A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins
Abstract
:1. Introduction
2. Extraction Process
2.1. Solid–Liquid Extraction Method
Seaweed Type | State of the Seaweed (Wet/Dry/Particle Size) | Organic Solvents Used | Solvent–Seaweed Ratio/Temperature (°C)/Time | Yield | Application of the Extract | Reference |
---|---|---|---|---|---|---|
Undaria pinnatifida | Air-dried at 25 °C and ground to fine powder (50 µm) | Ice-cold n-hexane | 15:1/on an ice bath/20 min (three times) | 0.5% | Antioxidant and anti-inflammatory activity | [1] |
Fucus vesiculosus | Freeze-dried, ground to a powder and stored in vacuum-packed bags at −80 °C prior to extraction | Ethanol/water (80:20) | 10:1/room temperature/24 h | 231.95 ± 8.97 μg PGE/mg sample (PGE means phloroglucinol equivalent) | Antioxidant activity | [5] |
Fucus vesiculosus, Ascophyllum nodosum | Powder | Aqueous NADES (natural deep eutectic solvents) solutions (50–70%) | 5:1/50 °C/2 h | 60–72% | / | [11] |
Sargassum fusiforme | Particles lower than 0.8 mm; stored under vacuum (75%) at −20 °C | 30% ethanol-water mixture | 5:1/25 °C/30 min | 63.35 ± 0.19 mg PGE·g−1 | Antioxidant activity | [13] |
Fucus vesiculosus | Freeze dried/powdered | Acetone 67% (v/v) | 70 mL/g/25 °C/3 h | 2.92 ± 0.05 mg GAE/g DW (GAE means gallic acid equivalent; DW means dry weight) | The adjustment of activities of α-glucosidase, α-amylase and pancreatic lipase | [14] |
Pelvetia canaliculate | Freeze-dried macroalgal material | Ethanol-water (80:20) (EW) | 10:1/room temperature/24 h | 275.13 ± 0.41 mg PGE/g DW | Antioxidant activities | [15] |
Fucus spiralis | 278.81 ± 0.61 mg PGE/g DW | |||||
Ascophyllum nodosum | 278.77 ± 0.26 mg PGE/g DW | |||||
Carpophyllum flexuosum | Oven-dried biomass | Acidified methanol (HPLC grade, 50%, aqueous solution; pH 2), followed by acetone (AR grade, 70%, aqueous solution; pH 2) | 40:1/room temperature/24 h, respectively | 8.6 ± 0.2% mg PGE/g DW | Antioxidant activities | [16] |
Carpophyllum plumosum | 7.5 ± 0.1% mg PGE/g DW | |||||
Eisenia bicyclis | Fresh sample was washed with fresh water for 3 h by soaking | 100% ethanol | 2:1/room temperature/6 h | / | / | [17] |
Carpophyllum flexuosum | Powder through a 1.0 mm sieve stored at −20 °C in sealed bags Powder through a 1.0 mm sieve stored at −20 °C in sealed bags | Acetone/water (7:3, acidified to pH 2 with 2 M HCl) | 30:1/room temperature/24 h | 8.6 ± 0.2 (PGE % of DW) | Antioxidant activities | [18] |
Carpophyllum plumosum | 7.5 ± 0.1 (PGE % of DW) | |||||
Ecklonia radiata | 1.5 ± 0.2 (PGE % of DW) |
2.2. Ultrasonic-Assisted Extraction
Seaweed Type | State of the Seaweed (Wet/Dry/Particle Size) | Organic Solvents Used | Solvent–Seaweed Ratio/Temperature (°C)/Time (min)/Power(w) | Yield (mg GAE/g DW) | Application of the Extract | Reference |
---|---|---|---|---|---|---|
Bifurcaria bifurcata | Particles lower than 0.8 mm; stored under vacuum (75%) at −20 °C | Water/ethanol (50:50, v/v) | 10:1/-/30 min/- | 5.74 g (GAE/100 g dried seaweed) | Antioxidant activity | [21] |
Fucus vesiculosus | Dried at 50 °C, 9 days, and milled to 1 mm particle size; stored at room temperature in dark conditions | 50% ethanol | 10:1/30 min//35 kHz | TPC: 572.3 ± 3.2 mg GAE/g (TPC means total phenolic compound) | Antioxidant activity | [22] |
Silvetia compresssa | Samples were ground, sieved with a 500-μm sieve, and vacuum packed until use | 32.33% aqueous ethanol | 30 mLg−1/30 min/ice bath /3.8 WcL−1 | / | Potential prebiotic effect | [23] |
Hormosira banksii | The dried sample was ground to give ≤0.6-mm particle size | Ethanol 70% (v/v) | 50 (mLg−1)/60 min/30°C/60% or 150 W | 24.07 mg GAE/g | Antioxidant activity | [24] |
Ascophyllum nodosum | Powder through a 0.5 mm mesh. | Acid concentration (0.03 M HCl) | 10:1/25 min/ultrasonic amplitude (114 μm) | 143.12 mg GAE/g | / | [25] |
Ascophyllum nodosum | / | Water and water + HCl (0.03 M) | -/10 min/-/20 kHz/750 W | 82.70 mg GAE/g | / | [26] |
Ecklonia arborea | Powdered | 50% ethanol | 20:1/30 min/70 °C/- | 179.16 ± 11.38 (GAE)/L | Antiviral activity | [27] |
Silvetia filiformis | 102.22 ± 15.10 (GAE)/L | |||||
Ecklonia cava | Powdered | 80% MeOH | 20:1/2 days/room temperature/- | / | Antiviral activities against H1N1 and H9N2 | [28] |
Ecklonia maxima | Pieces | Ethanol: water (80:20) | 10:3/1.5 h/25 °C/- | / | Neuroprotective agent | [29] |
2.3. Microwave-Assisted Extraction
2.4. Accelerated Solvent Extraction
Seaweed Type | State of the Seaweed (Wet/Dry/ Particle Size) | Organic Solvents Used | Solvent–Seaweed Ratio/Temperature(°C)/Time (min)/Pressure | Yield | Application of the Extract | Reference |
---|---|---|---|---|---|---|
Sargassum muticum | Freeze-dried, reduced to powder and finally sieved at 250-μm | 95% ethanol | 11:2/160 °C/20 min/1500 psi | 94.0 mg GAE/g DW | / | [10] |
Undaria pinnatifida | Dried in an oven at 80 °C for 48 h (through a 40-mesh sieve) | 52% ethanol | 10:1/170 °C/5.2 h | 10.7 ± 0.2 mg GAE/g DW | Anti-inflammatory and antioxidant activity | [36] |
Ascophyllum nodosum | Powder | Ethanol | / | 50.2 mg GAE/g | Antibacterial activity was tested against food spoilage bacteria | [37] |
Sargassum muticum | Freeze-dried, reduced to powder and finally sieved at 250-μm | 75% ethanol | 11:2/120 °C/20 min/1500 psi | 47.55 ± 2.28 mg GAE/g DW | / | [38] |
Laminaria ochroleuca | Powder | 50% ethanol | -/80,120,160 °C/10 min/1500 psi | 173.65 mg GAE/g PLE extract | / | [39] |
Fucus vesiculosus | Freeze-dried and ground to a semi-coarse powder (through a 1.0 mm sieve) | Dichloromethane and methanol | 20:1/-/5 + 5 min/1500 psi | - | Methicillin-resistant Staphylococcus aureus (MRSA) growth inhibitory, radical scavenging, and pro-apoptotic activities | [40] |
2.5. Supercritical Fluid Extraction
2.6. Biological Enzyme Extraction
Seaweed Type | State of the Seaweed (Wet/Dry/Particle Size) | Type of Enzyme Used | Extraction Conditions Enzyme Conc./Temperature/Time/pH | Yield | Application of the Extract | Reference |
---|---|---|---|---|---|---|
Ulva armoricana | Powder | Neutral endo-protease | 6% (w/w, DW)/50 °C/240 min/pH 6.2 | 9 mg GAE/g DW | Antioxidant and antiviral activities | [47] |
A mix of neutral and alkaline endo-proteases | 11 mg GAE/g DW | |||||
A multiple-mix of carbohydrase | 7 mg GAE/g DW | |||||
Mix of endo-1,4-β-xylanase/endo-1,3(4)-β-glucanase | 6 mg GAE/g DW | |||||
Cellulase | 4 mg GAE/g DW | |||||
Exo-β-1,3(4)-glucanase | 7 mg GAE/g DW | |||||
Sargassum angustifolium | Freeze dried/ powdered | Viscozyme® | 0.1%/50 °C/20 h/pH 4.5 (0.1 M acetate buffer) | 8250 mg GAE/100 g DW | Antioxidant and antimicrobial activities | [48] |
Juvenile Lessonia nigrescens | Powder | α-Amylase | 1:10 (S/L)/60 °C/17 h/pH 6 and in phosphate buffer (0.2 N) | 37.72 ± 4.13% of the dry weight (DW) | ACE inhibitory activity | [49] |
Macrocystis pyrifera, | Cellulose | 1:10 (S/L)/50 °C/17 h/pH 4.5 and in acetate buffer (0.1 N) | 35.36 ± 0.54% DW | |||
Durvillaea antarctica | α-Amylase | 1:10 (S/L)/60 °C/17 h/pH 6 and in phosphate buffer (0.2 N) | 9.07 ± 0.78% DW | |||
Macrocystis pyrifera | Dried at room temperature, and powdered (<0.5 mm) | Alginate lyase, fucoidanase, and 1,3-β-D-glucanase | 1:20 (S/L)/25 °C/36 h/pH 7.0 | 2.14 ± 0.25 wt% | Radical scavenging activity, total antioxidant activity (TAA) | [50] |
Hizikia fusiformis | / | Endo-peptidase and β-glucanase | -/50–60 °C/24 h/7.0–8.0 | / | Antioxidant activity | [51] |
Codium tomentosum | / | Cellulase and viscozyme® | 48–62%/50 °C/24 h ± 60 min (pauses of 2 min after each 10 min of sonication)/400 w ultrasonic processing/- | 261 ± 37 μg catechol equip/g lyophilized extract | Inhibitory potential against α-glucosidase | [52] |
3. Separation and Purification Technology
3.1. Silica Gel Column Chromatography
3.2. Macroporous Adsorption Resin
3.3. Thin Layer Chromatography
3.4. Preparative High-Performance Liquid Chromatography
4. Chemical Characterization
4.1. Determination of Polyphenol Content of Brown Algae by Folin–Ciocalteu Method
4.2. Determination of Polyphenol Content of Brown Algae by DMBA Method
4.3. High-Performance Liquid Chromatography Coupled with Mass Spectrometry
4.4. Nuclear Magnetic Resonance
5. Applications of Phlorotannins
5.1. Applications in the Field of Medicine
5.1.1. Cancer Prevention and Treatment
5.1.2. Treatment of Neurodegenerative Diseases
5.1.3. Development of Novel Antifungal Drugs
5.1.4. Development of New Blood Pressure Lowering Drugs
5.1.5. Anti-Diabetic and Anti-Obesity Potential
5.1.6. SARS Virus Inhibitors
5.1.7. Metabolomic Profiling Analysis of the Extract of Brown Seaweeds
5.2. Applications in the Food Sector
5.2.1. As a Functional Food against Hypercholesterolemia
5.2.2. As Food Antioxidants
5.2.3. As Food Preservatives
5.2.4. As Pesticides
5.3. Application in the Field of Cosmetics
5.3.1. Whitening and Beauty Effects
5.3.2. Treatment of Atopic Dermatitis
5.3.3. Matrix Metalloproteinase Inhibitors
5.3.4. As UV Sunscreens
6. Hindrance of Phlorotannins in Application
7. Conclusions
8. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira, C.A.M.; Félix, R.; Félix, C.; Januário, A.P.; Alves, N.; Novais, S.C.; Dias, J.R.; Lemos, M.F.L. A biorefinery approach to the biomass of the seaweed Undaria pinnatifida (Harvey Suringar, 1873): Obtaining phlorotannins-enriched extracts for wound healing. Biomolecules 2021, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.; Valentão, P.; Andrade, P.B. Polyphenols from brown seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the pursuit of natural alternatives to tackle neurodegeneration. Mar. Drugs 2020, 18, 654. [Google Scholar] [CrossRef] [PubMed]
- Gabbia, D.; De Martin, S. Brown seaweeds for the management of metabolic syndrome and associated diseases. Molecules 2020, 25, 4182. [Google Scholar] [CrossRef] [PubMed]
- Purcell-Meyerink, D.; Packer, M.A.; Wheeler, T.T.; Hayes, M. Aquaculture production of the brown seaweeds Laminaria digitata and Macrocystis pyrifera: Applications in food and pharmaceuticals. Molecules 2021, 26, 1306. [Google Scholar] [CrossRef]
- Heffernan, N.; Brunton, N.P.; FitzGerald, R.J.; Smyth, T.J. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Mar. Drugs 2015, 13, 509–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.Y.; Dong, S.S.; Zhang, N.S.; Zhou, J.; Long, Z.K. Screening and isolation of glyceroglycolipids with antialgal activity from several marine macroalgae. J. Appl. Phycol. 2021, 33, 2609–2616. [Google Scholar] [CrossRef]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.M.; da Silva, G.J.; Pereira, L. Seaweed phenolics: From extraction to applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.H.; Castañeda, H.G. Preparation and chromatographic analysis of phlorotannins. J. Chromatogr. Sci. 2013, 51, 825–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadam, S.U.; O’Donnell, C.P.; Rai, D.K.; Hossain, M.B.; Burgess, C.M.; Walsh, D.; Tiwari, B.K. Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound assisted extraction, characterization and bioactivity. Mar. Drugs 2015, 13, 4270–4280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Camargo Adel, P.; Montero, L.; Stiger-Pouvreau, V.; Tanniou, A.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Considerations on the use of enzyme-assisted extraction in combination with pressurized liquids to recover bioactive compounds from algae. Food Chem. 2016, 192, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Obluchinskaya, E.D.; Daurtseva, A.V.; Pozharitskaya, O.N.; Flisyuk, E.V.; Shikov, A.N. Natural deep eutectic solvents as alternatives for extracting phlorotannins from brown algae. Pharm. Chem. 2019, 53, 243–247. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharova, L.V.; Daurtseva, A.V.; Flisyuk, E.V.; Shikov, A.N. Efficacy of natural deep eutectic solvents for extraction of hydrophilic and lipophilic compounds from Fucus vesiculosus. Molecules 2021, 26, 4198. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, X.; Duan, D.; Liu, X.; Xu, J.; Gao, X. Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme (Harvey) Setchell. Mar. Drugs 2017, 15, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catarino, M.D.; Silva, A.M.S.; Mateus, N.; Cardoso, S.M. Optimization of phlorotannins extraction from Fucus vesiculosus and evaluation of their potential to prevent metabolic disorders. Mar. Drugs 2019, 17, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tierney, M.S.; Smyth, T.J.; Rai, D.K.; Soler-Vila, A.; Croft, A.K.; Brunton, N. Enrichment of polyphenol contents and antioxidant activities of Irish brown macroalgae using food-friendly techniques based on polarity and molecular size. Food Chem. 2013, 139, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, M.; Yuen, A.K.L.; Zhang, R.; Wright, J.T.; Taylor, R.B.; Maschmeyer, T.; de Nys, R. A comparative assessment of microwave assisted (MAE) and conventional solid-liquid (SLE) techniques for the extraction of phloroglucinol from brown seaweed. Algal Res. 2017, 23, 28–36. [Google Scholar] [CrossRef]
- Kim, S.M.; Kang, S.W.; Jeon, J.S.; Jung, Y.J.; Kim, W.R.; Kim, C.Y.; Um, B.H. Determination of major phlorotannins in Eisenia bicyclis using hydrophilic interaction chromatography: Seasonal variation and extraction characteristics. Food Chem. 2013, 138, 2399–2406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yuen, A.K.; Magnusson, M.; Wright, J.T.; Nys, R.; Masters, A.F.; Maschmeyer, T. A comparative assessment of the activity and structure of phlorotannins from the brown seaweed Carpophyllum flexuosum. Algal Res. 2018, 29, 130–141. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Y.; Cai, J.; Zhang, M.; Wen, Y.; Guo, L. The exploration of anti- Vibrio parahaemolyticus substances from Phellodendri Chinensis Cortex as a preservative for shrimp storage. Front. Microbiol. 2022, 13, 1004262. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.U.; Tiwari, B.K.; Álvarez, C.; O’Donnell, C.P. Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends Food Sci. Tech. 2015, 46, 60–67. [Google Scholar] [CrossRef]
- Agregán, R.; Munekata, P.E.S.; Franco, D.; Carballo, J.; Barba, F.J.; Lorenzo, J.M. Antioxidant potential of extracts obtained from macro- (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata) and micro-algae (Chlorella vulgaris and Spirulina platensis) assisted by ultrasound. Medicines 2018, 5, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ummat, V.; Tiwari, B.K.; Jaiswal, A.K.; Condon, K.; Garcia-Vaquer, M.; O’Doherty, J.; O’Donnell, C.; Rajauria, G. Optimization of ultrasound frequency, extraction time and solvent for the recovery of polyphenols, phlorotannins and associated antioxidant activity from brown seaweeds. Mar. Drugs. 2020, 18, 250. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Rodríguez, B.; Santos-Zea, L.; Heredia-Olea, E.; Acevedo-Pacheco, L.; Santacruz, A.; Gutiérrez-Uribe, J.A.; Cruz-Suárez, L.E. Effects of phlorotannin and polysaccharide fractions of brown seaweed Silvetia compressa on human gut microbiota composition using an in vitro colonic model. J. Funct. Foods 2021, 84, 104596. [Google Scholar] [CrossRef]
- Dang, T.T.; Van Vuong, Q.; Schreider, M.J.; Bowyer, M.C.; Van Altena, I.A.; Scarlett, C.J. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. J. Appl. Phycol. 2017, 29, 3161–3173. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason. Sonochem. 2015, 23, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.U.; Tiwari, B.K.; O’Connell, S.; O’Donnell, C.P. Effect of ultrasound pretreatment on the extraction kinetics of bioactive from brown seaweed (Ascophyllum nodosum). Sep. Sci. Technol. 2015, 50, 670–675. [Google Scholar] [CrossRef]
- Morán-Santibañez, K.; Peña-Hernández, M.A.; Cruz-Suárez, L.E.; Ricque-Marie, D.; Skouta, R.; Vasquez, A.H.; Rodríguez-Padilla, C.; Trejo-Avila, L.M. Virucidal and synergistic activity of polyphenol-rich extracts of seaweeds against measles virus. Viruses 2018, 10, 465. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.M.; Doan, T.H.; Ha, T.K.Q.; Kim, H.W.; Lee, B.W.; Pham, H.T.T.; Cho, T.O.; Oh, W.K. Dereplication by high-performance liquid chromatography (HPLC) with quadrupole-time-of-flight mass spectroscopy (qTOF-MS) and antiviral activities of phlorotannins from Ecklonia cava. Mar. Drugs 2019, 17, 149. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Yi, M.; Ding, L.; He, S.; Yan, X. Isolation and purification of a neuroprotective phlorotannin from the marine algae Ecklonia maxima by size exclusion and high-speed counter-current chromatography. Mar. Drugs 2019, 17, 212. [Google Scholar] [CrossRef] [Green Version]
- Toan, T.Q.; Phong, T.D.; Tien, D.D.; Linh, N.M.; Mai Anh, N.T.; Hong Minh, P.T.; Duy, L.X.; Nghi, D.H.; Thi, H.H.P.; Nhu, P.T.; et al. Optimization of microwave-assisted extraction of phlorotannin from Sargassum swartzii (Turn.) C. Ag. with ethanol/water. Nat. Prod. Commun. 2021, 16, 1934578X21996184. [Google Scholar] [CrossRef]
- Amarante, S.J.; Catarino, M.D.; Marçal, C.; Silva, A.M.S.; Ferreira, R.; Cardoso, S.M. Microwave-assisted extraction of phlorotannins from Fucus vesiculosus. Mar. Drugs 2020, 18, 559. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Chen, Y.; Chen, Y.; Liu, H.; Yuan, G.; Fan, Y.; Chen, K. Optimization of the microwave-assisted extraction of phlorotannins from Saccharina japonica Aresch and evaluation of the inhibitory effects of phlorotannin-containing extracts on HepG2 cancer cells. Chin. J. Oceanol. Limn. 2013, 31, 1045–1054. [Google Scholar] [CrossRef]
- Michalak, I.; Tuhy, Ł.; Chojnacka, K. Seaweed extract by microwave assisted extraction as plant growth biostimulant. Open Chem. 2015, 13, 1183–1195. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, J.; Fan, J.; Clark, J.; Shen, P.; Li, Y.; Zhang, C. Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase. Food Res. Int. 2018, 113, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Palma, M.; Piñeiro, Z.; Barroso, C.G. Stability of phenolic compounds during extraction with superheated solvents. J. Chromatogr. A. 2001, 921, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Bai, Y.; Xu, Z.; Shi, Y.; Sun, Y.; Janaswamy, S.; Yu, C.; Qi, H. Phlorotannins from Undaria pinnatifida sporophyll: Extraction, antioxidant, and anti-inflammatory activities. Mar. Drugs 2019, 17, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boisvert, C.; Beaulieu, L.; Bonnet, C.; Pelletier, É. Assessment of the antioxidant and antibacterial activities of three species of edible seaweeds. Food Biochem. 2015, 39, 377–387. [Google Scholar] [CrossRef]
- Anaëlle, T.; Leon, E.S.; Laurent, V.; Elena, I.; Mendiola, J.A.; Stéphane, C.; Nelly, K.; Stéphane, L.B.; Luc, M.; Valérie, S.P. Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta 2013, 104, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.; López-Martínez, M.I.; García-Risco, M.R. Application of pressurized liquid extraction (PLE) to obtain bioactive fatty acids and phenols from Laminaria ochroleuca collected in Galicia (NW Spain). J. Pharm. Biomed. Anal. 2019, 164, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Heavisides, E.; Rouger, C.; Reichel, A.F.; Ulrich, C.; Wenzel-Storjohann, A.; Sebens, S.; Tasdemir, D. Seasonal variations in the metabolome and bioactivity profile of Fucus vesiculosus extracted by an optimized, pressurized liquid extraction protocol. Mar. Drugs 2018, 16, 503. [Google Scholar] [CrossRef] [PubMed]
- Roh, M.K.; Uddin, M.S.; Chun, B.S. Extraction of fucoxanthin and polyphenol from Undaria pinnatifida using supercritical carbon dioxide with co-solvent. Biotechnol. Bioproc. Eng. 2008, 13, 724–729. [Google Scholar] [CrossRef]
- Conde, E.; Moure, A.; Domínguez, H. Supercritical CO2 extraction of fatty acids, phenolics and fucoxanthin from freeze-dried Sargassum muticum. J. Appl. Phycol. 2014, 27, 957–964. [Google Scholar] [CrossRef]
- Saravana, P.S.; Getachew, A.T.; Cho, Y.J.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2. J. Supercrit. Fluid. 2017, 120, 295–303. [Google Scholar] [CrossRef]
- De Corato, U.; Salimbeni, R.; De Pretis, A.; Avella, N.; Patruno, G. Antifungal activity of crude extracts from brown and red seaweeds by a supercritical carbon dioxide technique against fruit postharvest fungal diseases. Postharvest Biol. Technol. 2017, 131, 16–30. [Google Scholar] [CrossRef]
- Sun, L.C.Y.; Ren, D.D.; Wang, S.; Wu, Z.; Wang, S.Y.; Wang, X.T. Optimization of extraction process of phlorotannins from Sargassum horneri by enzymatic hydrolysis. J. Food Saf. Qual. 2019, 10, 2201–2206. (In Chinese) [Google Scholar]
- Sapatinha, M.; Oliveira, A.; Costa, S.; Pedro, S.; Gonçalves, A.; Mendes, R.; Bandarra, N.M.; Pires, C. Red and brown seaweeds extracts: A source of biologically active compounds. Food Chem. 2022, 393, 133453. [Google Scholar] [CrossRef]
- Hardouin, K.; Bedoux, G.; Burlot, A.S.; Donnay-Moreno, C.; Bergé, J.P.; Nyvall-Collén, P.; Bourgougnon, N. Enzyme-Assisted extraction (EAE) for the production of antiviral and antioxidant extracts from the green seaweed Ulva armoricana (Ulvales, Ulvophyceae). Algal Res. 2016, 16, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Sabeena, S.F.; Alagarsamy, S.; Sattari, Z.; Al-Haddad, S.; Fakhraldeen, S.; Al-Ghunaim, A.; Al-Yamani, F. Enzyme-Assisted extraction of bioactive compounds from brown seaweeds and characterization. J. Appl. Phycol. 2020, 32, 615–629. [Google Scholar]
- Olivares-Molina, A.; Fernández, K. Comparison of different extraction techniques for obtaining extracts from brown seaweeds and their potential effects as angiotensin I-converting enzyme (ACE) inhibitors. J. Appl. Phycol. 2016, 28, 1295–1302. [Google Scholar] [CrossRef]
- Leyton, A.; Pezoa-Conte, R.; Mäki-Arvela, P.; Mikkola, J.P.; Lienqueo, M.E. Improvement in carbohydrate and phlorotannin extraction from Macrocystis pyrifera using carbohydrate active enzyme from marine Alternaria sp. as pretreatment. J. Appl. Phycol. 2017, 29, 2039–2048. [Google Scholar] [CrossRef]
- Siriwardhana, N.; Kim, K.N.; Lee, K.W.; Kim, S.H.; Ha, J.H.; Song, C.B.; Lee, J.B.; Jeon, Y.J. Optimisation of hydrophilic antioxidant extraction from Hizikia fusiformis by integrating treatments of enzymes, heat and pH control. Int. J. Food Sci. Technol. 2008, 43, 587–596. [Google Scholar] [CrossRef]
- Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T.A.P.; Gomes, A.M.P.; Duarte, A.C.; Freitas, A.C. Impact of enzyme-and ultrasound-assisted extraction methods on biological properties of red, brown, and green seaweeds from the central west coast of Portugal. J. Agric. Food Chem. 2015, 63, 3177–3188. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Haulader, S.; Karki, S.; Jung, H.J.; Kim, H.R.; Jung, H.A. Acetyl- and butyryl-cholinesterase inhibitory activities of the edible brown alga Eisenia bicyclis. Arch. Pharm. Res. 2015, 38, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- Leyton, A.; Vergara-Salinas, J.R.; Pérez-Correa, J.R.; Lienqueo, M.E. Purification of phlorotannins from Macrocystis pyrifera using microporous resins. Food Chem. 2017, 237, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Moussa, H.; Quezada, E.; Viña, D.; Riadi, H.; Gil-Longo, J. Redox-active phenolic compounds mediate the cytotoxic and antioxidant effects of Carpodesmia tamariscifolia (=Cystoseira tamariscifolia). Chem. Biodivers. 2020, 17, e2000121. [Google Scholar] [CrossRef] [PubMed]
- Shakambari, G.; Ashokkumar, B.; Varalakshmi, P. Phlorotannins from brown algae: Inhibition of advanced glycation end products formation in high glucose induced Caenorhabditis elegans. Indian J. Exp. Biol. 2015, 53, 371–379. [Google Scholar]
- López, A.; Rico, M.; Rivero, A.; de Tangil, M.S. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem. 2011, 125, 1104–1109. [Google Scholar] [CrossRef]
- Kim, J.; Um, M.; Yang, H.; Kim, I.; Lee, C.; Kim, Y.; Yoon, M.; Kim, Y.; Kim, J.; Cho, S. Method development and validation for dieckol in the standardization of phlorotannins preparations. Fish. Aquat. Sci. 2016, 19, 3. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Stern, J.L.; Hagerman, A.E.; Steinberg, P.D.; Winter, F.C.; Estes, J.A. A new assay for quantifying brown algal phlorotannins and comparisons to previous methods. J. Chem. Ecol. 1996, 22, 1273–1293. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, X.; Li, J. Extraction optimization using response surface methodology and structure identification of phlorotannins from Sargassum horneri. Sci. Tech. Food Ind. 2018, 39, 143–149. (In Chinese) [Google Scholar]
- Dominguez, H. Algae as a source of biologically active ingredients for the formulation of functional foods and nutraceuticals. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Functional Ingredients from Algae for Foods and Nutraceuticals; Dominguez, H., Ed.; Woodhead Publishing: Cambridge, MA, USA, 2013. [Google Scholar]
- Steevensz, A.J.; MacKinnon, S.L.; Hankinson, R.; Craft, C.; Connan, S.; Stengel, D.B.; Melanson, J.E. Profiling phlorotannins in brown macroalgae by liquid chromatography-high resolution mass spectrometry. Phytochem. Anal. 2012, 23, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Agregán, R.; Munekata, P.E.S.; Franco, D.; Dominguez, R.; Carballo, J.; Lorenzo, J.M. Phenolic compounds from three brown seaweed species using LC-DAD-ESI-MS/MS. Food Res. Int. 2017, 99, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Keusgen, M.; Glombitza, K.W. Phlorethols, fuhalols and their derivatives from the brown alga Sargassum spinuligerum. Phytochemistry 1995, 38, 975–985. [Google Scholar] [CrossRef]
- Ford, L.; Theodoridou, K.; Sheldrake, G.N.; Walsh, P.J. A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannins compounds in brown seaweeds. Phytochem. Anal. 2019, 30, 587–599. [Google Scholar] [CrossRef]
- Breton, F.; Cerantola, S.; Gall, E.A. Distribution and radical scavenging activity of phenols in Ascophyllum nodosum (Phaeophyceae). Exp. Mar. Biol. Ecol. 2011, 399, 167–172. [Google Scholar] [CrossRef]
- Jégou, C.; Kervarec, N.; Cérantola, S.; Bihannic, I.; Stiger-Pouvreau, V. NMR use to quantify phlorotannins: The case of Cystoseira tamariscifolia, a phloroglucinol-producing brown macroalga in Brittany (France). Talanta 2015, 135, 1–6. [Google Scholar] [CrossRef]
- Parys, S.; Kehraus, S.; Pete, R.; Küpper, F.C.; Glombitza, K.W.; König, G.M. Seasonal variation of polyphenolics in Ascophyllum nodosum (Phaeophyceae). Eur. J. Phycol. 2009, 44, 331–338. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Félix, R.; Pais, A.C.S.; Rocha, S.M.; Silvestre, A.J.D. The quest for phenolic compounds from macroalgae: A review of extraction and identification methodologies. Biomolecules 2019, 9, 847. [Google Scholar] [CrossRef] [Green Version]
- Shin, T.; Ahn, M.; Hyun, J.W.; Kim, S.H.; Moon, C. Antioxidant marine algae phlorotannins and radioprotection: A review of experimental evidence. Acta Histochem. 2014, 116, 669–674. [Google Scholar] [CrossRef]
- Lee, S.; Youn, K.; Kim, D.H.; Ahn, M.R.; Yoon, E.; Kim, O.Y.; Jun, M. Anti-neuroinflammatory property of phlorotannins from Ecklonia cava on Aβ25-35-induced damage in PC12 cells. Mar. Drugs 2019, 17, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besednova, N.N.; Andryukov, B.G.; Zaporozhets, T.S.; Kuznetsova, T.A.; Kryzhanovsky, S.P.; Ermakova, S.P.; Galkina, I.V.; Shchelkanov, M.Y. Molecular targets of brown algae phlorotannins for the therapy of inflammatory processes of various origins. Mar. Drugs 2022, 20, 243. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, W.; Chu, W. Antimicrobial and anti-quorum sensing activities of phlorotannins from seaweed (Hizikia fusiforme). Front. Cell. Infect. Microbiol. 2020, 10, 586750. [Google Scholar] [CrossRef] [PubMed]
- Negara, B.F.S.P.; Sohn, J.H.; Kim, J.S.; Choi, J.S. Antifungal and larvicidal activities of phlorotannins from brown seaweeds. Mar. Drugs 2021, 19, 223. [Google Scholar] [CrossRef]
- Catarino, M.D.; Fernandes, I.; Oliveira, H.; Carrascal, M.; Ferreira, R.; Silva, A.M.S.; Cruz, M.T.; Mateus, N.; Cardoso, S.M. Antitumor activity of Fucus vesiculosus-derived phlorotannins through activation of apoptotic signals in gastric and colorectal tumor cell lines. Int. J. Mol. Sci. 2021, 22, 7604. [Google Scholar] [CrossRef] [PubMed]
- Dutot, M.; Olivier, E.; Fouyet, S.; Magny, R.; Hammad, K.; Roulland, E.; Rat, P.; Fagon, R. In vitro chemo preventive potential of phlorotannins-rich extract from brown algae by inhibition of benzo[a]pyrene-Induced P2X7 activation and toxic effects. Mar. Drugs 2021, 19, 34. [Google Scholar] [CrossRef]
- Gunaseelan, S.; Arunkumar, M.; Aravind, M.K.; Gayathri, S.; Rajkeerthana, S.; Mohankumar, V.; Ashokkumar, B.; Varalakshmi, P. Probing marine brown macroalgal phlorotannins as antiviral candidate against SARS-CoV-2: Molecular docking and dynamics simulation approach. Mol. Divers. 2022, 26, 3205–3224. [Google Scholar] [CrossRef]
- Barbosa, M.; Lopes, G.; Valentão, P.; Ferreres, F.; Gil-Izquierdo, Á.; Pereira, D.M.; Andrade, P.B. Edible seaweeds’ phlorotannins in allergy: A natural multi-target approach. Food Chem. 2018, 265, 233–241. [Google Scholar] [CrossRef]
- Matsui, T.; Ito, C.; Itoigawa, M.; Shibata, T. Three phlorotannins from Sargassum carpophyllum are effective against the secretion of allergic mediators from antigen-stimulated rat basophilic leukemia cells. Food Chem. 2022, 377, 131992. [Google Scholar] [CrossRef]
- Manandhar, B.; Wagle, A.; Seong, S.H.; Paudel, P.; Kim, H.R.; Jung, H.A.; Choi, J.S. Phlorotannins with potential anti-tyrosinase and antioxidant activity isolated from the marine seaweed Ecklonia stolonifera. Antioxidants 2019, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, H.; Kujira, K. Phlorotannins derived from the brown alga Copromania bullosa as tyrosinase Inhibitors. Nat. Prod. Commun. 2021, 16, 1934578. [Google Scholar]
- Gheda, S.; Naby, M.A.; Mohamed, T.; Pereira, L.; Khamis, A. Antidiabetic and antioxidant activity of phlorotannins extracted from the brown seaweed Cystoseira compressa in streptozotocin-induced diabetic rats. Environ. Sci. Pollut. Res. Int. 2021, 28, 22886–22901. [Google Scholar] [CrossRef]
- Naveen, J.; Baskaran, R.; Baskaran, V. Profiling of bioactives and in vitro evaluation of antioxidant and antidiabetic property of polyphenols of marine algae Padina tetrastromatica. Algal Res. 2021, 55, 102250. [Google Scholar] [CrossRef]
- Wijesinghe, W.A.; Ko, S.C.; Jeon, Y.J. Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity. Nutr. Res. Pract. 2011, 5, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.M.; Kang, K.; Jeon, J.S.; Jho, E.H.; Kim, C.Y.; Nho, C.W.; Um, B.H. Isolation of phlorotannins from Eisenia bicyclis and their hepatoprotective effect against oxidative stress induced by tert-butyl hyperoxide. Appl. Biochem. Biotechnol. 2011, 165, 1296–1307. [Google Scholar] [CrossRef]
- Kang, M.C.; Ahn, G.; Yang, X.; Kim, K.N.; Kang, S.M.; Lee, S.H.; Ko, S.C.; Ko, J.Y.; Kim, D.; Kim, Y.T.; et al. Hepatoprotective effects of dieckol-rich phlorotannins from Ecklonia cava, a brown seaweed, against ethanol induced liver damage in BALB/c mice. Food Chem. Toxicol. 2012, 50, 1986–1991. [Google Scholar] [CrossRef]
- Lee, J.; Jun, M. Dual BACE1 and cholinesterase inhibitory effects of phlorotannins from Ecklonia cava—An in vitro and in silico study. Mar. Drugs 2019, 17, 91. [Google Scholar] [CrossRef] [Green Version]
- Catarino, M.D.; Marçal, C.; Bonifácio-Lopes, T.; Campos, D.; Mateus, N.; Silva, A.M.S.; Pintado, M.M.; Cardoso, S.M. Impact of phlorotannin extracts from Fucus vesiculosus on human gut microbiota. Mar. Drugs 2021, 19, 375. [Google Scholar] [CrossRef]
- Jung, H.A.; Jung, H.J.; Jeong, H.Y.; Kwon, H.J.; Ali, M.Y.; Choi, J.S. Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBPα and PPARγ. Fitoterapia 2014, 92, 260–269. [Google Scholar] [CrossRef]
- Karadeniz, F.; Ahn, B.N.; Kim, J.A.; Seo, Y.; Jang, M.S.; Nam, K.H.; Kim, M.; Lee, S.H.; Kong, C.S. Phlorotannins suppress adipogenesis in pre-adipocytes while enhancing osteoblastogenesis in pre-osteoblasts. Arch. Pharm. Res. 2015, 38, 2172–2182. [Google Scholar] [CrossRef]
- Kim, J.E.; Choi, Y.J.; Lee, S.J.; Gong, J.E.; Jin, Y.J.; Park, S.H.; Lee, H.S.; Choi, Y.W.; Hong, J.T.; Hwang, D.Y. Laxative effects of phlorotannins derived from Ecklonia cava on loperamide-induced constipation in SD rats. Molecules 2021, 26, 7209. [Google Scholar] [CrossRef]
- Cho, S.; Yoon, M.; Pae, A.N.; Jin, Y.H.; Cho, N.C.; Takata, Y.; Urade, Y.; Kim, S.; Kim, J.S.; Yang, H.; et al. Marine polyphenol phlorotannins promote non-rapid eye movement sleep in mice via the benzodiazepine site of the GABAA receptor. Psychopharmacology 2014, 231, 2825–2837. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, J.H.; Kang, N.; Kim, K.N.; Jeon, Y.J. The effects of marine algal polyphenols, phlorotannins, on skeletal muscle growth in C2C12 muscle cells via smad and IGF-1 signaling pathways. Mar. Drugs 2021, 19, 266. [Google Scholar] [CrossRef]
- Sanina, N. Vaccine adjuvants derived from marine organisms. Biomolecules 2019, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Ko, E.J.; Kang, S.M. Immunology and efficacy of MF59-adjuvanted vaccines. Hum. Vaccines Immunother. 2018, 14, 3041–3045. [Google Scholar] [CrossRef]
- Zou, D.; Xie, A. Influence of polyphenol-plasma protein interaction on the antioxidant properties of polyphenols. Curr. Drug Metab. 2013, 14, 451–455. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Z.; Liu, G.; Wu, J. Polyphenols as a versatile component in tissue engineering. Acta Biomater. 2021, 119, 57–74. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Yang, P.; Duan, G.; Liu, X.; Gu, Z.; Li, Y. Polyphenol scaffolds in tissue engineering. Mater. Horiz. 2021, 8, 145–167. [Google Scholar] [CrossRef]
- Shavandi, A.; Bekhit, A.E.A.; Saeedi, P.; Izadifar, Z.; Bekhit, A.A.; Khademhosseini, A. Polyphenol uses in biomaterials engineering. Biomaterials 2018, 167, 91–106. [Google Scholar] [CrossRef]
- Galleano, M.; Pechanova, O.; Fraga, C.G. Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr. Pharm. Biotechnol. 2010, 11, 837–848. [Google Scholar] [CrossRef]
- Negara, B.F.S.P.; Sohn, J.H.; Kim, J.S.; Choi, J.S. Effects of phlorotannins on organisms: Focus on the safety, toxicity, and availability of phlorotannins. Foods 2021, 10, 452. [Google Scholar] [CrossRef] [PubMed]
- Paradis, M.E.; Couture, P.; Lamarche, B. A randomised crossover placebo-controlled trial investigating the effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and insulin levels in men and women. Appl. Physiol. Nutr. Metab. 2011, 36, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Um, M.Y.; Kim, J.Y.; Han, J.K.; Kim, J.; Yang, H.; Yoon, M.; Kim, J.; Kang, S.W.; Cho, S. Phlorotannin supplement decreases wake after sleep onset in adults with self-reported sleep disturbance: A randomized, controlled, double-blind clinical and polysomnographic study. Phytother. Res. 2018, 32, 698–704. [Google Scholar] [CrossRef]
- Baldrick, F.R.; McFadden, K.; Ibars, M.; Sung, C.; Moffatt, T.; Megarry, K.; Thomas, K.; Mitchell, P.; Wallace, J.M.W.; Pourshahidi, L.K.; et al. Impact of a (poly)phenol-rich extract from the brown algae Ascophyllum nodosum on DNA damage and antioxidant activity in an overweight or obese population: A randomized controlled trial. Am. J. Clin. Nutr. 2018, 108, 688–700. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.C.; Kim, S.H.; Park, Y.; Lee, B.H.; Hwang, H.J. Effects of 12-week oral supplementation of Ecklonia cava polyphenols on anthropometric and blood lipid parameters in overweight korean individuals: A double-blind randomized clinical trial. Phytother. Res. 2012, 26, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Schoneveld, O.; Georgakilas, A.G.; Panayiotidis, M.I. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 2008, 266, 6–11. [Google Scholar] [CrossRef]
- Catarino, M.D.; Amarante, S.J.; Mateus, N.; Silva, A.M.S.; Cardoso, S.M. Brown algae phlorotannins: A marine alternative to break the oxidative stress, inflammation and cancer network. Foods 2021, 10, 1478. [Google Scholar] [CrossRef]
- Imbs, T.I.; Krasovskaya, N.P.; Ermakova, S.P.; Makarieva, T.N.; Shevchenko, N.; Zvyagintseva, T. Comparative study of chemical composition and antitumor activity of aqueous-ethanol extracts of brown algae Laminaria cichorioides, Costaria costata, and Fucus evanescens. Russ. J. Mar. Biol. 2009, 35, 164–170. [Google Scholar] [CrossRef]
- Ahn, J.H.; Yang, Y.I.; Lee, K.T.; Choi, J.H. Dieckol, isolated from the edible brown algae Ecklonia cava, induces apoptosis of ovarian cancer cells and inhibits tumor xenograft growth. Cancer Res. Clin. Oncol. 2015, 141, 255–268. [Google Scholar] [CrossRef]
- Yang, Y.I.; Ahn, J.H.; Choi, Y.S.; Choi, J.H. Brown algae phlorotannins enhance the tumoricidal effect of cisplatin and ameliorate cisplatin nephrotoxicity. Gynecol. Oncol. 2015, 136, 355–364. [Google Scholar] [CrossRef]
- Hynd, M.R.; Scott, H.L.; Dodd, P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int. 2004, 45, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Kritis, A.A.; Stamoula, E.G.; Paniskaki, K.A.; Vavilis, T.D. Researching glutamate—Induced cytotoxicity in different cell lines: A comparative/collective analysis/study. Front. Cell. Neurosci. 2015, 9, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewerenz, J.; Maher, P. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front. Neurosci. 2015, 9, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, E.J.; Ahn, S.; Ryu, J.; Choi, M.S.; Choi, S.; Chong, Y.H.; Hyun, J.W.; Chang, M.J.; Kim, H.S. Phloroglucinol attenuates the cognitive deficits of the 5XFAD mouse model of Alzheimer’s diseas. PLoS ONE 2015, 10, e0135686. [Google Scholar]
- Kwak, J.H.; Yang, Z.; Yoon, B.; He, Y.; Uhm, S.; Shin, H.C.; Lee, B.H.; Yoo, Y.C.; Lee, K.B.; Han, S.Y.; et al. Blood-brain barrier-permeable fluorone-labeled dieckols acting as neuronal ER stress signaling inhibitors. Biomaterials 2015, 61, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Paudel, P.; Seong, S.H.; Wu, S.; Park, S.; Jung, H.A.; Choi, J.S. Eckol as a potential therapeutic against neurodegenerative diseases targeting dopamine D3/D4 receptors. Mar. Drugs 2019, 17, 108. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ren, D.D.; Wu, Z.; Zhi, L.C.; Liang, X.Y.; Li, S.T.; Jiang, X. Research progress on polyphenols and its application in aquatic products preservation. J. Food Saf. Qual. 2019, 10, 7200–7206. (In Chinese) [Google Scholar]
- Kim, H.J.; Dasagrandhi, C.; Kim, S.H.; Kim, B.G.; Eom, S.H.; Kim, Y.M. In vitro antibacterial activity of phlorotannins from edible brown algae, Eisenia bicyclis against streptomycin-resistant Listeria monocytogenes. Indian, J. Microbiol. 2018, 58, 105–108. [Google Scholar] [CrossRef]
- Lopes, G.; Pinto, E.; Andrade, P.B.; Valentao, P. Antifungal activity of phlorotannins against dermatophytes and yeasts: Approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS ONE 2013, 8, e72203. [Google Scholar] [CrossRef]
- Gao, F.Y.; Wu, H.Q.; Gao, X.J.; Cao, L.X.; Zhou, Y.; Yan, P.S. Research progress on hypotensive activity of macroalgae. Food Res. Dev. 2019, 40, 210–217. [Google Scholar]
- Ko, S.C.; Kang, M.C.; Kang, N.; Kim, H.S.; Lee, S.H.; Ahn, G.; Jung, W.K.; Jeon, Y.J. Effect of angiotensin I-converting enzyme (ACE) inhibition and nitric oxide (NO) production of 6,6′-bieckol, a marine algal polyphenol and its anti-hypertensive effect in spontaneously hypertensive rats. Process Biochem. 2017, 58, 326–332. [Google Scholar] [CrossRef]
- Yuan, X.; Yan, P.S. Research progress of brown algae hypoglycemic active substances. Food Res. Dev. 2021, 42, 215–219. (In Chinese) [Google Scholar]
- Gunathilaka, T.L.; Samarakoon, K.; Ranasinghe, P.; Peiris, L.D.C. Antidiabetic potential of marine brown algae-a mini review. J. Diabetes Res. 2020, 2020, 1230218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Jeon, Y.J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013, 86, 129–136. [Google Scholar] [CrossRef]
- Lee, H.A.; Lee, J.H.; Han, J.S. A phlorotannin constituent of Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice. Pharm. Biol. 2017, 5, 1149–1154. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.S.; Kim, J.Y.; Choi, W.H.; Lee, S.S. Effects of seaweed supplementation on blood glucose concentration, lipid profile, and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Nutr. Res. Pract. 2008, 2, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Shannon, E.; Abu-ghannam, N. Seaweeds as nutraceuticals for health and nutrition. Phycologia 2019, 58, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Kim, J.H.; Kwon, J.M.; Kwon, H.J.; Jeong, H.J.; Kim, Y.M.; Kim, D.; Lee, W.S.; Ryu, Y.B. Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg. Med. Chem. 2013, 21, 3730–3737. [Google Scholar] [CrossRef]
- Hage-Melim, L.I.D.S.; Federico, L.B.; de Oliveira, N.K.S.; Francisco, V.C.C.; Correia, L.C.; de Lima, H.B.; Gomes, S.Q.; Barcelos, M.P.; Francischini, I.A.G.; da Silva, C.H.T.P. Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19. Life Sci. 2020, 256, 117963. [Google Scholar] [CrossRef]
- Corona, G.; Ji, Y.; Anegboonlap, P.; Hotchkiss, S.; Gill, C.; Yaqoob, P.; Spencer, J.P.E.; Rowland, I. Gastrointestinal modifications and bioavailability of brown seaweed phlorotannins and effects on inflammatory markers. Br. J. Nutr. 2016, 115, 1240–1253. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selma, M.V.; Espin, J.C.; Tomas-Barberan, F.A. Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jung, Y.; Lee, E.; Jang, S.; Ryu, D.H.; Kwon, O.; Hwang, G.S. Urinary metabolomic profiling analysis and evaluation of the effect of Ecklonia cava extract intake. Nutrients 2020, 12, 1407. [Google Scholar] [CrossRef] [PubMed]
- Neto, R.T.; Marçal, C.; Queirós, A.S.; Abreu, H.; Silva, A.M.S.; Cardoso, S.M. Screening of Ulva rigida, Gracilaria sp.; Fucus vesiculosus and Saccharina latissima as functional ingredients. Int. J. Mol. Sci. 2018, 19, 2987. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.K.; Park, S.H.; Ha, K.C.; Noh, S.O.; Jung, S.J.; Chae, H.J.; Chae, S.W.; Park, T.S. Clinical trial of the hypolipidemic effects of a brown alga Ecklonia cava extract in patients with hypercholesterolemia. Int. J. Pharmacol. 2015, 11, 798–805. [Google Scholar] [CrossRef]
- André, R.; Pacheco, R.; Bourbon, M.; Serralheiro, M.L. Brown algae potential as a functional food against hypercholesterolemia: Review. Foods 2021, 10, 234. [Google Scholar] [CrossRef]
- Yoon, N.Y.; Kim, H.R.; Chung, H.Y.; Choi, J.S. Anti-hyperlipidemic effect of an edible brown algae, Ecklonia stolonifera, and its constituents on poloxamer 407-induced hyperlipidemic and cholesterol-fed rats. Arch. Pharm. Res. 2008, 31, 1564–1571. [Google Scholar] [CrossRef]
- Lee, D.H.; Park, M.Y.; Shim, B.J.; Youn, H.J.; Hwang, H.J.; Shin, H.C.; Jeon, H.K. Effects of Ecklonia cava polyphenol in individuals with hypercholesterolemia: A pilot study. J. Med. Food 2012, 15, 1038–1044. [Google Scholar] [CrossRef]
- André, R.; Guedes, L.; Melo, R.; Ascensão, L.; Pacheco, R.; Vaz, P.D.; Serralheiro, M.L. Effect of food preparations on in vitro bioactivities and chemical components of Fucus vesiculosus. Foods 2020, 9, 955. [Google Scholar] [CrossRef]
- Yeo, A.R.; Lee, J.; Tae, I.H.; Park, S.R.; Cho, Y.H.; Lee, B.H.; Shin, H.C.; Kim, S.H.; Yoo, Y.C. Anti-hyperlipidemic effect of polyphenol extract (Seapolynol™) and dieckol isolated from Ecklonia cava in in vivo and in vitro models. Prev. Nutr. Food Sci. 2012, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Jeong, S.M.; Park, W.P.; Nam, K.C.; Ahn, D.U.; Lee, S.C. Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chem. 2006, 97, 472–479. [Google Scholar] [CrossRef]
- Rajan, V.K.; Muraleedharan, K. Computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, gallic acid. Food Chem. 2017, 220, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.J.; Lou, Q.X.; Wu, Z.Z.; Cui, Y.J. Determination of vicinal phenolic hydroxyl in brown algal polyphenol. Mar. Sci. 2000, 24, 3–5. (In Chinese) [Google Scholar]
- Zhou, B.D.; Zeng, L.L.; Hu, D.B. Study on antioxidant activity of natural phenolic compounds about phloretin and phlorizin by DFT method. J. Mol. Sci. 2018, 34, 517–520. (In Chinese) [Google Scholar]
- Yuan, S.; Duan, Z.; Lu, Y.; Ma, X.; Ouyang, P. Research progress on polyphenolic compounds and their antioxidant activities of brown algae. Food Ferment. Ind. 2019, 45, 274–281. (In Chinese) [Google Scholar]
- Meng, T. Effect of Saccharina japonica Aresch Phenolic Extracts on the Edible Quality and Oxidative Stability of Pork Sausage; Shanghai Ocean University: Shanghai, China, 2015. (In Chinese) [Google Scholar]
- Andrade, P.B.; Barbosa, M.; Matos, R.P.; Lopes, G.; Vinholes, J.; Mouga, T.; Valentão, P. Valuable compounds in macroalgae extracts. Food Chem. 2013, 138, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Surendhiran, D.; Cui, H.; Lin, L. Encapsulation of phlorotannin in alginate/PEO blended nanofibers to preserve chicken meat from Salmonella contaminations. Food Packag. Shelf. 2019, 21, 100346. [Google Scholar] [CrossRef]
- Shi, J.R. Preparation of Chitosan Based Phlorotannins Edible Films and the Application on Scophthalmus maximus Shelf-Life Extending during Refrigerated Storage; Shanghai Ocean University: Shanghai, China, 2018. (In Chinese) [Google Scholar]
- Sharifian, S.; Shabanpour, B.; Taheri, A.; Kordjazi, M. Effect of phlorotannins on melanosis and quality changes of Pacific white shrimp (Litopenaeus vannamei) during iced storage. Food Chem. 2019, 298, 124980. [Google Scholar] [CrossRef]
- Yu, S.; Duan, M.; Sun, J.; Jiang, H.; Zhao, J.; Tong, C.; Pang, J.; Wu, C. Immobilization of phlorotannins on nanochitin: A novel biopreservative for refrigerated sea bass (Lateolabrax japonicus) fillets. Int. J. Biol. Macromol. 2022, 200, 626–634. [Google Scholar] [CrossRef]
- Cui, H.; Yang, X.; Abdel-Samie, M.A.; Lin, L. Cold plasma treated phlorotannin/Momordica charantia polysaccharide nanofiber for active food packaging. Carbohydr. Polym. 2020, 239, 116214. [Google Scholar] [CrossRef]
- Ravikumar, S.; Ali, M.S.; Beula, J.M. Mosquito larvicidal efficacy of seaweed extracts against dengue vector of Aedes aegypti. Asian Pac. J. Trop. Biol. 2011, 1, S143–S146. [Google Scholar]
- Manilal, A.; Thajuddin, N.; Selvin, J.; Idhayadhulla, A.; Kumar, R.S.; Sujith, S. In vitro mosquito larvicidal activity of marine algae against the human vectors, Culex quinquefasciatus (Say) and Aedes aegypti (Linnaeus) (Diptera: Culicidae). Int. J. Zool. Res. 2011, 7, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Birrell, C.L.; McCook, L.J.; Willis, B.L.; Harrington, L. Chemical effects of macroalgae on larval settlement of the broadcast spawning coral. Mar. Ecol. Prog. Ser. 2008, 362, 129–137. [Google Scholar] [CrossRef]
- Videira, I.F.; Moura, D.F.; Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 2013, 88, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.S.; Kim, H.R.; Byun, D.S.; Son, B.W.; Nam, T.J.; Choi, J.S. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pharm. Res. 2004, 27, 1226–1232. [Google Scholar] [CrossRef]
- Novak, N.; Bieber, T. Allergic and nonallergic forms of atopic diseases. J. Allergy Clin. Immunol. 2003, 112, 252–262. [Google Scholar] [CrossRef]
- Kim, S.; Choi, S.I.; Kim, G.H.; Imm, J.Y. Anti-inflammatory effect of Ecklonia cava extract on Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages and a periodontitis rat model. Nutrients 2019, 11, 1143. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, Y.; Matsuda, K.; Yamada, Y.; Nishikawa, M.; Shioya, K.; Katsuzaki, H.; Imai, K.; Amano, H. Isolation of a new anti-allergic phlorotannins, phlorofucofuroeckol-B, from an edible brown alga, Eisenia arborea. Biosci. Biotechnol. Biochem. 2006, 70, 2807–2811. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.V.; Manivasagan, P.; Kim, S.K. Potential matrix metalloproteinase inhibitors from edible marine algae: A review. Environ. Toxicol. Pharmacol. 2014, 37, 1090–1100. [Google Scholar] [CrossRef]
- Thomas, N.V.; Kim, S.K. Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 2013, 11, 146–164. [Google Scholar] [CrossRef] [Green Version]
- Joe, M.J.; Kim, S.N.; Choi, H.Y.; Shin, W.S.; Park, G.M.; Kang, D.W.; Kim, Y.K. The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-1 in human dermal fibroblasts. Biol. Pharm. Bull. 2006, 29, 1735–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creis, E.; Delage, L.; Charton, S.; Goulitquer, S.; Leblanc, C.; Potin, P.; Ar Gall, E. Constitutive or inducible protective mechanisms against UV-B radiation in the brown alga Fucus vesiculosus? A study of gene expression and phlorotannin content responses. PLoS ONE 2015, 10, e0128003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesser, M.P. Acclimation of phytoplankton to UV-B radiation: Oxidative stress and photoinhibition of photosynthesis are not prevented by UV- absorbing compounds in the dinoflagellate Prorocentrum micans. Mar. Ecol. Prog. Ser. 1996, 132, 287–297. [Google Scholar] [CrossRef]
- Pavia, H.; Cervin, G. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 1997, 157, 139–146. [Google Scholar] [CrossRef]
- Henry, B.E.; Van Alstyne, K.L. Effects of UV radiation on growth and phlorotannins in Fucus gardneri (Phaeophyceae) juveniles and embryos. J. Phycol. 2004, 40, 527–533. [Google Scholar] [CrossRef]
- Gómez, I.; Huovinen, P. Induction of phlorotannins during UV exposure mitigates inhibition of photosynthesis and DNA damage in the kelp Lessonia nigrescens. Photochem. Photobiol. 2010, 86, 1056–1063. [Google Scholar] [CrossRef]
- Soleimani, S.; Yousefzadi, M.; Nezhad, S.B.M.; Pozharitskaya, O.N.; Shikov, A.N. Evaluation of fractions extracted from Polycladia myrica: Biological activities, UVR protective effect, and stability of cream formulation based on it. J. Appl. Phycol. 2022, 34, 1763–1777. [Google Scholar] [CrossRef]
Seaweed Type | State of the Seaweed (Wet/Dry/Particle Size) | Organic Solvents Used | Solvent–Seaweed Ratio/Temperature(°C)/Time (min)/Microwave Output Power(w) | Yield | Application of the Extract | Reference |
---|---|---|---|---|---|---|
Sargassum swartzii | Moisture content was less than 10%; grinding and cryopreservation at 4 °C | Ethanol concentration of 52% | 33:1/-/65 min/613 w | 27.88 ± 0.13 mg/g | Potential antioxidant | [30] |
Carpophyllum flexuosum | Dried (oven, 60 °C, 24 h) and milled to 1 mm and stored at −20 °C in vacuum-sealed bags | Water | 30:1/160 °C/3 min/- | 11.4% (PGE, % of DW) | - | [16] |
Carpophyllum flexuosum | Powder through a 1.0 mm sieve stored at −20 °C in sealed bags | Milli-Q water | 30:1/160 °C/3 min/- | 15.8 ± 0.3 (PGE % of DW) | Antioxidant activities | [18] |
Carpophyllum plumosum | 9.2 ± 0.6 (PGE % of DW) | |||||
Ecklonia radiata | 2.0 ± 0.1 (PGE % of DW) | |||||
Fucus vesiculosus | Particles lower than 0.8 mm; stored under vacuum (75%) at −20 °C | 57% (v/v) ethanol | 10:1/75 °C/5 min/- | 9.8 ± 1.8 mg/g | Potential antioxidant | [31] |
Saccharina japonica | Dried powder through a 40-mesh sieve | 55% ethanol | 8:1/60 °C/25 min/400 W | 0.585 mg PGE/g DW | Inhibition of HepG2 cancer cells | [32] |
Polysiphonia, Ulva and Cladophora (mixed) | Through a 0.25-mm sieve, and dried in an oven at 45 °C | Milli-Q water | 3:1/25 °C/30 min/1000 w | 544 mg/L | Antibacterial properties | [33] |
Ascophyllum nodosum | / | Methanol: water (70:30) | 10:1/110 °C/15 min/- | / | α-glucosidase inhibitory activity, DPPH, ABTS scavenging ability | [34] |
Seaweed Type | State of the Seaweed (Wet/Dry/Particle Size) | Organic Solvents Used | Solvent–Seaweed Ratio/Flow Rate/Co-solvent/Pressure/Temperature | Yield | Application of the Extract | Reference |
---|---|---|---|---|---|---|
Undaria pinnatifida | Powder | Ethanol modified CO2 | 2 mLmin−1/ethanol/250 bar/333 k | 800 μg/g | - | [41] |
Sargassum muticum | comminuted (<0.5 mm) | Pure scCO2 | 25 g CO2 min−1/10% methanol/20 MPa/50°C/1 h | 4% of the dry weight | Anti-browning activity on B16F10 murine cells and inhibition of lipogenesis in SW872 liposarcoma cells | [42] |
Saccharina japonica | Dried at 80 °C for 72 h and sifted through a 710-mesh sieve | Supercritical carbon dioxide (SC-CO2) | 1:1/27 gmin−1/2.00% Sunflower Oil (SFO) and water/300 bar/48.98 °C/2 h | 0.927 ± 0.026 mg/g | Antioxidant activities | [43] |
Undaria pinnatifida Laminaria digitata | Powder | Supercritical carbon dioxide | 34 kg CO2h−1/-/37.9 MPa/50°C/- | / | Against fruit post-harvest fungal diseases | [44] |
NO. | Bioactivity | Reference | Mechanism of Action | Significant Findings |
---|---|---|---|---|
1 | Antioxidant activity | [71] | Radical scavenging activity | Phlorotannins from marine algae, including Ecklonia cava, have been shown to protect cells from radiation-induced injury as well as oxidative stress. |
2 | Anti- inflammatory activity | [72,73] | Direct scavenging nitric oxide (NO); Decreasing NO production through the inflammatory signaling cascade and inhibiting the enzymes involved in NO production. | Phlorotannins were found to inhibit TNF-α, IL-1β and PGE2 production at the protein levels. The anti-inflammatory properties of our compounds are related to the downregulation of proinflammatory enzymes, NOS and COX-2, through the negative regulation of the NF-κB pathway in Aβ25–35-stimulated PC12 cells. |
3 | Antibacterial activity | [74,75] | Block dimorphic complexes, resulting in the appearance of pseudo hyphae with decreasing surface adhesive properties. Decrease the virulence and capacity to invade fungal host cells; Induced reactive oxygen species (ROS) production and triggered early apoptosis, resulting in the activation of the meta-caspase CaMca1 and membrane disruption. | Phlorotannins from brown seaweeds show antifungal activity against dermal and plant fungi, and larvicidal activity against mosquitos and marine invertebrate larvae. Phlorotannins can reduce P. aeruginosa inflicted mortality in Caenorhabditis elegans. |
4 | Anti-tumor activity | [76,77] | Cytotoxicity; Apoptotic activity; Anti-proliferative; Reduces pro-apoptotic molecules; Carcinogenesis reduction. | F. vesiculosus samples exert specific cytotoxicity against tumor cell lines without affecting the viability of normal cells. Moreover, it was found that, among the nine different phlorotannin fractions tested, F5 (in presence of eckstolonol and phlorofucofuroeckol-A) was the most active against both Caco-2 colorectal and MKN-28 gastric cancer cells, inducing death via activation of both apoptosis and necrosis. The brown algae extract inhibited the alterations of F-actin arrangement and the downregulation of E-cadherin expression. |
5 | Antiviral activity | [78] | Growth inhibition | Among the twenty phlorotannins studied, eckol hexacetate, phlorofucofuroeckol, fucofuroeckol, and bifuhalol-hexacetate showed significant binding affinities across the selected targets. Phlorotannins could be therapeutic candidates against SARS-CoV-2. |
6 | Anti-allergic effects | [79,80] | Via inhibition of FcεRI expression; Inhibition of calcium influx; Inhibition of mast cell degranulation. | Extracts were able to act upon cellular events triggered by immunological reaction (IgE/antigen), and on cellular events downstream the Ca2+ influx caused by a chemical stimulus (calcium ionophore A23187), preventing degranulation of RBL-2H3 cells. Furthermore, a dose-dependent behavior towards allergy-related enzymatic systems was observed for all the phlorotannin extracts. The three phlorotannins isolated from S. carpophyllum, 2-[2-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy]-1,3,5-benzenetriol (1), 2,2’-[[2-(3,5-dihydroxyphenoxy)-5-hydroxy-1,3-phenylene]bis(oxy)]bis(1,3,5-benzenetriol) (2), and 2-[2-[4-[2-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy]-3,5-dihydroxyphenoxy]-3,5-dihydroxyphenoxy]-1,3,5-benzenetriol (3), which have a simple phloroglucinol polymer structure, inhibit β-hexosaminidase, PGD2, and TNF-α secretion from DNP-HSA-stimulated RBL-2H3 cells. These compounds likely regulate phosphorylation in the IκB-proteasome 20S pathway. Fuhalol-type phlorotannins appear to exhibit multiple antiallergic effects, such as affecting proteasome, ROS production and secretion mechanisms. |
7 | Anti-Tyrosinase activity | [81,82] | Reduce the cellular melanin content and tyrosinase activity; Downregulate the expression of melanogenesis enzymes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 in B16F10 melanoma cells. | 974-A was demonstrated for the first time to be a potent competitive inhibitor of mushroom tyrosinase activity towards l-tyrosine and l-DOPA (IC50 values = 1.57 ± 0.08 and 3.56 ± 0.22 µM, respectively). Compounds isolated from the marine seaweed E. stolonifera (974-A, phlorofucofuroeckol-A, and eckol) could be used as tyrosinase inhibitors and be further explored in the cosmetic and agricultural fields. Molecular structures of phlorotannins strongly affect their tyrosinase inhibitory activity. |
8 | Anti-diabetic activity | [83,84] | Decrease serum glucose level, serum total cholesterol, total triglyceride, liver malondialdehyde, and activities of both of α-amylase and glucosidase; Increase serum insulin, hepatic glutathione, and total antioxidant capacity; Reduced damage in β cells of pancreases. | Phlorotannins that isolated from Cystoseira compressa and applied to the diabetic rats with a dose of 60 mg/kg of phlorotannin extract caused a significant boost in catalase activity. The phenolic extract exhibited a half maximal inhibitory concentration (IC50) of α-amylase (47.2 ± 2.9 μg) and α-glucosidase (28.8 ± 2.3 μg) inhibitory activities. |
9 | Angiotensin I-converting enzyme (ACE) inhibitory activity | [85] | Combine with the ACE molecule but not with the active site. Form covalent bonds with proteins; The protein precipitation ability of phlorotannins varies in a pH-dependent and concentration-dependent manner. | Dieckol was the potent ACE inhibitor and was found to be a non-competitive inhibitor against ACE according to Lineweaver-Burk plots. Dieckol had an inducible effect on the production of NO in EAhy926 cells without having cytotoxic effect. |
10 | Hepatoprotective effects | [86,87] | Exhibiting the protective effect on liver cells injured by tert-butyl hyperoxide(t-BHP). The dieckol-rich extract could prevent hepatotoxic of ethanol, decrease content of the malondialdehyde (MDA) and efficacy on the antioxidant defense system in mice. | The liver injury induced by intake of ethanol is associated with oxidative stress. Our results indicated that dieckol-rich phlorotannins (DRP) could reduce the ethanol induced liver injury in vivo through reducing the total cholesterol, inhibition of reactive oxygen species (ROS) generation and reduction of MDA formation. This hepatoprotective effect should due to the presence of bioactive compounds in the DRP. In addition, this study indicated that intake of DRP could be beneficial to the human health. |
11 | Neuroprotective effects | [2,88] | Multitarget ligands promoting; Modulate the activity of CNS enzymes and neuronal receptors; Regulating signaling pathways linked to oxidative stress-mediated neuronal cell death and neuroinflammation; Ameliorate the Aβ formation by modulating α-and γ-secretase expression and inhibiting Aβ-induced neurotoxicity. | Three major phlorotannins of E. cava-eckol, dieckol, and 8, 8‘-bieckol exhibited anti-apoptotic and anti-neuroinflammatory properties against Aβ-induced cellular damage. |
12 | Prebiotic effect | [89] | Enhance the levels of propionate and butyrate, which are two important short-chain fatty acids known for their role in intestinal homeostasis. | Phlorotannins from F. vesiculosus can positively contribute to the maintenance of a healthy gastrointestinal condition. |
13 | Anti- adipogenesis activity | [90,91] | Inhibit adipocyte differentiation and lipid formation/accumulation in 3T3-L1 fibroblasts. | Phlorotannins inhibited adipocyte differentiation by suppressing peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer-binding proteins (C/EBPs) expression. These phlorotannins are promising candidates for the management of obesity. Anti-adipogenesis effect of phlorotannins at the concentration of 20 µM was observed by reduced lipid accumulation and the suppressed expression of lipogenic differentiation markers. |
14 | Laxative effects | [92] | Phlorotannins (Pt) treatment induces the recovery of stool parameters, GI transit, histopathological and cytological alterations, GI hormone concentrations and the mAChR signaling pathway in SD rats with loperamide (Lop)-induced constipation. | The laxative effects of Pt are associated with alterations of the fecal microbiota profile of SD rats with Lop-induced constipation. Pt compounds derived from E. cava are potential therapeutic candidates for the treatment of constipation. |
15 | Sedative–hypnotics | [93] | Promote non-rapid eye movement sleep in mice via the benzodiazepine (BZD) site of the GABAA receptor; Produce a significant decrease in sleep latency and an increase in the amount of non-rapid eye movement sleep (NREMS). | The major phlorotannin constituent eckstolonol showed sleep-promoting effects via the BZD site of the GABAA receptor. Phlorotannin preparation (PRT) decreased the mean duration of wake episodes and increased the total number of wake and NREMS bouts. These results clearly indicate that PRT inhibited the maintenance of wake. |
16 | Potential natural muscle building supplements | [94] | Downregulating the Smad-signaling, a negative regulator; Upregulating the insulin-like growth factor-1 (IGF-1) signaling, a positive regulator. | Of the six phlorotannin isolates evaluated, dieckol (DK) and 2,7”-phloroglucinol-6,6′-bieckol (PHB) induced the highest degree of C2C12 myoblast proliferation. DK and PHB bind strongly to myostatin, which is an inhibitor of myoblast proliferation, while also binding to IGF-1 receptors. DK and PHB are potential natural muscle building supplements and could be a safer alternative to synthetic drugs. |
Name | Advantages | Disadvantages |
---|---|---|
Chitosan | Non-toxic, biocompatible, biodegradable, non-allergenic. Parenteral and mucosal administrations. Controlled antigen release. Mucosal administration elicits robust antibody and T-cell responses. | Poor reproducibility of the results due to the variability of the chemical structure. Poor solubility above pH 6. |
Fucoidans | Almost complete absence of toxicity, safety and excellent biocompatibility. Regulation of cellular and humoral immunity as well as hematopoietic mobilization. Potentiation of the function of immune cells. Anti-cancer effect. | Difficulties with obtaining structurally characterized and homogeneous samples or oligomeric fractions. |
Carrageenans | No adverse side effects at intranasal use. An activation of macrophages. Induction of the generation of pro-inflammatory cytokines. Significant ability to enhance antigen specific immune responses as well as antitumor effects. | Limited solubility. Anticoagulant properties. Prolonged oral administration can lead to the development of inflammation of the gastrointestinal tract. |
Alginate | Non-toxic, biocompatible, biodegradable. Mucoadhesive nature and a relatively low cost. Stimulation of Th1 response and production of specific antibodies. Anti-cancer and anti-allergic properties. An ability to form hydrogel microspheres and nanospheres which possess higher immunostimulatory effect. | Variable chemical structures. |
MF59® (Composed of squalene) | Compared to aluminum salts, MF59® causes stronger immune response, stimulating both antibody production and T-cell immune response. | Reactogenicity. Pain at injection site. Induces inflammatory arthritis |
AS03 (Composed of the same percentage of squalene and DL-α-tocopherol) | The strong stimulation of both antibody production and Th1 and Th2 immune response. | An association between the AS03-adjuvanted Pandemrix vaccine and narcolepsy cannot yet be excluded |
Composition of Participants | Extract | Raw Material | The Amount of Administration Given | Effect | Toxic Side Effects | Reference |
---|---|---|---|---|---|---|
Twenty-three participants (11 men, and 12 women) aged 19–59 years | Crude extract | Ascophyllum nodosum and Fucus vesiculosus | Oral, 1 capsule/day, treatment during 1 week, (250 mg/capsule) | Reduces insulin levels | No side effect | [103] |
Twenty-four participants | Dieckol | Ecklonia cava | Oral, 2 capsules/day, treatment during 1 week (500 mg/capsule) | Promotes sleep | No serious adverse effects | [104] |
Eighty participants aged 30–65 years | Crude extract | Ascophyllum nodosum | Oral, 1 capsule/day, treatment during 8 weeks (100 mg/capsule) | Reduces DNA damage | No side effect | [105] |
107 participants (138 men, and 69 women) aged 19–55 years | Crude extract | Ecklonia cava | Oral, 1 capsule/day, treatment during 12 weeks (72 mg/capsule and 144 mg/capsule) | Anti-obesity potential | No side effect | [106] |
Brown Seaweeds | Excipients | Formulation | Fresh-Keeping Effect | Reference |
---|---|---|---|---|
Phlorotannins from Sargassum tenerimum | - | 5% phlorotannins | A 4-days’ increase in the shelf-life of shrimp. | [151] |
Phlorotannins (purity is 90%) extracted from kelp | Chitin (NCh, degree of acetylation: 90%) | 1.5 g/kg NCh-phlorotannins | Sea bass fillets had lower bacterial growth, pH, TVB-N and TBA as well as better characteristics of texture, color and WHC than those of the control group during refrigerated storage. | [152] |
Phlorotannin (Ph, puchased) | Sodium alginate (SA) poly(ethyleneoxide) (PEO) blended nanofibers | 50:50:10 (SA/PEO/Ph) | Significantly increased the shelf life of chicken without altering their sensory quality. | [149] |
Phlorotannin | Momordica charantia polysaccharide (MCP) | Phlorotannin (PT) was encapsulated in MCP nanofibers | After cold plasma treatment, the release efficiency of PT from the nanofibers was enhanced by 23.5% (4 °C) and 25% (25 °C), respectively. Correspondingly, both antibacterial and anti-oxidant activities of PT/MCP nanofibers were markedly improved. | [153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Zhao, Y.; Guo, L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar. Drugs 2022, 20, 742. https://doi.org/10.3390/md20120742
Zheng H, Zhao Y, Guo L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Marine Drugs. 2022; 20(12):742. https://doi.org/10.3390/md20120742
Chicago/Turabian StyleZheng, Hongli, Yanan Zhao, and Lei Guo. 2022. "A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins" Marine Drugs 20, no. 12: 742. https://doi.org/10.3390/md20120742
APA StyleZheng, H., Zhao, Y., & Guo, L. (2022). A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Marine Drugs, 20(12), 742. https://doi.org/10.3390/md20120742