar to the protein concentration used in this
project (on average, 2.18 (±0.25) g/L for lung and 2.48 (±0.30) g/L for spleen). Soybean
cake hydrolysate is also a cheap by-product which can be used as a nitrogen source. When
used a substrate for Schizochytrium limacinum, dry weight biomasses ranging from 8.25 to
13.27 g/L were obtained, depending on the pH level and salinity[26].

2.3. Lipid Production

In growth media containing lung BYPP and glycerol, the test strain accumulated 28.2%
(±1.33) lipids (dry weight) compared to 21.7% (±2.45) lipids (dry weight) in BM containing
tryptone and glycerol. The by-products contained some fat but only minor amounts were
found in the BYPP solution. These results are promising for the usage of by-products from
abattoirs to produce lipids by S. minutum growth.

An important factor for growth and lipid accumulation is the C:N ratio. The N part
is important for lipid-free biomass production and the C part later for lipid accumulation.
In this study, the carbon part (glycerol) was 50 g/L, while the N part (tryptone, peptone
or BYPP) was from 2.5 to 8 g/L. The lower peptone content, i.e., higher C:N ratio in the
BYPP media could trigger lipid production. In addition, the higher lipid content in cells
grown in BYPP media could be related to the slightly higher C content originating from
the by-products.

The analysis of fatty acids showed that the S. minutum strain produced significant
amounts of n − 3 fatty acids, both in BYPP media (34.48% ± 1.90 of total fatty acid content)
and BM (43.43% ± 2.91). Most of the n − 3 fatty acid contents were DHA (C22:6n3):
25.24% ± 1.56 and 33.02% ± 2.37 in BYPP and BM, respectively. Eicosapentaenoic acid
(EPA, C20:5n3) constituted 5.7% ±0.43 and 7.2% ± 0.33 in BYPP and BM, respectively
(Figure 5). The test strain also accumulated considerable amounts of palmitic acid (C16:0):
34.96% ± 0.48 in BYPP medium and 27.35% ± 2.20 in BM. All the reviewed PUFAs were
significantly higher in the BM, except for palmitic acid, which was higher in the BYPP
medium. The pancreas digest contained very small amounts of C16 fatty acids, but it is
unclear if this can fully explain the difference.

The lipid content and the amounts of PUFAs were higher in this experiment than in
previous studies using the same test strain[27]. Other reports, using different strains and
conditions, show that results on fatty acid production vary. Some [16] have reported higher
amounts of DHA (31.1–41.1%) and palmitic acid (38.0–48.1%) in a Schizochytrium mangrovei
strain grown in Okara powder residue, while others [19] found that a Schizochytrium sp.
strain KH105 grown in barley shochu accumulated 25.8% DHA of total fatty acid content.
The DHA yield after growth in soybean cake hydrolysate media was 18.45%, calculated
from freeze dried cell biomass[26].

Peptones made from low-value abattoir by-products were shown to adequately sup-
port the growth of S. minutum, a Thraustochytriaceae strain. When included in a medium
together with glycerol, the test strain produced significant amounts of PUFAs, especially
DHA. Given the large strain variability of Thraustochytriaceae, other strains might show
different results. Further studies are required to find out if it is economically feasible to pro-
duce peptone from animal by-products on a large scale for cultivation of Thraustochytrids.
Additionally, further research should try to identify other sources of low-value ingredients
(e.g., carbon-rich by-products) for microbial cultivation.
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3. Material and Methods
3.1. Test Strain and Chemicals

The S. minutum test strain was obtained from BioPol Ltd.’s strain collection (ST30).
For isolation and characterization of the strain, see [27]. The test strain was maintained and
cultivated in a basal medium (BM) consisting of: glycerol or glucose (50 g/L); yeast extract
(4 g/L); tryptone (4 g/L); KH2PO4 (2 g/L). Agar (15 g/L) was used to make solid medium
when needed and tryptone was replaced with peptone when required. The ingredients
were dissolved in 30% filtered natural sea water (Hunafloi, Iceland) and the solutions were
adjusted to pH 7 (using HCl or NaOH) prior to sterilization (121 ◦C for 15 min). Penicillin
and streptomycin (329.67 and 549.45 mg/L, respectively), were added after sterilization.
Glycerol BM was also used in the growth studies as a control medium. All chemicals were
purchased from Sigma-Aldrich (St. Louis, MO, USA).

3.2. By-Product Raw Material

By-products (intestines) were obtained from a slaughterhouse (SAH) in Blonduos
(Iceland) and from a farm in Eyjafjardarsveit (Iceland). Lung and spleen were from cattle
(Bos taurus) at SAH and pancreas was from sheep (Ovis aries) at the farm. Intestines, lung,
spleen, and pancreas, were minced separately and stored at −18 ◦C. Pancreas was cooled
in the mincing process to prevent autolysis.

3.3. Development of Digestion Method for By-Product Peptone (BYPP)

The by-products were homogenized, and the mince was dissolved in H2O and then
treated in several ways (e.g., filtered, spun and incubated) in order to obtain a clear solution.
Enzyme degradation was carried out using both commercial enzymes (Flavourzyme,
Protamex, and Alcalase (Novozyme, Denmark)) and pancreas. The BYPP solutions were
sterilized using an autoclave before the growth studies then centrifuged at 10,000× g for
5 min to remove precipitation. As pancreas showed satisfactory results in terms of protein
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yield and allowed the inclusion of more by-products, it was decided to only use pancreas
for further studies, as described below.

3.4. Preparation of BYPP for Growth Studies

By-products (lung, spleen, and pancreas) were thawed at 4 ◦C overnight. Pancreas
was used as an enzyme catalyst: four grams of lung or spleen was mixed thoroughly with
four grams of pancreas and H2O in a glass beaker. Different ratios of raw material to H2O
were used (1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15). Three replicates were
prepared for each digestion. The mixtures were incubated for 20 h at 50 ◦C with shaking
at 150 rpm. The mixtures were then heated to 95 ◦C to stop all enzyme activity and then
cooled down to room temperature. The cooled mixtures were filtered through two layers of
cheese cloth and the filtrate was centrifuged at 10,000× g for 40 min at 4 ◦C. The filtrate was
adjusted to pH 7.0 and then filtered (Whatman grade 3) on a Buchner funnel. The solutions
were sterilized in an autoclave and spun down again.

The resulting clear mixture was used instead of tryptone and yeast extract in the
glycerol BM (basal medium—see Test Strain and Chemicals), giving BYPP media with final
protein concentrations of on average 2.18 g/L for lung and 2.48 g/L for spleen.

3.5. Protein Measurements

Protein was estimated by measuring the optical density of the clear solutions in
a spectrophotometer (Epoch, BioTek Instruments Inc., Winooski, VT, USA) at 280 nm
(OD280) [28]. To standardize the measurements, solutions of the digests (from both lung and
spleen) were analyzed using the Kjeldahl method (n × 6.25) [29]. The linear regression gave
the following equations (y = a + bx, where y = protein, g/L and × = OD280) (Equation (1)
is for lung and (2) for spleen):

y = 0.0007 + 0.1715 × (R2 = 0.9973), (1)

y = 0.0007 + 0.1818 × (R2 = 0.9979), (2)

Protein was also estimated using Bradford’s method [24] using 96% clean bovine
serum albumin (Sigma-Aldrich) and Bradford reagent [30]. The linear regression gave the
following equation (Equation (3) (x = BSA, g/L and y = OD595).

y = −0.0195 + 0.3213 × (R2 = 0.9769), (3)

Theoretical maximum protein yield in the different mixtures was estimated with
information from the United States Department of Agriculture, Food Data Central [31]
(Table 1).

Table 1. Typical composition of by-products used as a raw material to produce BYPP. Information
was retrieved from the United States Department of Agriculture Food Data Central [31].

Nutrient (g per 100 g) Lung (Beef) Spleen (Beef) Pancreas (Lamb)

Protein 16.2 18.3 14.8
Carbohydrate 0 0 0

Total lipid 2.5 3.0 9.8
Saturated 0.86 1.00 4.44

Monounsaturated 0.64 0.78 3.54
Polyunsaturated 0.34 0.22 0.48

3.6. Growth Studies

Inoculation for growth studies was prepared by transferring a colony of S minutum
from a BM agar plate to a 20 mL glucose BM, which was then incubated at 25 ◦C for 7 days
at 150 rpm. Thereafter, all 20 mL volumes were transferred to 100 mL of glycerol BM and
incubated at 25 ◦C for 3 days at 150 rpm. The three-day old cultures were combined and
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adjusted to 0.300 OD660 nm. Ten milliliters of this dilution was used to inoculate 90 mL of
BM and 90 mL of media made from BYPP solutions. The flasks were incubated at 25 ◦C,
with rotation at 150 rmp. After 5 days, the cultures were spun down, the cell pellet washed
three times (two times with about 25 mL of 1% NaCl and once with about 5 mL of O) and
then freeze dried. Growth was estimated as dry weight biomass (g/L).

3.7. Fatty Acid Analysis

For fatty acid analysis, S. minutum was grown in a separate experiment from the
growth studies. S. minutum was grown, as described in the chapter on growth studies,
in 6 flasks of glycerol BM and in 3 flasks containing BYPP lung media. BYPP solution
from lung digested with pancreas was also analyzed to investigate whether the solution
contained fatty acids, as this could influence the fatty acid composition of S. minutum
after growth studies. Fatty acids measured in the BYPP solution from lungs digested
with pancreas were mostly C16 or shorter and did not influence analyses of biomass (data
not shown).

Lipid extractions were performed before methylations. Freeze-dried biomass (around
0.06 g) was crushed with a mortar and pestle and then placed in tubes with a Teflon screw
cap, Tris-EDTA (pH 7 at 20 ◦C), chloroform, and methanol were added (1.6 mL, 2 mL and
4 mL, respectively), with 20 s vortex performed after addition of each chemical before the
mixtures were incubated for an hour at room temperature. Two milliliters of chloroform
and two milliliters of Tris-EDTA were added separately with 20 s vortex in between, before
the glass tubes were centrifuged at 2000× g at 4 ◦C for 5–10 min. Bottom-layer lipids
were carefully transferred with a Hamilton syringe to dry glass and N2 gas was used to
evaporate the solvent before the lipid-containing glass containers were dried at 50 ◦C for
15 min and then cooled in desiccators. Cool dried glasses were weighed and the total lipid
content was estimated.

Methylation of the lipids extracted to fatty acid methylesters (FAMEs) was carried out
by adding a trans-esterification solution (containing 30 mL methanol, 3.0 mL chloroform,
and 1.0 mL concentrated H2SO4) and vortexing briefly before the mixtures were incubated
for 90 min at 90 ◦C. After cooling, FAMEs were extracted three times using 2 mL isooctane
and the combined extracts were washed with 2 mL of H2O. Sodium sulfate was used to dry
the solvent before glass containers were centrifuged for five minutes at 2000× g at 4 ◦C and
FAMEs were transferred to GS-instrument vials. Gas Chromatography–Flame Ionization
Detection was used for fatty acid composition analysis.

3.8. Statistical Analyses

Statistical analyses were performed using R [32] and SAS[33]. Data from growth
studies were calculated in g/L and then compared. ANOVA was used to determine if
there were any significant differences between treatments, and Tukey’s test was used to
locate the differences. The linear ranges of protein concentrations and OD280 nm and the
initial protein concentration and dry weight biomass were calculated via linear regression
analysis[33].
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