Preparation, Anticoagulant and Antioxidant Properties of Glucosamine-Heparin Salt
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Glucosamine-Heparin Salt
2.1.1. FTIR Spectra
2.1.2. 1H NMR Spectra
2.1.3. ICP-MS and Titration-Precipitation with Silver Nitrate
2.2. Yield and Degree of Substitution (DS)
2.3. Anticoagulant Ability Analysis
2.4. Antioxidant Activity Analysis
2.4.1. Hydroxyl Radical Scavenging Activity
2.4.2. DPPH Radical Scavenging Ability
2.4.3. Superoxide Radical Scavenging Ability
3. Materials and Methods
3.1. Materials
3.2. Analytical Methods
3.3. Synthesis of Glucosamine-Heparin Salt
3.4. Anticoagulant Activity Measurement
3.4.1. Determination of Activated Partial Thromboplastin Times (APTTs)
3.4.2. Determination of Prothrombin Times (PTs)
3.4.3. Determination of Thrombin Times (TTs)
3.5. Antioxidant Assay
3.5.1. Hydroxyl Radical (•OH) Scavenging Activity Assay
3.5.2. DPPH Radical Scavenging Ability Assay
3.5.3. Superoxide Radical (O2•−) Scavenging Ability Assay
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
References
- Dalirfardouei, R.; Karimi, G.; Jamialahmadi, K. Molecular mechanisms and biomedical applications of glucosamine as a potential multifunctional therapeutic agent. Life Sci. 2016, 152, 21–29. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Pietrasik, Z.; Hrynets, Y.; Betti, M. The effect of glucosamine and glucosamine caramel on quality and consumer acceptability of regular and reduced salt breakfast sausages. Meat Sci. 2021, 172, 108310. [Google Scholar] [CrossRef] [PubMed]
- Semiz, A.; Duman, O.; Tunç, S. Development of a reversed phase-high performance liquid chromatographic method for the analysis of glucosamine sulphate in dietary supplement tablets. J. Food Compos. Anal. 2020, 93, 103607. [Google Scholar] [CrossRef]
- Restaino, O.F.; Finamore, R.; Stellavato, A.; Diana, P.; Bedini, E.; Trifuoggi, M.; De Rosa, M.; Schiraldi, C. European chondroitin sulfate and glucosamine food supplements: A systematic quality and quantity assessment compared to pharmaceuticals. Carbohydr. Polym. 2019, 222, 114984. [Google Scholar] [CrossRef] [PubMed]
- Zahedipour, F.; Dalirfardouei, R.; Karimi, G.; Jamialahmadi, K. Molecular mechanisms of anticancer effects of Glucosamine. Biomed. Pharmacother. 2017, 95, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Zeng, Y.; Yi, L.; Tang, H.; Li, D.; Linhardt, R.J.; Zhang, Z. Qualitative and quantitative analysis of heparin and low molecular weight heparins using size exclusion chromatography with multiple angle laser scattering/refractive index and inductively coupled plasma/mass spectrometry detectors. J. Chromatogr. A 2017, 1522, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Qin, C.; Li, W.; Yan, Y.; Zeng, L.; Yang, X. Effect of glucosamine and chitooligomer on the toxicity of arsenite against Escherichia coli. Carbohydr. Polym. 2013, 91, 390–393. [Google Scholar] [CrossRef]
- Chan, K.O.W.; Ng, G.Y.F. A review on the effects of glucosamine for knee osteoarthritis based on human and animal studies. Hong Kong Physiother. 2011, 29, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, W.; Han, B.; Wang, C.; Fu, C.; Liu, B.; Chen, L. The antioxidative and immunostimulating properties of D-glucosamine. Int. Immunopharmacol. 2007, 7, 29–35. [Google Scholar]
- Hughes, A.; Meneghetti, M.; Huang, T.Y.; Hung, S.C.; Elli, S.; Guerrini, M.; Rudd, T.; Lima, M.; Yates, E. Investigating the relationship between temperature, conformation and calcium binding in heparin model oligosaccharides. Carbohydr. Res. 2017, 438, 58–64. [Google Scholar] [CrossRef]
- Denardo, A.; Elli, S.; Federici, S.; Asperti, M.; Gryzik, M.; Ruzzenenti, P.; Carmona, F.; Bergese, P.; Naggi, A.; Arosio, P.; et al. BMP6 binding to heparin and heparan sulfate is mediated by N-terminal and C-terminal clustered basic residues. Biochim. Biophys. Acta. Gen. Subj. 2021, 1865, 129799. [Google Scholar] [CrossRef]
- Lin, L.; Yu, Y.; Zhang, F.; Zhang, X.; Linhardt, R.J. High-throughput method for in process monitoring of 3-O-sulfotransferase catalyzed sulfonation in bioengineered heparin synthesis. Anal. Biochem. 2019, 586, 113419. [Google Scholar] [CrossRef] [PubMed]
- Merces, A.; Ferreira, R.D.S.; Silva, K.J.S.; Salu, B.R.; Maciel, J.D.C.; Aguiar, J.A.O.; Tashima, A.K.; Oliva, M.L.V.; Carvalho, L.B., Jr. Identification of blood plasma proteins using heparin-coated magnetic chitosan particles. Carbohydr. Polym. 2020, 247, 116671. [Google Scholar] [CrossRef]
- Zhang, T.; Xie, S.; Wang, Z.; Zhang, R.; Sun, Q.; Liu, X.; Chi, L.; Li, J.P.; Li, H.; Tan, T. Oligosaccharides mapping of nitrous acid degraded heparin through UHPLC-HILIC/WAX-MS. Carbohydr. Polym. 2020, 231, 115695. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Lin, L.; Xia, K.; Li, J.; Zhang, X.; Linhardt, R.J. Recent advances in biotechnology for heparin and heparan sulfate analysis. Talanta 2020, 219, 121270. [Google Scholar] [CrossRef]
- Zhao, W.; Garron, M.L.; Yang, B.; Xiao, Z.; Esko, J.D.; Cygler, M.; Linhardt, R.J. Asparagine 405 of heparin lyase II prevents the cleavage of glycosidic linkages proximate to a 3-O-sulfoglucosamine residue. FEBS Lett. 2011, 585, 2461–2466. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Ouyang, Y.; Yan, N.; Guo, Y.; Yi, L.; Sun, Y.; Liu, D.; Zhang, Z. Comprehensive analysis of heparinase derived heparin-products using two-dimensional liquid chromatography coupled with mass spectrometry. J. Chromatogr. A 2021, 1643, 462049. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, U.; Li, G.; Fu, L.; Onishi, A.; Suflita, M.; Dordick, J.S.; Linhardt, R.J. Combinatorial one-pot chemoenzymatic synthesis of heparin. Carbohydr. Polym. 2015, 122, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Tang, F.; Zhang, J.; Cao, J.; Li, H.; Liu, C. Uncovering the detailed mode of cleavage of heparinase I toward structurally defined heparin oligosaccharides. Int. J. Biol. Macromol. 2019, 141, 756–764. [Google Scholar] [CrossRef]
- Chavante, S.F.; Brito, A.S.; Lima, M.; Yates, E.; Nader, H.; Guerrini, M.; Torri, G.; Bisio, A. A heparin-like glycosaminoglycan from shrimp containing high levels of 3-O-sulfated D-glucosamine groups in an unusual trisaccharide sequence. Carbohydr. Res. 2014, 390, 59–66. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, Y.; Zeng, W.; Mei, X.; Du, S.; Yan, Y.; Hao, J.; Zhang, Z.; Lu, Y.; Zhang, C.; et al. A heparin derivatives library constructed by chemical modification and enzymatic depolymerization for exploitation of non-anticoagulant functions. Carbohydr. Polym. 2020, 249, 116824. [Google Scholar] [CrossRef]
- Rengaraj, A.; Haldorai, Y.; Hwang, S.K.; Lee, E.; Oh, M.H.; Jeon, T.J.; Han, Y.K.; Huh, Y.S. A protamine-conjugated gold decorated graphene oxide composite as an electrochemical platform for heparin detection. Bioelectrochemistry 2019, 128, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, X.; Lang, Y.; Li, Q.; Liu, X.; Cai, C.; Hao, J.; Li, G.; Yu, G. Low anticoagulant heparin oligosaccharides as inhibitors of BACE-1, the Alzheimer’s beta-secretase. Carbohydr. Polym. 2016, 151, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, L.; Voglmeir, J. Chemoenzymatic synthesis of ultralow and low-molecular weight heparins. Biochim. Biophys. Acta Proteins Proteom. 2020, 1868, 140301. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, X.; Li, H.; Wang, Z.; Chi, L.; Li, J.P.; Tan, T. Characterization of epimerization and composition of heparin and dalteparin using a UHPLC-ESI-MS/MS method. Carbohydr. Polym. 2019, 203, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Baytas, S.N.; Linhardt, R.J. Advances in the preparation and synthesis of heparin and related products. Drug. Discov. Today 2020, 25, 2095–2109. [Google Scholar] [CrossRef]
- Mascellani, G.; Guerrini, M.; Torri, G.; Liverani, L.; Spelta, F.; Bianchini, P. Characterization of di- and monosulfated, unsaturated heparin disaccharides with terminal N-sulfated 1,6-anhydro-β-D-glucosamine or N-sulfated 1,6-anhydro-β-D-mannosamine residues. Carbohydr. Res. 2007, 342, 835–842. [Google Scholar] [CrossRef]
- Andrews, O.; Bett, C.; Shu, Q.; Kaelber, N.; Asher, D.M.; Keire, D.; Gregori, L. Processing bovine intestinal mucosa to active heparin removes spiked BSE agent. Biologicals 2020, 67, 56–61. [Google Scholar] [CrossRef]
- Tan, W.; Li, Q.; Li, W.; Dong, F.; Guo, Z. Synthesis and antioxidant property of novel 1,2,3-triazole-linked starch derivatives via ‘click chemistry. Int. J. Biol. Macromol. 2016, 82, 404–410. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Guo, W.; Zhong, W.; Li, Q.; Tan, L.; Shang, L. Ratiometric fluorescence sensors for heparin and heparinase based on enhanced excimer emission of perylene probe induced by cationic silver nanoparticles. Sensors Actuat. B Chem. 2020, 305, 127422. [Google Scholar] [CrossRef]
- Babazada, H.; Yanamoto, S.; Hashida, M.; Yamashita, F. Binding and structure-kinetic relationship analysis of selective TLR4-targeted immunosuppressive self-assembling heparin nanoparticles. Int. J. Pharm. 2018, 552, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Monakhova, Y.B.; Fareed, J.; Yao, Y.; Diehl, B.W.K. Anticoagulant activity of porcine heparin: Structural-property relationship and semi-quantitative estimation by nuclear magnetic resonance (NMR) spectrometry. J. Pharm. Biomed. Anal. 2019, 174, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zheng, L.; Liang, Q.; Jiang, L.; Wei, Z. Preparation and characterization of partial de-O-sulfation of heparin oligosaccharide library. Carbohydr. Res. 2021, 499, 108226. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cai, J.; Wu, K.; Li, D.; Hu, Y.; Li, G.; Du, Y. Preparation, characterization and anticoagulant activity in vitro of heparin-like 6-carboxylchitin derivative. Int. J. Biol. Macromol. 2012, 50, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yang, B.; Li, L.; Zhang, F.; Xue, C.; Linhardt, R.J. Analysis of 3-O-sulfo group-containing heparin tetrasaccharides in heparin by liquid chromatography-mass spectrometry. Anal. Biochem. 2014, 455, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bal Dit Sollier, C.; Dillinger, J.G.; Drouet, L. Anticoagulant activity and pleiotropic effects of heparin. J. Med. Vasc. 2020, 45, 147–157. [Google Scholar] [CrossRef]
- Tan, W.; Zhang, J.; Mi, Y.; Dong, F.; Li, Q.; Guo, Z. Synthesis, characterization, and evaluation of antifungal and antioxidant properties of cationic chitosan derivative via azide-alkyne click reaction. Int. J. Biol. Macromol. 2018, 120, 318–324. [Google Scholar] [CrossRef]
Sample a | Concentration Mean (Na+) ng/mL |
---|---|
Heps | 2.4 × 105 ± 1.10 |
GHS | 4520 ± 0.50 |
Sample | APTT (s) a | PT (s) a | TT (s) a | ||||||
---|---|---|---|---|---|---|---|---|---|
0.75 μmol/L P b | 1.50 μmol/L P b | 2.25 μmol/L P b | 0.75 μmol/L P b | 1.50 μmol/L P b | 2.25 μmol/L P b | 0.75 μmol/L P b | 1.50 μmol/L P b | 2.25 μmol/L P b | |
Saline | 102.88 ± 4.30 | 26.50 ± 0.41 | 18.22 ± 0.34 | ||||||
GAH | 103.23 ± 2.55 | 26.37 ± 0.66 | 17.89 ± 0.49 | ||||||
Heps | 153.10 ± 17.14 | 181.97 ± 2.60 | ≥300 | 26.99 ± 1.10 | 28.37 ± 0.29 | 33.93 ± 0.45 | 19.63 ± 0.21 | 25.50 ± 4.45 | ≥100 |
GHS | 180.03 ± 6.02 | ≥300 | ≥300 | 28.30 ± 0.62 | 30.67 ± 0.77 | ≥40 | 22.90 ± 0.36 | 28.70 ± 1.31 | ≥100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Q.; Li, Q.; Tan, W.; Mi, Y.; Ma, B.; Zhang, J.; Guo, Z. Preparation, Anticoagulant and Antioxidant Properties of Glucosamine-Heparin Salt. Mar. Drugs 2022, 20, 646. https://doi.org/10.3390/md20100646
Miao Q, Li Q, Tan W, Mi Y, Ma B, Zhang J, Guo Z. Preparation, Anticoagulant and Antioxidant Properties of Glucosamine-Heparin Salt. Marine Drugs. 2022; 20(10):646. https://doi.org/10.3390/md20100646
Chicago/Turabian StyleMiao, Qin, Qing Li, Wenqiang Tan, Yingqi Mi, Bing Ma, Jingjing Zhang, and Zhanyong Guo. 2022. "Preparation, Anticoagulant and Antioxidant Properties of Glucosamine-Heparin Salt" Marine Drugs 20, no. 10: 646. https://doi.org/10.3390/md20100646
APA StyleMiao, Q., Li, Q., Tan, W., Mi, Y., Ma, B., Zhang, J., & Guo, Z. (2022). Preparation, Anticoagulant and Antioxidant Properties of Glucosamine-Heparin Salt. Marine Drugs, 20(10), 646. https://doi.org/10.3390/md20100646