Continuous Production of Biogenic Magnetite Nanoparticles by the Marine Bacterium Magnetovibrio blakemorei Strain MV-1T with a Nitrous Oxide Injection Strategy
Abstract
:1. Introduction
2. Results
2.1. Fed-Batch
2.2. Nitrous Oxide Mass Transfer
2.3. Continuous Growth
3. Discussion
4. Materials and Methods
4.1. Bacterial Cells
4.2. Bioreactor Cultivation
4.3. Growth Analysis
4.4. Transmission Electron Microscopy
4.5. Nutrient Determination
4.6. Gassing Costs
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- European Commission. Nanotechnology: The Invisible Giant Tackling Europe’s Future Challenges; European Commission: Luxembourg, 2013. [Google Scholar]
- Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V.; Zitka, O. Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomaterials 2017, 7, 243. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Shin, K.; Soh, M.; Chang, H.; Kim, J.; Lee, J.; Ko, G.; Kim, B.H.; Kim, D.; Hyeon, T. Metal Oxide Nanoparticles: Large-Scale Synthesis and Medical Applications of Uniform-Sized Metal Oxide Nanoparticles (Adv. Mater. 42/2018). Adv. Mater. 2018, 30, 1870319. [Google Scholar] [CrossRef] [Green Version]
- Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef] [PubMed]
- Simeonidis, K.; Liébana-Viñas, S.; Wiedwald, U.; Ma, Z.; Li, Z.-A.; Spasova, M.; Patsia, O.; Myrovali, E.; Makridis, A.; Sakellari, D.; et al. A Versatile Large-Scale and Green Process for Synthesizing Magnetic Nanoparticles with Tunable Magnetic Hyperthermia Features. RSC Adv. 2016, 6, 53107–53117. [Google Scholar] [CrossRef]
- Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals. Nat. Mater. 2004, 3, 891–895. [Google Scholar] [CrossRef]
- Feijoo, S.; González-García, S.; Moldes-Diz, Y.; Vazquez-Vazquez, C.; Feijoo, G.; Moreira, M.T. Comparative Life Cycle Assessment of Different Synthesis Routes of Magnetic Nanoparticles. J. Clean. Prod. 2017, 143, 528–538. [Google Scholar] [CrossRef]
- Lloyd, J.R.; Byrne, J.M.; Coker, V.S. Biotechnological Synthesis of Functional Nanomaterials. Curr. Opin. Biotechnol. 2011, 22, 509–515. [Google Scholar] [CrossRef]
- Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyacı, E.; Eroğlu, A.E.; Scott, T.B.; Hallam, K.R. Green Synthesis of Iron Nanoparticles and Their Application as a Fenton-like Catalyst for the Degradation of Aqueous Cationic and Anionic Dyes. Chem. Eng. J. 2011, 172, 258–266. [Google Scholar] [CrossRef]
- Arakaki, A.; Tanaka, M.; Matsunaga, T. Biological Magnetic Materials and Applications; Matsunaga, T., Tanaka, T., Kisailus, D., Eds.; Springer: Singapore, 2018; ISBN 9789811080685. [Google Scholar]
- Lefèvre, C.T.; Bazylinski, D.A. Ecology, Diversity, and Evolution of Magnetotactic Bacteria. Microbiol. Mol. Biol. Rev. 2013, 77, 497–526. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Pan, Y.; Bazylinski, D.A. Diversity and Ecology of and Biomineralization by Magnetotactic Bacteria. Environ. Microbiol. Rep. 2017, 9, 345–356. [Google Scholar] [CrossRef]
- Pósfai, M.; Lefèvre, C.T.; Trubitsyn, D.; Bazylinski, D.A.; Frankel, R.B. Phylogenetic Significance of Composition and Crystal Morphology of Magnetosome Minerals. Front. Microbiol. 2013, 4, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alphandèry, E. Applications of Magnetosomes Synthesized by Magnetotactic Bacteria in Medicine. Front. Bioeng. Biotechnol. 2014, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Vargas, G.; Cypriano, J.; Correa, T.; Leão, P.; Bazylinski, D.; Abreu, F. Applications of Magnetotactic Bacteria, Magnetosomes and Magnetosome Crystals in Biotechnology and Nanotechnology: Mini-Review. Molecules 2018, 23, 2438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyen, U.; Schüler, D. Growth and Magnetosome Formation by Microaerophilic Magnetospirillum Strains in an Oxygen-Controlled Fermentor. Appl. Microbiol. Biotechnol. 2003, 61, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Castané, A.; Li, H.; Thomas, O.R.T.; Overton, T.W. Development of a Simple Intensified Fermentation Strategy for Growth of Magnetospirillum gryphiswaldense MSR-1: Physiological Responses to Changing Environmental Conditions. New Biotechnol. 2018, 46, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, G.R.; Guo, F.F.; Jiang, W.; Li, Y.; Li, L.J. Large-Scale Production of Magnetosomes by Chemostat Culture of Magnetospirillum gryphiswaldense at High Cell Density. Microb. Cell Factories 2010, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.-B.; Zhao, F.; Tang, T.; Jiang, W.; Tian, J.; Li, Y.; Li, J.-L. High-Yield Growth and Magnetosome Formation by Magnetospirillum gryphiswaldense MSR-1 in an Oxygen-Controlled Fermentor Supplied Solely with Air. Appl. Microbiol. Biotechnol. 2008, 79, 389. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Jiang, W.; Li, Y.; Li, J. Semicontinuous Culture of Magnetospirillum gryphiswaldense MSR-1 Cells in an Autofermentor by Nutrient-Balanced and Isosmotic Feeding Strategies. Appl. Environ. Microbiol. 2011, 77, 5851–5856. [Google Scholar] [CrossRef] [Green Version]
- Silva, K.T.; Leão, P.E.; Abreu, F.; López, J.A.; Gutarra, M.L.; Farina, M.; Bazylinski, D.A.; Freire, D.M.G.; Lins, U. Optimization of Magnetosome Production and Growth by the Magnetotactic Vibrio Magnetovibrio blakemorei Strain MV-1 through a Statistics-Based Experimental Design. Appl. Environ. Microbiol. 2013, 79, 2823–2827. [Google Scholar] [CrossRef] [Green Version]
- Bazylinski, D.A.; Williams, T.J.; Lefèvre, C.T.; Trubitsyn, D.; Fang, J.; Beveridge, T.J.; Moskowitz, B.M.; Ward, B.; Schübbe, S.; Dubbels, B.L.; et al. Magnetovibrio blakemorei Gen. Nov., Sp. Nov., a Magnetotactic Bacterium (Alphaproteobacteria: Rhodospirillaceae) Isolated from a Salt Marsh. Int. J. Syst. Evol. Microbiol. 2013, 63, 1824–1833. [Google Scholar] [CrossRef]
- Ullrich, S.; Kube, M.; Schübbe, S.; Reinhardt, R.; Schüler, D. A Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary Growth. J. Bacteriol. 2005, 187, 7176–7184. [Google Scholar] [CrossRef] [Green Version]
- Schübbe, S.; Kube, M.; Scheffel, A.; Wawer, C.; Heyen, U.; Meyerdierks, A.; Madkour, M.H.; Mayer, F.; Reinhardt, R.; Schüler, D. Characterization of a Spontaneous Nonmagnetic Mutant of Magnetospirillum gryphiswaldense Reveals a Large Deletion Comprising a Putative Magnetosome Island. J. Bacteriol. 2003, 185, 5779–5790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubbels, B.L.; DiSpirito, A.A.; Morton, J.D.; Semrau, J.D.; Neto, J.N.E.; Bazylinski, D.A. Evidence for a Copper-Dependent Iron Transport System in the Marine, Magnetotactic Bacterium Strain MV-1. Microbiology 2004, 150, 2931–2945. [Google Scholar] [CrossRef] [Green Version]
- Hoskisson, P.A.; Hobbs, G. Continuous Culture—Making a Comeback? Microbiology 2005, 151, 3153–3159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.H.; Gadd, G.M. Prokaryotic Metabolism and Physiology; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; ISBN 9781316622919. [Google Scholar]
- Macauley-Patrick, S.; Finn, B. Modes of Fermenter Operation. In Practical Fermentation Technology; McNeil, B., Harvey, L.M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2008; pp. 69–95. ISBN 9780470725306. [Google Scholar]
- Araujo, A.; Abreu, F.; Silva, K.; Bazylinski, D.; Lins, U. Magnetotactic Bacteria as Potential Sources of Bioproducts. Mar. Drugs 2015, 13, 389–430. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ge, X.; Bo, T.; Chen, Q.; Chen, G.; Liu, W. Interruption of the Denitrification Pathway Influences Cell Growth and Magnetosome Formation in Magnetospirillum magneticum AMB-1: Denitrification and Magnetosome Synthesis. Lett. Appl. Microbiol. 2011, 53, 55–62. [Google Scholar] [CrossRef]
- Wen, T.; Guo, F.; Zhang, Y.; Tian, J.; Li, Y.; Li, J.; Jiang, W. A Novel Role for Crp in Controlling Magnetosome Biosynthesis in Magnetospirillum gryphiswaldense MSR-1. Sci. Rep. 2016, 6, 21156. [Google Scholar] [CrossRef] [Green Version]
- Burke, F. Scale Up and Scale Down of Fermentation Processes. In Practical Fermentation Technology; McNeil, B., Harvey, L.M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2008; pp. 231–269. ISBN 9780470725306. [Google Scholar]
- Waites, M.J.; Morgan, N.L.; Rockey, J.S.; Higton, G. Industrial Microbiology; Blackwell Science: Oxford, UK; Malden, MA, USA, 2001; ISBN 9780632053070. [Google Scholar]
- Munasinghe, P.C.; Khanal, S.K. Biomass-Derived Syngas Fermentation into Biofuels: Opportunities and Challenges. Bioresour. Technol. 2010, 101, 5013–5022. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Zhang, P.; Li, J.; Chen, G. Interactions between Gas–Liquid Mass Transfer and Bubble Behaviours. R. Soc. Open Sci. 2019, 6, 190136. [Google Scholar] [CrossRef] [Green Version]
- Weiss, R.F.; Price, B.A. Nitrous Oxide Solubility in Water and Seawater. Mar. Chem. 1980, 8, 347–359. [Google Scholar] [CrossRef]
- Weiss, R.F. The Solubility of Nitrogen, Oxygen and Argon in Water and Seawater. Deep Sea Res. Oceanogr. Abstr. 1970, 17, 721–735. [Google Scholar] [CrossRef]
- Wei, J.; Dehua, Z.; Ying, L.; Jiesheng, T.; Zhenfang, W.; Jilun, L. Submerged Culture of Magnetospirillum gryphiswaldense under N2-Fixing Condition and Regulation of Activity of Nitro-Gen Fixation. Chin. Sci. Bull. 2002, 47, 2095. [Google Scholar] [CrossRef]
- Yang, C.-D.; Takeyama, H.; Tanaka, T.; Matsunaga, T. Effects of Growth Medium Composition, Iron Sources and Atmospheric Oxygen Concentrations on Production of Luciferase-Bacterial Magnetic Particle Complex by a Recombinant Magnetospirillum magneticum AMB-1. Enzym. Microb. Technol. 2001, 29, 13–19. [Google Scholar] [CrossRef]
- Gresham, D.; Hong, J. The Functional Basis of Adaptive Evolution in Chemostats. FEMS Microbiol. Rev. 2015, 39, 2–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moisescu, C.; Ardelean, I.I.; Benning, L.G. The Effect and Role of Environmental Conditions on Magnetosome Synthesis. Front. Microbiol. 2014, 5, 49. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, X.; Zhang, W.; Li, X.; Zhou, Y.; Li, D.; Wang, Y.; Tian, J.; Jiang, W.; Zhang, Z.; et al. Physiological Characteristics of Magnetospirillum gryphiswaldense MSR-1 That Control Cell Growth under High-Iron and Low-Oxygen Conditions. Sci. Rep. 2017, 7, 2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lie, S. The EBC-Ninhydrin Method for Determination of Free Alpha Amino Nitrogen. J. Inst. Brew. 1973, 79, 37–41. [Google Scholar] [CrossRef]
Conduction | Time (h) | ln X | Magnetosomes per Cell | Non-Magnetic Cells (%) | Magnetite Production (mg∙L−1) | Magnetite Productivity (mg∙L−1∙day−1) |
---|---|---|---|---|---|---|
Fed batch | 72 | 22.2 ± 0.2 | 12.0 | 15 | 32.5 | 39.7 |
120 | 22.4 ± 0.1 | 6.0 | 45 | 16.1 | 12.6 | |
Continuous | 120 | 22.1 ± 0.1 | 10.5 | 13 | 27.1 | 22.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa, T.; Godoy, M.G.; Bazylinski, D.A.; Abreu, F. Continuous Production of Biogenic Magnetite Nanoparticles by the Marine Bacterium Magnetovibrio blakemorei Strain MV-1T with a Nitrous Oxide Injection Strategy. Mar. Drugs 2022, 20, 724. https://doi.org/10.3390/md20110724
Correa T, Godoy MG, Bazylinski DA, Abreu F. Continuous Production of Biogenic Magnetite Nanoparticles by the Marine Bacterium Magnetovibrio blakemorei Strain MV-1T with a Nitrous Oxide Injection Strategy. Marine Drugs. 2022; 20(11):724. https://doi.org/10.3390/md20110724
Chicago/Turabian StyleCorrea, Tarcisio, Mateus G. Godoy, Dennis A. Bazylinski, and Fernanda Abreu. 2022. "Continuous Production of Biogenic Magnetite Nanoparticles by the Marine Bacterium Magnetovibrio blakemorei Strain MV-1T with a Nitrous Oxide Injection Strategy" Marine Drugs 20, no. 11: 724. https://doi.org/10.3390/md20110724
APA StyleCorrea, T., Godoy, M. G., Bazylinski, D. A., & Abreu, F. (2022). Continuous Production of Biogenic Magnetite Nanoparticles by the Marine Bacterium Magnetovibrio blakemorei Strain MV-1T with a Nitrous Oxide Injection Strategy. Marine Drugs, 20(11), 724. https://doi.org/10.3390/md20110724