A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds
Abstract
:1. Introduction
2. Methods
3. Extraction Techniques Used to Obtain Health-Promoting Compounds from Seaweeds
3.1. Pre-Extraction Sample Preparation
3.2. Solid-Liquid Extraction (SLE)
3.3. Soxhlet Extraction
3.4. Supercritical Fluid Extraction (SFE)
3.5. Pressurised Liquid Extraction (PLE)
3.6. Ultrasound-Assisted Extraction (UAE)
3.7. Microwave-Assisted Extraction (MAE)
3.8. Enzyme-Assisted Extraction (EAE)
3.9. Ultrasonic-Microwave-Assisted Extraction (UMAE)
3.10. Liquefied Gas Extraction
4. Critical Comparison between Extraction Techniques
5. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pangestuti, R.; Kim, S.-K. Neuroprotective Effects of Marine Algae. Mar. Drugs 2011, 9, 803–818. [Google Scholar] [CrossRef] [PubMed]
- Schepers, M.; Martens, N.; Tiane, A.; Vanbrabant, K.; Liu, H.-B.; Lütjohann, D.; Mulder, M.; Vanmierlo, T. Edible seaweed-derived constituents: An undisclosed source of neuroprotective compounds. Neural Regen. Res. 2020, 15, 790. [Google Scholar] [CrossRef] [PubMed]
- Biancarosa, I.; Belghit, I.; Bruckner, C.G.; Liland, N.S.; Waagbø, R.; Amlund, H.; Heesch, S.; Lock, E.-J. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: Benefits of and limitations to their potential use in food and feed. J. Sci. Food Agric. 2018, 98, 2035–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cikoš, A.-M.; Jokić, S.; Šubarić, D.; Jerković, I. Overview on the Application of Modern Methods for the Extraction of Bioactive Compounds from Marine Macroalgae. Mar. Drugs 2018, 16, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, S.; Hashim, S.N.; Rahman, H.A. Seaweeds: A sustainable functional food for complementary and alternative therapy. Trends Food Sci. Technol. 2012, 23, 83–96. [Google Scholar] [CrossRef]
- FAO. The global status of seaweed production, trade and utilization. FAO Globefish Res. Program. 2018, 124, 120. [Google Scholar]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of Novel Extraction Technologies for Bioactives from Marine Algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef]
- Gomez-Zavaglia, A.; Prieto Lage, M.A.; Jimenez-Lopez, C.; Mejuto, J.C.; Simal-Gandara, J. The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value. Antioxidants 2019, 8, 406. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, C.; Sørensen, A.-D.M.; Holdt, S.L.; Akoh, C.C.; Hermund, D.B. Source, Extraction, Characterization, and Applications of Novel Antioxidants from Seaweed. Annu. Rev. Food Sci. Technol. 2019, 10, 541–568. [Google Scholar] [CrossRef]
- Sivagnanam, S.; Yin, S.; Choi, J.; Park, Y.; Woo, H.; Chun, B. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction. Mar. Drugs 2015, 13, 3422–3442. [Google Scholar] [CrossRef]
- Grosso, C.; Valentão, P.; Ferreres, F.; Andrade, P. Alternative and Efficient Extraction Methods for Marine-Derived Compounds. Mar. Drugs 2015, 13, 3182–3230. [Google Scholar] [CrossRef]
- Angela, A.; Meireles, M.; Braga, M.; Leal, P.; Maróstica, M.; Pereira, C.; Takeuchi, T. Low-Pressure Solvent Extraction (Solid-Liquid Extraction, Microwave Assisted, and Ultrasound Assisted) from Condimentary Plants. In Extracting Bioactive Compounds for Food Products Theory and Applications; Meireles, M.A.A., Ed.; CRC Press: New York, NY, USA, 2008; pp. 137–218. [Google Scholar]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharov, D.V.; Flisyuk, E.V.; Terninko, I.I.; Generalova, Y.E.; Smekhova, I.E.; Shikov, A.N. The Biochemical Composition and Antioxidant Properties of Fucus vesiculosus from the Arctic Region. Mar. Drugs 2022, 20, 193. [Google Scholar] [CrossRef]
- Cherry, P.; O’Hara, C.; Magee, P.J.; McSorley, E.M.; Allsopp, P.J. Risks and benefits of consuming edible seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef] [Green Version]
- Caliceti, M.; Argese, E.; Sfriso, A.; Pavoni, B. Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 2002, 47, 443–454. [Google Scholar] [CrossRef]
- Llop, S.; Lopez-Espinosa, M.-J.; Murcia, M.; Alvarez-Pedrerol, M.; Vioque, J.; Aguinagalde, X.; Julvez, J.; Aurrekoetxea, J.J.; Espada, M.; Santa-Marina, L.; et al. Synergism between exposure to mercury and use of iodine supplements on thyroid hormones in pregnant women. Environ. Res. 2015, 138, 298–305. [Google Scholar] [CrossRef]
- Herrero, M.; Sánchez-Camargo, A.D.P.; Cifuentes, A.; Ibáñez, E. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC Trends Anal. Chem. 2015, 71, 26–38. [Google Scholar] [CrossRef]
- Gallego, R.; Bueno, M.; Herrero, M. Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae—An update. TrAC Trends Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Ibáñez, E.; Cifuentes, A.; Herrero, M. Bioactives Obtained From Plants, Seaweeds, Microalgae and Food By-Products Using Pressurized Liquid Extraction and Supercritical Fluid Extraction. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; Volume 76, pp. 27–51. [Google Scholar]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Advanced Technologies for the Extraction of Marine Brown Algal Polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef] [Green Version]
- Lomartire, S.; Gonçalves, A.M.M. Novel Technologies for Seaweed Polysaccharides Extraction and Their Use in Food with Therapeutically Applications—A Review. Foods 2022, 11, 2654. [Google Scholar] [CrossRef]
- Beata Łabowska, M.; Michalak, I.; Detyna, J. Methods of extraction, physicochemical properties of alginates and their applications in biomedical field—A review. Open Chem. 2019, 17, 738–762. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Bernaldo de Quirós, A.; López-Hernández, J. An Overview on Effects of Processing on the Nutritional Content and Bioactive Compounds in Seaweeds. Foods 2021, 10, 2168. [Google Scholar] [CrossRef] [PubMed]
- Gan, A.; Baroutian, S. Current status and trends in extraction of bioactives from brown macroalgae using supercritical CO2 and subcritical water. J. Chem. Technol. Biotechnol. 2022, 97, 1929–1940. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Fang, Z. Recent development in efficient processing technology for edible algae: A review. Trends Food Sci. Technol. 2019, 88, 251–259. [Google Scholar] [CrossRef]
- Ramos, M.; Jiménez, A.; Garrigós, M.C. Il-based advanced techniques for the extraction of value-added compounds from natural sources and food by-products. TrAC Trends Anal. Chem. 2019, 119, 115616. [Google Scholar] [CrossRef]
- McReynolds, C.; Adrien, A.; Castejon, N.; Fernandes, S.C.M. Green in the deep blue: Deep eutectic solvents as versatile systems for the processing of marine biomass. Green Chem. Lett. Rev. 2022, 15, 383–404. [Google Scholar] [CrossRef]
- Mehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green extraction of value-added compounds form microalgae: A short review on natural deep eutectic solvents (NaDES) and related pre-treatments. J. Environ. Chem. Eng. 2021, 9, 105989. [Google Scholar] [CrossRef]
- Shikov, A.N.; Obluchinskaya, E.D.; Flisyuk, E.V.; Terninko, I.I.; Generalova, Y.E.; Pozharitskaya, O.N. The Impact of Natural Deep Eutectic Solvents and Extraction Method on the Co-Extraction of Trace Metals from Fucus vesiculosus. Mar. Drugs 2022, 20, 324. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.D.P.; Montero, L.; Stiger-Pouvreau, V.; Tanniou, A.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Considerations on the use of enzyme-assisted extraction in combination with pressurized liquids to recover bioactive compounds from algae. Food Chem. 2016, 192, 67–74. [Google Scholar] [CrossRef]
- Vo Dinh, T.; Saravana, P.S.; Woo, H.C.; Chun, B.S. Ionic liquid-assisted subcritical water enhances the extraction of phenolics from brown seaweed and its antioxidant activity. Sep. Purif. Technol. 2018, 196, 287–299. [Google Scholar] [CrossRef]
- Adams, J.M.M.; Schmidt, A.; Gallagher, J.A. The impact of sample preparation of the macroalgae Laminaria digitata on the production of the biofuels bioethanol and biomethane. J. Appl. Phycol. 2015, 27, 985–991. [Google Scholar] [CrossRef] [Green Version]
- Magnusson, M.; Mata, L.; de Nys, R.; Paul, N.A. Biomass, Lipid and Fatty Acid Production in Large-Scale Cultures of the Marine Macroalga Derbesia tenuissima (Chlorophyta). Mar. Biotechnol. 2014, 16, 456–464. [Google Scholar] [CrossRef]
- Soares, C.; Paíga, P.; Marques, M.; Neto, T.; Carvalho, A.P.; Paiva, A.; Simões, P.; Costa, L.; Bernardo, A.; Fernández, N.; et al. Multi-Step Subcritical Water Extracts of Fucus vesiculosus L. and Codium tomentosum Stackhouse: Composition, Health-Benefits and Safety. Processes 2021, 9, 893. [Google Scholar] [CrossRef]
- Sang-aroon, W.; Tontapha, S.; Amornkitbamrung, V. Photovoltaic Performance of Natural Dyes for Dye-Sensitized Solar Cells. In Dye-Sensitized Solar Cells; Elsevier: Amsterdam, The Netherlands, 2019; pp. 203–229. ISBN 9780128145425. [Google Scholar]
- Mussatto, S.I. Generating Biomedical Polyphenolic Compounds from Spent Coffee or Silverskin. In Coffee in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2015; pp. 93–106. ISBN 9780124167162. [Google Scholar]
- Zygler, A.; Słomińska, M.; Namieśnik, J. Soxhlet Extraction and New Developments Such as Soxtec. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, The Netherlands, 2012; Volume 2, pp. 65–82. ISBN 9780123813749. [Google Scholar]
- Heffernan, N.; Smyth, T.J.; FitzGerald, R.J.; Soler-Vila, A.; Brunton, N. Antioxidant activity and phenolic content of pressurised liquid and solid-liquid extracts from four Irish origin macroalgae. Int. J. Food Sci. Technol. 2014, 49, 1765–1772. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kang, M.-C.; Moon, S.-H.; Jeon, B.-T.; Jeon, Y.-J. Potential use of ultrasound in antioxidant extraction from Ecklonia cava. Algae 2013, 28, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Obluchinskaya, E.D.; Daurtseva, A.V.; Pozharitskaya, O.N.; Flisyuk, E.V.; Shikov, A.N. Natural Deep Eutectic Solvents as Alternatives for Extracting Phlorotannins from Brown Algae. Pharm. Chem. J. 2019, 53, 243–247. [Google Scholar] [CrossRef]
- Kanazawa, K.; Ozaki, Y.; Hashimoto, T.; Das, S.K.; Matsushita, S.; Hirano, M.; Okada, T.; Komoto, A.; Mori, N.; Nakatsuka, M. Commercial-scale Preparation of Biofunctional Fucoxanthin from Waste Parts of Brown Sea Algae Laminalia japonica. Food Sci. Technol. Res. 2008, 14, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Medina Perez, E.B.; Ruiz-Domìnguez, M.C.; Morales, J.E.; Cerezal Mezquita, P. Fucoxanthin from marine microalga Isochrysis galbana: Optimization of extraction methods with organic solvents. DYNA 2019, 86, 174–178. [Google Scholar] [CrossRef] [Green Version]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and Analysis of Polyphenols: Recent trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef]
- Khan, Z.; Troquet, J.; Vachelard, C. Sample preparation and analytical techniques for determination of polyaromatic hydrocarbons in soils. Int. J. Environ. Sci. Technol. 2005, 2, 275–286. [Google Scholar] [CrossRef] [Green Version]
- De Souza, B.; Lúcia, A. Extraction and Characterization of the Biomass and Desmodesmus sp. Microalgae Oil Using Supercritical Carbon Dioxide. Master’s Thesis, Universidade Federal Rural do Rio de Janeiro, Instituto de Tecnologia, Rio de Janeiro, Brazil, 2015. [Google Scholar]
- Nafiu, M.O.; Hamid, A.A.; Muritala, H.F.; Adeyemi, S.B. Quality Control of Medicinal Plants in Africa; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128092866. [Google Scholar]
- Ihnat, M. Sample preparation for food analysis. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2003; Volume 41, pp. 765–856. ISBN 9780444511010. [Google Scholar]
- Fierascu, R.C.; Fierascu, I.; Ortan, A.; Georgiev, M.I.; Sieniawska, E. Innovative Approaches for Recovery of Phytoconstituents from Medicinal/Aromatic Plants and Biotechnological Production. Molecules 2020, 25, 309. [Google Scholar] [CrossRef] [Green Version]
- Punín Crespo, M.O.; Lage Yusty, M.A. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples. Chemosphere 2005, 59, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.C.K.; Leung, A.Y.H.; Ang, P.O. Comparison of Supercritical Carbon Dioxide and Soxhlet Extraction of Lipids from a Brown Seaweed, Sargassum hemiphyllum (Turn.) C. Ag. J. Agric. Food Chem. 1998, 46, 4228–4232. [Google Scholar] [CrossRef]
- Messyasz, B.; Michalak, I.; Łęska, B.; Schroeder, G.; Górka, B.; Korzeniowska, K.; Lipok, J.; Wieczorek, P.; Rój, E.; Wilk, R.; et al. Valuable natural products from marine and freshwater macroalgae obtained from supercritical fluid extracts. J. Appl. Phycol. 2018, 30, 591–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuvarani, M.; Kubendran, D.; Salma Aathika, A.R.; Karthik, P.; Premkumar, M.P.; Karthikeyan, V.; Sivanesan, S. Extraction and characterization of oil from macroalgae Cladophora glomerata. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 2133–2139. [Google Scholar] [CrossRef]
- Halim, R.; Harun, R.; Danquah, M.K.; Webley, P.A. Microalgal cell disruption for biofuel development. Appl. Energy 2012, 91, 116–121. [Google Scholar] [CrossRef]
- Escorsim, A.M.; da Rocha, G.; Vargas, J.V.C.; Mariano, A.B.; Ramos, L.P.; Corazza, M.L.; Cordeiro, C.S. Extraction of Acutodesmus obliquus lipids using a mixture of ethanol and hexane as solvent. Biomass Bioenergy 2018, 108, 470–478. [Google Scholar] [CrossRef]
- Tres, M.V.; Racoski, J.C.; Nobrega, R.; Carvalho, R.B.; Oliveira, J.V.; Di Luccio, M. Solvent recovery from soybean oil/n-butane mixtures using a hollow fiber ultrafiltration membrane. Braz. J. Chem. Eng. 2014, 31, 243–249. [Google Scholar] [CrossRef]
- Johnson, L.A.; Lusas, E.W. Comparison of alternative solvents for oils extraction. J. Am. Oil Chem. Soc. 1983, 60, 229–242. [Google Scholar] [CrossRef]
- Mercer, P.; Armenta, R.E. Developments in oil extraction from microalgae. Eur. J. Lipid Sci. Technol. 2011, 113, 539–547. [Google Scholar] [CrossRef]
- Mendiola, J.A.; Herrero, M.; Castro-Puyana, M.; Ibáñez, E. CHAPTER 6. Supercritical Fluid Extraction. In RSC Green Chemistry; Royal Society of Chemistry: London, UK, 2013; pp. 196–230. ISBN 9781849736060. [Google Scholar]
- Duarte, K.; Justino, C.I.L.; Pereira, R.; Freitas, A.C.; Gomes, A.M.; Duarte, A.C.; Rocha-Santos, T.A.P. Green analytical methodologies for the discovery of bioactive compounds from marine sources. Trends Environ. Anal. Chem. 2014, 3–4, 43–52. [Google Scholar] [CrossRef]
- Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Heffernan, N.; Smyth, T.J.; FitzGerald, R.J.; Vila-Soler, A.; Mendiola, J.; Ibáñez, E.; Brunton, N.P. Comparison of extraction methods for selected carotenoids from macroalgae and the assessment of their seasonal/spatial variation. Innov. Food Sci. Emerg. Technol. 2016, 37, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S. Analytical Techniques for Natural Product Research; Kumar, S., Ed.; CABI: Wallingford, UK, 2016; ISBN 9781780644738. [Google Scholar]
- Supercritical Fluid Extraction and Its Use in Chromatographic Sample Preparation; Westwood, S.A. (Ed.) Springer: Dordrecht, The Netherlands, 1993; Volume 3, ISBN 978-94-010-4958-0. [Google Scholar]
- Sargenti, S.R.; Lanças, F.M. Influence of the extraction mode and temperature in the supercritical fluid extraction of Tangor murcote (Blanco) × Citrus sinensis (Osbeck). J. Microcolumn Sep. 1998, 10, 213–223. [Google Scholar] [CrossRef]
- Quitain, A.T.; Kai, T.; Sasaki, M.; Goto, M. Supercritical Carbon Dioxide Extraction of Fucoxanthin from Undaria pinnatifida. J. Agric. Food Chem. 2013, 61, 5792–5797. [Google Scholar] [CrossRef]
- Saravana, P.S.; Getachew, A.T.; Cho, Y.-J.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2. J. Supercrit. Fluids 2017, 120, 295–303. [Google Scholar] [CrossRef]
- Terasaki, M.; Hirose, A.; Narayan, B.; Baba, Y.; Kawagoe, C.; Yasui, H.; Saga, N.; Hosokawa, M.; Miyashita, K. Evaluation of recoverable functional lipid components of several brown seaweeds (Phaeophyta) from Japan with special reference to fucoxanthin and fucosterol contents 1. J. Phycol. 2009, 45, 974–980. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Xu, X.; Gao, Y.; Wang, Q.; Zhao, J. Optimisation of supercritical carbon dioxide extraction of lutein esters from marigold (Tagetes erect L.) with soybean oil as a co-solvent. Int. J. Food Sci. Technol. 2008, 43, 1763–1769. [Google Scholar] [CrossRef]
- Roman, O.; Heyd, B.; Broyart, B.; Castillo, R.; Maillard, M.-N. Oxidative reactivity of unsaturated fatty acids from sunflower, high oleic sunflower and rapeseed oils subjected to heat treatment, under controlled conditions. LWT-Food Sci. Technol. 2013, 52, 49–59. [Google Scholar] [CrossRef]
- Machmudah, S.; Diono, W.; Kanda, H.; Goto, M. Supercritical Fluids Extraction of Valuable Compounds from Algae: Future Perspectives and Challenges. Eng. J. 2018, 22, 13–30. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Guo, Z.; Glasius, M.; Kristensen, K.; Xiao, L.; Xu, X. Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: An efficient and sustainable approach. J. Chromatogr. A 2011, 1218, 5765–5773. [Google Scholar] [CrossRef] [PubMed]
- Saravana, P.S.; Tilahun, A.; Gerenew, C.; Tri, V.D.; Kim, N.H.; Kim, G.-D.; Woo, H.-C.; Chun, B.-S. Subcritical water extraction of fucoidan from Saccharina japonica: Optimization, characterization and biological studies. J. Appl. Phycol. 2018, 30, 579–590. [Google Scholar] [CrossRef]
- Gomes, I.; Rodrigues, H.; Rodrigues, C.; Marques, M.; Paíga, P.; Paiva, A.; Simões, P.; Fernandes, V.C.; Vieira, M.; Delerue-Matos, C.; et al. Evaluation of the Biological Potential of Himanthalia elongata (L.) S.F.Gray and Eisenia bicyclis (Kjellman) Setchell Subcritical Water Extracts. Foods 2022, 11, 746. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Santoyo, S.; Jaime, L.; García-Blairsy Reina, G.; Herrero, M.; Señoráns, F.J.; Ibáñez, E. Screening for bioactive compounds from algae. J. Pharm. Biomed. Anal. 2010, 51, 450–455. [Google Scholar] [CrossRef]
- Otero, P.; Quintana, S.; Reglero, G.; Fornari, T.; García-Risco, M. Pressurized Liquid Extraction (PLE) as an Innovative Green Technology for the Effective Enrichment of Galician Algae Extracts with High Quality Fatty Acids and Antimicrobial and Antioxidant Properties. Mar. Drugs 2018, 16, 156. [Google Scholar] [CrossRef] [Green Version]
- Gereniu, C.R.N.; Saravana, P.S.; Chun, B.S. Recovery of carrageenan from Solomon Islands red seaweed using ionic liquid-assisted subcritical water extraction. Sep. Purif. Technol. 2018, 196, 309–317. [Google Scholar] [CrossRef]
- Saravana, P.S.; Cho, Y.N.; Woo, H.C.; Chun, B.S. Green and efficient extraction of polysaccharides from brown seaweed by adding deep eutectic solvent in subcritical water hydrolysis. J. Clean. Prod. 2018, 198, 1474–1484. [Google Scholar] [CrossRef]
- Shang, Y.F.; Kim, S.M.; Lee, W.J.; Um, B.-H. Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) Setchell. J. Biosci. Bioeng. 2011, 111, 237–241. [Google Scholar] [CrossRef]
- Okihashi, M.; Obana, H. Determination of N-methylcarbamate pesticides in foods using an accelerated solvent extraction with a mini-column cleanup. Analyst 1998, 123, 711–714. [Google Scholar] [CrossRef]
- Ramos, L.; Kristenson, E.; Brinkman, U.A.T. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J. Chromatogr. A 2002, 975, 3–29. [Google Scholar] [CrossRef]
- Barka, A.; Blecker, C. Microalgae as a potential source of single-cell proteins. A review. BASE 2016, 20, 427–436. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; González Muñoz, M.J. Ultrasound-Assisted Extraction of Bioactive Carbohydrates. In Water Extraction of Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2017; pp. 317–331. ISBN 9780128096154. [Google Scholar]
- Oh, S.-H.; Ahn, J.; Kang, D.-H.; Lee, H.-Y. The Effect of Ultrasonificated Extracts of Spirulina maxima on the Anticancer Activity. Mar. Biotechnol. 2011, 13, 205–214. [Google Scholar] [CrossRef]
- Dang, T.T.; Van Vuong, Q.; Schreider, M.J.; Bowyer, M.C.; Van Altena, I.A.; Scarlett, C.J. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. J. Appl. Phycol. 2017, 29, 3161–3173. [Google Scholar] [CrossRef]
- Kadam, S.; O’Donnell, C.; Rai, D.; Hossain, M.; Burgess, C.; Walsh, D.; Tiwari, B. Laminarin from Irish Brown Seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound Assisted Extraction, Characterization and Bioactivity. Mar. Drugs 2015, 13, 4270–4280. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T.A.P.; Gomes, A.M.P.; Duarte, A.C.; Freitas, A.C. Impact of Enzyme- and Ultrasound-Assisted Extraction Methods on Biological Properties of Red, Brown, and Green Seaweeds from the Central West Coast of Portugal. J. Agric. Food Chem. 2015, 63, 3177–3188. [Google Scholar] [CrossRef]
- Topuz, O.K.; Gokoglu, N.; Yerlikaya, P.; Ucak, I.; Gumus, B. Optimization of Antioxidant Activity and Phenolic Compound Extraction Conditions from Red Seaweed (Laurencia obtuse). J. Aquat. Food Prod. Technol. 2016, 25, 414–422. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharova, L.V.; Daurtseva, A.V.; Flisyuk, E.V.; Shikov, A.N. Efficacy of Natural Deep Eutectic Solvents for Extraction of Hydrophilic and Lipophilic Compounds from Fucus vesiculosus. Molecules 2021, 26, 4198. [Google Scholar] [CrossRef]
- Devillé, C.; Damas, J.; Forget, P.; Dandrifosse, G.; Peulen, O. Laminarin in the dietary fibre concept. J. Sci. Food Agric. 2004, 84, 1030–1038. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Dehpour, A.A.; Ebrahimzadeh, M.A.; Seyed Fazel, N.; Seyed Mohammad, N. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas y Aceites 2009, 60, 405–412. [Google Scholar] [CrossRef]
- Oki, T.; Masuda, M.; Furuta, S.; Nishiba, Y.; Terahara, N.; Suda, I. Involvement of Anthocyanins and other Phenolic Compounds in Radical-Scavenging Activity of Purple-Fleshed Sweet Potato Cultivars. J. Food Sci. 2002, 67, 1752–1756. [Google Scholar] [CrossRef]
- Wijesinghe, W.A.J.P.; Jeon, Y.-J. Enzyme-assistant extraction (EAE) of bioactive components: A useful approach for recovery of industrially important metabolites from seaweeds: A review. Fitoterapia 2012, 83, 6–12. [Google Scholar] [CrossRef]
- Şahin, S.; Samli, R.; Tan, A.S.B.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules 2017, 22, 1056. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez Seoane, P.; Flórez-Fernández, N.; Conde Piñeiro, E.; Domínguez González, H. Microwave-Assisted Water Extraction. In Water Extraction of Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2017; pp. 163–198. ISBN 9780128096154. [Google Scholar]
- Delazar, A.; Nahar, L.; Hamedeyazdan, S.; Sarker, S.D. Microwave-Assisted Extraction in Natural Products Isolation. In Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 864, pp. 89–115. ISBN 9781617796234. [Google Scholar]
- Pérez, L.; Conde, E.; Domínguez, H. Microwave hydrodiffusion and gravity processing of Sargassum muticum. Process Biochem. 2014, 49, 981–988. [Google Scholar] [CrossRef]
- Balboa, E.; Moure, A.; Domínguez, H. Valorization of Sargassum muticum Biomass According to the Biorefinery Concept. Mar. Drugs 2015, 13, 3745–3760. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Wang, B.; Yu, C.; Xu, Y. Optimization of microwave-assisted extraction of polyphenols from Enteromorpha prolifra by orthogonal test. Chinese Herb. Med. 2010, 2, 321–325. [Google Scholar] [CrossRef]
- Magnusson, M.; Yuen, A.K.L.; Zhang, R.; Wright, J.T.; Taylor, R.B.; Maschmeyer, T.; de Nys, R. A comparative assessment of microwave assisted (MAE) and conventional solid-liquid (SLE) techniques for the extraction of phloroglucinol from brown seaweed. Algal Res. 2017, 23, 28–36. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, X.; Jing, C.; Zou, P.; Zhang, C.; Li, Y. Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities. Carbohydr. Polym. 2018, 181, 902–910. [Google Scholar] [CrossRef]
- Zhang, R.; Yuen, A.K.L.; Magnusson, M.; Wright, J.T.; de Nys, R.; Masters, A.F.; Maschmeyer, T. A comparative assessment of the activity and structure of phlorotannins from the brown seaweed Carpophyllum flexuosum. Algal Res. 2018, 29, 130–141. [Google Scholar] [CrossRef]
- Shang, X.C.; Chu, D.; Zhang, J.X.; Zheng, Y.F.; Li, Y. Microwave-assisted extraction, partial purification and biological activity in vitro of polysaccharides from bladder-wrack (Fucus vesiculosus) by using deep eutectic solvents. Sep. Purif. Technol. 2021, 259, 118169. [Google Scholar] [CrossRef]
- Xiao, W.; Han, L.; Shi, B. Microwave-assisted extraction of flavonoids from Radix astragali. Sep. Purif. Technol. 2008, 62, 614–618. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, M.-Y.; Gong, X.-F. Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J. Food Eng. 2007, 81, 162–170. [Google Scholar] [CrossRef]
- Li, Z.; Wang, B.; Zhang, Q.; Qu, Y.; Xu, H.; Li, G. Preparation and antioxidant property of extract and semipurified fractions of Caulerpa racemosa. J. Appl. Phycol. 2012, 24, 1527–1536. [Google Scholar] [CrossRef]
- Qun, Y.; Chuan, L.; Zhenhua, D.; Bing, L.; Weiwen, D.; Feifei, S. Ultrasonic microwave-assisted extraction of polyphenols, flavonoids, triterpenoids, and vitamin C from Clinacanthus nutans. Czech J. Food Sci. 2017, 35, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, D.; Wu, J.; Chen, Y.; Wang, S. In vitro antioxidant activities of sulfated polysaccharide fractions extracted from Corallina officinalis. Int. J. Biol. Macromol. 2011, 49, 1031–1037. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Ummat, V.; Tiwari, B.; Rajauria, G. Exploring Ultrasound, Microwave and Ultrasound–Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae. Mar. Drugs 2020, 18, 172. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.-C.; Hwang, H.J.; Kang, K.J.; Lee, B.H. An antioxidative and antiinflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res. 2006, 29, 165–171. [Google Scholar] [CrossRef]
- Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Kulshreshtha, G.; Burlot, A.-S.; Marty, C.; Critchley, A.; Hafting, J.; Bedoux, G.; Bourgougnon, N.; Prithiviraj, B. Enzyme-Assisted Extraction of Bioactive Material from Chondrus crispus and Codium fragile and Its Effect on Herpes simplex Virus (HSV-1). Mar. Drugs 2015, 13, 558–580. [Google Scholar] [CrossRef] [PubMed]
- Marathe, S.J.; Jadhav, S.B.; Bankar, S.B.; Singhal, R.S. Enzyme-Assisted Extraction of Bioactives. In Food Bioactives; Puri, M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 171–201. ISBN 978-3-319-51637-0. [Google Scholar]
- Heo, S.J.; Park, E.J.; Lee, K.W.; Jeon, Y.J. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 2005, 96, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Shanura Fernando, I.P.; Asanka Sanjeewa, K.K.; Samarakoon, K.W.; Lee, W.W.; Kim, H.-S.; Ranasinghe, P.; Gunasekara, U.K.D.S.S.; Jeon, Y.-J. Antioxidant and anti-inflammatory functionality of ten Sri Lankan seaweed extracts obtained by carbohydrase assisted extraction. Food Sci. Biotechnol. 2018, 27, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, C.; Ni, Y.; Yao, L.; Jiang, H.; Ren, X.; Fu, Y.; Zhao, C. Ultrasonic/microwave-assisted extraction of polysaccharides from Camptotheca acuminata fruits and its antitumor activity. Carbohydr. Polym. 2019, 206, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gu, X.; Huang, S.; Li, J.; Wang, X.; Tang, J. Optimization of ultrasonic/microwave assisted extraction (UMAE) of polysaccharides from Inonotus obliquus and evaluation of its anti-tumor activities. Int. J. Biol. Macromol. 2010, 46, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Cui, J.; Chen, A.-H.; Zong, Z.-M.; Wei, X.-Y. Optimization of Ultrasonic-Microwave Assisted Extraction and Hepatoprotective Activities of Polysaccharides from Trametes orientalis. Molecules 2019, 24, 147. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.-Y.; Chen, X.-Q.; Liu, Y.; Cheong, K.-L. Ultrasonic/microwave-assisted extraction, simulated digestion, and fermentation in vitro by human intestinal flora of polysaccharides from Porphyra haitanensis. Int. J. Biol. Macromol. 2020, 152, 748–756. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Fabiano-Tixier, A.S.; Nutrizio, M.; Režek Jambrak, A.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef] [Green Version]
- Kanda, H.; Kamo, Y.; Machmudah, S.; Wahyudiono; Goto, M. Extraction of Fucoxanthin from Raw Macroalgae excluding Drying and Cell Wall Disruption by Liquefied Dimethyl Ether. Mar. Drugs 2014, 12, 2383–2396. [Google Scholar] [CrossRef]
- Bauer, M.C.; Konnerth, P.; Kruse, A. Extraction of common microalgae by liquefied dimethyl ether: Influence of species and pretreatment on oil yields and composition. Biomass Convers. Biorefinery 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Wang, Q.; Oshita, K.; Takaoka, M. Effective lipid extraction from undewatered microalgae liquid using subcritical dimethyl ether. Biotechnol. Biofuels 2021, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kanda, H.; Wahyudiono; MacHmudah, S.; Goto, M. Direct extraction of lutein from wet macroalgae by liquefied dimethyl ether without any pretreatment. ACS Omega 2020, 5, 24005–24010. [Google Scholar] [CrossRef]
- Goto, M.; Kanda, H.; Wahyudiono; Machmudah, S. Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether. J. Supercrit. Fluids 2015, 96, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Noriyasu, A.; Furukawa, H.; Kikuchi, A.; Takaichi, H.; Bouteau, F.; Li, X.; Nishihama, S.; Yoshizuka, K.; Kawano, T. Use of liquefied cold temperature dimethyl ether for extraction of pigments from fresh vegetable tissues. Adv. Hortic. Sci. 2015, 29, 48–52. [Google Scholar] [CrossRef]
- Mutalib, L. Comparison between conventional and modern methods for extraction of Rosmarinus officinalis leaves. Zanco J. Med. Sci. 2015, 19, 1029–1034. [Google Scholar] [CrossRef]
- De Castro, M.D.L.; García-Ayuso, L. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Anal. Chim. Acta 1998, 369, 1–10. [Google Scholar] [CrossRef]
- Hrynets, Y.; Bhattacherjee, A.; Betti, M. Nonenzymatic Browning Reactions: Overview. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; Volume 2, pp. 233–244. ISBN 9780128140451. [Google Scholar]
- Zhou, D.-Y.; Zhu, B.-W.; Tong, L.; Wu, H.-T.; Qin, L.; Tan, H.; Chi, Y.-L.; Qu, J.-Y.; Murata, Y. Original article: Extraction of lipid from scallop (Patinopecten yessoensis) viscera by enzyme-assisted solvent and supercritical carbon dioxide methods. Int. J. Food Sci. Technol. 2010, 45, 1787–1793. [Google Scholar] [CrossRef]
- Handa, S.S. An Overview of Extraction Techniques for Medicinal and Aromatic Plants. In Extraction Technologies for Medicinal and Aromatic Plants; United Nations Industrial Development Organization and the International Centre for Science and High Technology: Trieste, Italy, 2008; p. 25. ISBN 978-0-85404-193-0. [Google Scholar]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.S. Which is the best food emerging solvent: IL, DES or NADES? Trends Food Sci. Technol. 2019, 90, 133–146. [Google Scholar] [CrossRef]
Macroalgae | Extraction Parameters | Bioactive Compounds | Bioactivity | Extraction Yield (%) | Reference | ||
---|---|---|---|---|---|---|---|
Solvent (v/v) | Temperature (°C) | Extraction Time (min) | |||||
S. horneri S. japonica | Hexane | 25 | 1200 | Fucoxanthin | Antioxidant | 1.42 ± 0.08 a | [10] |
1.24 ± 0.06 a | |||||||
Ethanol | 1.36 ± 0.14 a | ||||||
1.22 ± 0.12 a | |||||||
Acetone:methanol | 1.29 ± 0.05 a | ||||||
1.19 ± 0.21 a | |||||||
F. serratus L. digitata G. gracilis C. fragile | EtOH:Water (80:20) | Room temp. | 1440 | Polyphenols | --- | 24.9 | [38] |
35.2 | |||||||
25.8 | |||||||
46.1 | |||||||
Methanol:Water (70:30) | Room temp. | 26.3 | |||||
36.5 | |||||||
29.2 | |||||||
34.0 | |||||||
Hot water | 60 | 6.2 | |||||
7.9 | |||||||
5.5 | |||||||
8.8 | |||||||
Cold water | Room temp. | 35.9 | |||||
35.9 | |||||||
25.9 | |||||||
48.2 | |||||||
E. cava | 50% Methanol | Room temp. | 1440 | Polyphenols | Antioxidant | 28.00 ± 1.4 | [39] |
100% Methanol | 13.00 ± 1.6 | ||||||
H2O | 28.67 ± 1.4 | ||||||
F. vesiculosus A. nodosum | NADES | 50 | 240 | Phlorotannins | --- | 60 | [40] |
72 |
Macroalgae | Extraction Parameters | Bioactive Compounds | Bioactivity | Extraction Yield (%) | Reference | ||
---|---|---|---|---|---|---|---|
Solvent (v/v) | Temperature (°C) | Extraction Time (min) | |||||
C. glomerata | Hexane | --- | 180 | Fatty acids | Antioxidant | 24.5 ± 0.78 | [51] |
Acetone | 27.4 ± 0.91 | ||||||
Ethanol | 24.1 ± 0.87 | ||||||
C. glomerata | Hexane | 69 | 90 | Lipids | --- | 5.0 a | [52] |
150 | 6.9 a | ||||||
210 | 11.76 | ||||||
Toluene | 111 | 90 | 3.7 a | ||||
150 | 5.1 a | ||||||
210 | 9.8 | ||||||
Isopropanol | 82 | 90 | 4.2 a | ||||
150 | 6.8 a | ||||||
210 | 9 | ||||||
Methanol | 64.7 | 90 | 3.0 a | ||||
150 | 4.4 a | ||||||
210 | 8.6 | ||||||
Chloroform | 61 | 90 | 2.3 a | ||||
150 | 3.8 a | ||||||
210 | 7.6 | ||||||
Chloroform: MeOH | --- | 90 | 6.9 a | ||||
150 | 9.5 a | ||||||
210 | 18 | ||||||
Hex: Isopropanol | --- | 90 | 5.5 a | ||||
150 | 8.1 a | ||||||
210 | 14.9 |
Macroalgae | Extraction Parameters | Bioactive Compounds | Bioactivity | Extraction Yield (%) | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
Solvent (v/v) | Temperature (°C) | Pressure (MPa) | Extraction Time (min) | CO2 Flow Rate | |||||
S. japonica | CO2:EtOH | 45 | 25 | 120 | 27 g/min | Fucoxanthin | Antioxidant | 1.09 ± 0.56 a | [10] |
S. horneri | Antimicrobial | 1.41 ± 0.15 a | |||||||
U. pinnatifida | CO2 | 25 | 40 | 180 | 2 mL/min | Fucoxanthin | --- | 0.53 ± 0.05 | [65] |
40 | 40 | 1.22 ± 0.04 | |||||||
40 | 20 | 1.08 ± 0.02 | |||||||
40 | 30 | 1.06 ± 0.03 | |||||||
50 | 40 | 1.07 ± 0.01 | |||||||
60 | 40 | 1.04 ± 0.01 | |||||||
L. japonica | Sunflower oil, soybean oil, canola oil, EtOH, H2O | 45 | 20 | 240 | --- | Carotenoids | Antioxidant | See Table 4 | [66] |
50 | 25 | Fucoxanthin | |||||||
55 | 30 | Phlorotannins |
Extraction Yield [mg/g] | ||||||
---|---|---|---|---|---|---|
Compounds | SC-CO2 | Sunflower Oil | Soybean Oil | Canola Oil | EtOH | H2O |
Carotenoids | 0.85 a | 1.20 a | 1.20 a | 1.30 a | 1.10 a | 0.20 a |
1.00 b | 1.60 b | 1.50 b | 1.60 b | 1.20 b | 0.25 b | |
0.98 c | 2.20 c | 2.00 c | 2.2 c | 1.10 c | 0.25 c | |
Fucoxanthin | 0.19 a | 0.49 a | 0.45 a | 0.44 a | 0.39 a | 0.01 a |
0.25 b | 0.60 b | 0.48 b | 0.50 b | 0.41 b | 0.02 b | |
0.28 | 0.70 | 0.50 | 0.53 | 0.43 | 0.03 c | |
Phlorotannins | 0.20 a | 0.75 a | 0.59 a | 0.70 a | 0.24 a | 0.30 a |
0.25 b | --- | --- | --- | 0.31 b | 0.50 b | |
0.29 c | 0.15 c | 0.10 c | 0.13 c | 0.35 c | 0.61 c |
Macroalgae | Extraction Parameters | Bioactive Compounds | Bioactivity | Extraction Yield (%) | Reference | |||
---|---|---|---|---|---|---|---|---|
Solvent (v/v) | Temperature (°C) | Pressure (MPa) | Extraction Time (min) | |||||
S. muticum | EtOH:Water (75:25) | 120 | 10.3 | 20 | Phlorotannins | Antioxidant | 40.1 ± 0.7 | [30] |
S. japonica | Ionic liquids | 100–250 | 50 * | 5 | Phenolics | Antioxidant | --- | [31] |
F. vesiculosus C. tomentosum | Water (100 mL/min) | Room–90 | 100 * | 100 | Phlorotannins Phenolics Melanoidins | Neuroprotection Antioxidant | 20.5 | [34] |
4.1 | ||||||||
90–140 | 90 | 56.0 | ||||||
7.0 | ||||||||
140–190 | 90 | 65.9 | ||||||
33.6 | ||||||||
190–250 | 100 | 73.7 | ||||||
51.4 | ||||||||
F. serratus L. digitata G. gracilis C. fragile | EtOH:Water (80:20) | 100 | 6.9 | 25 | Polyphenols | --- | 31.7 | [38] |
24.8 | ||||||||
21.8 | ||||||||
26.9 | ||||||||
Methanol:Water (70:30) | 90 | 6.9 | 25 | 29.2 | ||||
28.2 | ||||||||
24.5 | ||||||||
24.6 | ||||||||
H. elongata E. bicyclis | Water (100 mL/min) | Room–90 | 100 * | 100 | Phlorotannins Phenolics Melanoidins | Antioxidant Scavenging activity, | --- | [75] |
90–140 | 90 | |||||||
140–190 | 90 | |||||||
190–250 | 100 | |||||||
H. elongata | EtOH | 50 | 10.3 | 20 | Fucoxanthin | Antioxidant | 8.29 | [76] |
100 | 10.56 | |||||||
150 | 19.23 | |||||||
200 | 36.91 | |||||||
Hexane | 50 | 3.41 | ||||||
100 | 3.50 | |||||||
150 | 4.72 | |||||||
200 | 7.59 | |||||||
H2O | 50 | 9.51 | ||||||
100 | 15.08 | |||||||
150 | 46.43 | |||||||
200 | 51.56 | |||||||
F. vesiculosus | Hexane | 80 | 10 | 10 | Fatty acids (oleic acid, ARA, EPA) | Antioxidant, antibacterial | 2.79 ± 0.12 | [77] |
120 | 3.72 ± 0.24 | |||||||
160 | 4.49 ± 1.54 | |||||||
EtOH | 80 | 4.72 ± 0.11 | ||||||
120 | 5.59 ± 0.21 | |||||||
160 | 7.03 ± 1.79 | |||||||
Ethyl acetate | 80 | 9.01 ± 1.24 | ||||||
120 | 10.73 ± 0.23 | |||||||
160 | 12.90 ± 1.2 | |||||||
Acetone | 80 | 8.85 ± 1.51 | ||||||
120 | 11.98 ± 1.18 | |||||||
160 | 12.89 ± 0.68 | |||||||
EtOH:Water (50:50) | 80 | 34.85 ± 3.11 | ||||||
120 | 41.49 ± 1.47 | |||||||
160 | 57.19 ± 2.38 | |||||||
K. alvarezii | Ionic liquids | 60–180 | 5 | 30–40 | ĸ-carrageenan | Antioxidant | Up to 78.75 | [78] |
S. japonica | DES | 60–160 | 5–60 * | 10–25 | Alginate | Antioxidant | 5.37–27.21 | [79] |
Fucoidan | 5.08–15.70 |
Macroalgae | Equipment | Extraction Parameters | Bioactive Compounds | Bioactivity | Extraction Yield (%) | Reference | ||||
---|---|---|---|---|---|---|---|---|---|---|
Solvent | Temperature (°C) | Frequency (kHz) | Power (W) | Extraction Time (min) | ||||||
E. cava | Bath | H2O | 30 | 40 | 200 | 360 | Polyphenols | Antioxidant | 31.33 ± 1.3 | [39] |
720 | 34.33 ± 1.4 | |||||||||
Methanol (50%) | 360 | 28.33 ± 1.6 | ||||||||
720 | 30.67 ± 1.7 | |||||||||
Methanol (100%) | 360 | 16.00 ± 1.4 | ||||||||
720 | 16.33 ± 1.8 | |||||||||
H. banksii | Bath | EtOH (70%) | 30/40/50 | 50 | 150–250 | 20/40/60 | Polyphenols | Antioxidant | --- | [86] |
L. hyperborea A. Nodosum | Probe | H2O | --- | 20 | 35.61 a | 15 | Laminarin | Antioxidant | 5.975 ± 0.467 | [87] |
5.290 ± 0.480 | ||||||||||
0.1 M HCl | 6.240 ± 0.008 | |||||||||
5.822 ± 0.343 | ||||||||||
S. muticum | Bath | H2O | 50 | 50/60 | 400 | 60 | Polyphenols | Prebiotic Glucosidase inhibition Antioxidant | 25–27 b,c | [88] |
O. pinnatifida | 45–47 b,c | |||||||||
C. tomentosum | 47–49 b,c | |||||||||
L. obtuse | Bath | EtOH (95%) | 30/35/40/45/50/55/60 | 40 | 250 | 30/40/50/60/70 | Phenolic compounds Antioxidants | Antioxidant | --- | [89] |
F. vesiculosus | Bath | NADES | 42 | 130 | 20 and 60 | Phlorotannins, fucoxanthin, and ascorbic acid | Antioxidants | Phlorotannins–10–60 b,d | [90] | |
Fucoxanthin–0.2–0.4 b,d | ||||||||||
Ascorbic acid–0.05–0.4 b,d |
Macroalgae | Extraction Parameters | Bioactive Compounds | Bioactivity | Extraction Yield (%) | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
Solvent | Temperature (°C) | Solvent/Material Ratio (mL/g) | Power (W) | Extraction Time (min) | |||||
C. racemosa | EtOH (40%, 50%, 60%) | 30/40/50 | 20/30/40 | 100/200/300 | 30/40/50 | Polyphenols | Antioxidant | --- | [100] |
E. prolifera | EtOH 25% | --- | 20 | 450 | 20 | Polyphenols | --- | 0.655 ± 0.036 a | [101] |
EtOH 30% | 25 | 25 | 0.864 ± 0.017 a | ||||||
EtOH 35% | 30 | 30 | 0.889 ± 0.014 a | ||||||
EtOH 40% | 35 | 35 | 0.877 ± 0.026 a | ||||||
EtOH 25% | 30 | 500 | 20 | 0.893 ± 0.019 a | |||||
EtOH 30% | 35 | 25 | 0.906 ± 0.008 a | ||||||
EtOH 35% | 20 | 30 | 0.850 ± 0.042 a | ||||||
EtOH 40% | 25 | 35 | 0.742 ± 0.028 a | ||||||
EtOH 25% | 35 | 550 | 20 | 0.825 ± 0.015 a | |||||
EtOH 30% | 30 | 25 | 0.708 ± 0.034 a | ||||||
EtOH 35% | 25 | 30 | 0.894 ± 0.016 a | ||||||
EtOH 40% | 20 | 35 | 0.887 ± 0.038 a | ||||||
EtOH 25% | 25 | 600 | 20 | 0.874 ± 0.027 a | |||||
EtOH 30% | 20 | 25 | 0.887 ± 0.017 a | ||||||
EtOH 35% | 35 | 30 | 0.643 ± 0.019 a | ||||||
EtOH 40% | 30 | 35 | 0.792 ± 0.043 a | ||||||
C. flexuosum | H2O | 135/160/185 | --- | --- | 1/3/5/10/15/20 | Polyphenols | --- | --- | [102] |
Acetone | |||||||||
EtOH | |||||||||
Propan-1-ol | |||||||||
Ethyl acetate | |||||||||
U. prolifera | 0.1 M HCl | 90 | --- | 500 | 15 | Polysaccharides | Antioxidant Anti-hyperlipidemic | 18.0–20.0 b | [103] |
120 | 6.0–8.0 b | ||||||||
150 | 6.09 ± 0.65 | ||||||||
0.01 M HCl | 90 | 31.0–33.0 b | |||||||
120 | 36.38 ± 0.94 | ||||||||
150 | 28.0–30.0 b | ||||||||
0.05 M HCl | 90 | 27.0–29.0 b | |||||||
120 | 18.0–20.0 b | ||||||||
150 | 6.0–8.0 b | ||||||||
C. flexuosum | H2O | 160 | 30 | --- | 3 | Phlorotannins | Antioxidant | 15.8 ± 0.3 | [104] |
C. plumosum | 9.2 ± 0.6 | ||||||||
E. radiata | 2.0 ± 0.1 | ||||||||
F. vesiculosus | NADES | 100–200 | 10–100 c | --- | 10–60 | Polysaccharides | Antioxidant | 91.02–115.44 d | [105] |
Macroalgae | Extraction Parameters | Bioactive Compounds | Bioactivity | Extraction Yield (%) | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
Solvent/Buffer | Temperature (°C) | pH | Extraction Time (h) | Enzymes | |||||
S. muticum | 0.1 M Phosphate buffer | 50 | 7.0 | 2 | Alcalase | Polyphenols | Antioxidant | 13.6 ± 1.4 | [30] |
4 | 17.81 ± 2.8 | ||||||||
0.1 M Sodium acetate-acetic acid buffer | 50 | 4.5 | 2 | Viscozyme | 20.6 ± 1.7 | ||||
4 | 23.5 ± 0.1 | ||||||||
C. fragile * C. crispus ** | Distilled water | 50 | --- | 3 | Cellulase * | Proteins | Anti-viral | 2.6 ± 0.2 | [115] |
Neutral Sugars | 4.3 ± 0.2 | ||||||||
Uronic Acid | 0.23 ± 0.0 | ||||||||
Sulphates | 0.5 ± 0.0 | ||||||||
Neutrase * | Proteins | 2.9 ± 0.1 | |||||||
Neutral Sugars | 5.4 ± 0.3 | ||||||||
Uronic Acid | 0.1 ± 0.0 | ||||||||
Sulphates | 0.5 ± 0.0 | ||||||||
Cellulase ** | Proteins | --- | |||||||
Neutral Sugars | 7.1 ± 0.3 | ||||||||
Uronic Acid | 1.2 ± 0.0 | ||||||||
Sulphates | 11.7 ± 0.1 | ||||||||
Neutrase ** | Proteins | --- | |||||||
Neutral Sugars | --- | ||||||||
Uronic Acid | 0.8 ± 0.0 | ||||||||
Sulphates | 8.4 ± 0.1 | ||||||||
β-glucanase ** | Proteins | 4.1 ± 0.4 | |||||||
Neutral Sugars | 9.3 ± 0.2 | ||||||||
Uronic Acid | 1.0 ± 0.0 | ||||||||
Sulphates | 8.0 ± 0.1 | ||||||||
Ultraflo ** | Proteins | 5.8 ± 0.5 | |||||||
Neutral Sugars | 21.9 ± 0.4 | ||||||||
Uronic Acid | 1.4 ± 0.0 | ||||||||
Sulphates | 11.0 ± 0.1 | ||||||||
U. pinnatifida | --- | 37 | 6.2 | 2 | Alginate lyase | Fucoxanthin Lipids | --- | --- | [116] |
E. cava I. okamurae S. fullvelum S. horneri S. coreanum S. thunbergii S. lomentaria | 0.2 M PB b | 40 | 6.0 | 12 | Protamex | Polyphenols | Antioxidant | --- | [117] |
0.2 M PB | 40 | 6.0 | 12 | Kojizyme | |||||
0.2 M PB | 50 | 6.0 | 12 | Neutrase | |||||
0.2 M PB | 50 | 7.0 | 12 | Flavourzyme | |||||
0.2 M PB | 50 | 8.0 | 12 | Alcalase | |||||
0.1 N AB | 50 | 4.5 | 12 | Viscozyme L | |||||
0.1 N AB | 50 | 4.5 | 12 | Celluclast | |||||
0.1 N AB a | 60 | 4.5 | 12 | AMG | |||||
0.2 M PB | 60 | 6.0 | 12 | Termamyl | |||||
0.2 M PB | 60 | 7.0 | 12 | Ultraflo | |||||
S. polycystum P. commersonii A. Pygmaea G. corticata C. herpestica C. antennina G. lithophila C. minima U. fasciata S. natans | Deionised water | 50 | 4.5 | 24 | Viscozyme | Carbohydrates Proteins Polyphenols | Antioxidant Anti-inflammatory | See Table 9 | [118] |
50 | 4.5 | 24 | Celluclast | ||||||
60 | 4.5 | 24 | Termamyl | ||||||
60 | 6 | 24 | AMG | ||||||
0 | 7 | 24 | Ultraflo |
Extraction Yield [%] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Enzyme | S. polycystum | S. natans | P. commersonii | C. minima | C. herpestica | C. antennina | U. fasciata | A. pygmaea | G. corticata | G. lithophila |
Viscoenzyme | 12.5 ± 1.3 | 21.0 ± 1.0 | 21.5 ± 0.9 | 9.0 ± 1.0 | 14.5 ± 0.6 | 33.5 ± 2.0 | 25.0 ± 1.8 | 17.0 ± 0.5 | 33.5 ± 1.7 | 36.0 ± 1.1 |
Celluclast | 15.0 ± 0.9 | 23.5 ± 0.9 | 26.0 ± 1.2 | 12.0 ± 0.8 | 17.5 ± 0.9 | 39.5 ± 0.8 | 27.0 ± 0.9 | 17.5 ± 0.6 | 36.0 ± 0.8 | 40.0 ± 0.9 |
AMG | 14.5 ± 0.5 | 22.5 ± 0.9 | 23.5 ± 0.9 | 8.5 ± 0.8 | 14.5 ± 0.7 | 35.5 ± 1.3 | 25.5 ± 0.8 | 16.5 ± 0.9 | 34.5 ± 0.7 | 36.0 ± 1.1 |
Termamyl | 13.0 ± 0.9 | 22.0 ± 1.1 | 22.5 ± 0.8 | 8.0 ± 0.7 | 14.0 ± 0.6 | 34.5 ± 0.8 | 26.0 ± 1.2 | 16.5 ± 0.9 | 34.0 ± 0.3 | 37.0 ± 0.6 |
Ultraflo | 10.5 ± 0.2 | 21.5 ± 0.4 | 17.5 ± 0.2 | 6.5 ± 0.7 | 15.0 ± 0.2 | 37.5 ± 0.6 | 24.0 ± 0.5 | 12.0 ± 0.9 | 29.5 ± 0.7 | 34.0 ± 0.2 |
Macroalgae | Extraction Parameters | Bioactive Compounds | Bioactivity | Extraction Yield (%) | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | Ultrasonic Power (W) | Ultrasonic Amplitude (%) | Microwave Power (W) | Extraction Time (min) | |||||
A. nodosum | 36.2–98 | 500 | 20 | 250 | 2/5 | Carbohydrates Polyphenols | Antioxidant | --- | [111] |
50 | 600 | ||||||||
100 | 1000 | ||||||||
P. haitanensis | 70 | 50 | --- | 500 | 20 | Polysaccharides | --- | 12.80 | [122] |
30 | 12.65 | ||||||||
40 | 12.70 | ||||||||
80 | 20 | 11.80 | |||||||
30 | 21.10 | ||||||||
40 | 10.45 | ||||||||
90 | 20 | 9.50 | |||||||
30 | 15.25 | ||||||||
40 | 10.75 |
Macroalgae | Extraction Parameters | Bioactive Compounds | Extraction Yield (%) | Reference | |||
---|---|---|---|---|---|---|---|
Solvent | Temp (°C) | Pressure (MPa) | Extraction Time (min) | ||||
U. pinnatifida | DME (286 g) | 25 | 0.59 | 43 | Fucoxanthin | 390 a | [124] |
M. nitidum | DME (216 g) | 25 | 0.79 | 33 | Lutein | 0.30 b | [127] |
Lipids | 3.28 |
Extraction Technique | Compounds Extracted | Advantages | Disadvantages |
---|---|---|---|
SLE | Polyphenols | High yields of extraction; allows the extraction of thermolabile compounds; cheap technique, simple method; low temperatures. | Use of organic solvents; not eco-friendly; only polar compounds can be extracted; long extraction time. |
Fucoxanthin | |||
Polysaccharides | |||
Soxhlet | Lipids | Simple methodology; Can use larger sample mass; Cheap technique. | Long time extraction; Large amounts of solvents; High energy consumption; Concentration steps are required; Analytes may decompose thermally. |
SFE | Fucoxanthin | Extraction of important compounds; Possibility of having extracts already dried; Low quantities of solvent; High speed of analysis. | Low extraction yields; Expensive; Only extracts non-polar solvents. |
Phlorotannins | |||
Carotenoids | |||
PLE | Polyphenols | Less solvent, Short extraction time; Easy operation. | Not suitable for thermolabile compounds; High instrument cost. |
Fucoxanthin | |||
Fatty acids | |||
UAE | Polyphenols | High extraction efficiency; Possibility to be up-scaled; Reduced extraction time; Good for thermolabile compounds. | Decline of power with time; High capital cost. |
MAE | Polyphenols | Reduced solvent usage; Possibility to be up-scaled; Higher extraction rate; Improved extraction yield: Simple instrumentation. | Not suitable for thermolabile compounds; High capital cost. |
Polysaccharides | |||
Phlorotannins | |||
EAE | Polyphenols | Can be solvent-free; Possibility to be up-scaled; Possibility to be up-scaled; Eco-friendly; Higher extraction yields. | Slow process; Difficulty to maintain optimum treatment time and temperature conditions. |
Proteins | |||
Neutral Sugars | |||
Uronic Acid | |||
Sulfates | |||
Carbohydrates | |||
Fucoxanthin | |||
UMAE | Polysaccharides | Higher extraction efficiency; Shorter extraction time; Reduced by-products. | Higher instrument cost. |
Carbohydrates | |||
Polyphenols | |||
LGE | Carotenoids | Avoids sample drying, cell disruption, and solvent evaporation; Simple, cheaper and low energy consumption system; Replacement of toxic solvents for lipophilic compounds. | Isobaric mode: Expensive equipment; Frequent maintenance operations; The size of compressors is a limiting factor for large industrial applications. Non-isobaric mode: Careful design and monitoring of boiler and condenser |
Lipids |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quitério, E.; Grosso, C.; Ferraz, R.; Delerue-Matos, C.; Soares, C. A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds. Mar. Drugs 2022, 20, 677. https://doi.org/10.3390/md20110677
Quitério E, Grosso C, Ferraz R, Delerue-Matos C, Soares C. A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds. Marine Drugs. 2022; 20(11):677. https://doi.org/10.3390/md20110677
Chicago/Turabian StyleQuitério, Eva, Clara Grosso, Ricardo Ferraz, Cristina Delerue-Matos, and Cristina Soares. 2022. "A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds" Marine Drugs 20, no. 11: 677. https://doi.org/10.3390/md20110677
APA StyleQuitério, E., Grosso, C., Ferraz, R., Delerue-Matos, C., & Soares, C. (2022). A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds. Marine Drugs, 20(11), 677. https://doi.org/10.3390/md20110677