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Abstract: Insomnia is a common sleep disorder. Natural sleep aids are gaining worldwide popu-
larity as alternatives to prescription drugs for improving sleep. Recently, numerous studies have
investigated the sedative–hypnotic effects of the polyphenols of terrestrial plants. The hypnotic
effects of marine polyphenols have also been studied in recent years. Phlorotannins are marine
polyphenols that are found only in brown algae. Phlorotannins exert sedative–hypnotic effects via
the gamma-aminobutyric acid type A-benzodiazepine receptor. In addition, the brown seaweed
Ecklonia cava supplement containing phlorotannins has been approved by the Ministry of Food
and Drug Safety as a health-functional ingredient that helps improve sleep quality. Currently, it is
meaningful to deal with the sedative–hypnotic effects of phlorotannins as natural sleep aids. The
current review comprehensively presents the sedative–hypnotic effects in animal models and human
clinical trials as well as their mechanism of action, extraction, purification, and safety.

Keywords: phlorotannin; marine polyphenol; sleep; insomnia; GABAergic mechanism

1. Introduction

Polyphenols are one of the most common classes of secondary metabolites found in
terrestrial and marine plants [1]. Polyphenols from terrestrial plants and marine algae have
different chemical structures [2]. Phlorotannins are a major polyphenolic class found only
in brown algae, whereas red and green algae contain the most phenolic compounds, such
as flavonoids, phenolic acids, and bromophenols [3]. Phlorotannins are oligomers and
polymers of the monomeric unit phloroglucinol (1,3,5-tri-hydroxybenzene) with molecular
weights in the range of 250–1738 Da [4,5]. They are an extremely diverse group, and
individual phlorotannin compounds are structurally similar [5]. To date, approximately
150 phlorotannins have been isolated from various brown seaweeds [6,7].

In the last three decades, phlorotannins have been extensively investigated and shown
to possess various biological properties including antioxidative, antidiabetic, anti-aging, anti-
inflammatory, anti-allergic, neuroprotective, and memory-enhancing properties [7–16]. How-
ever, the sedative–hypnotic effects of phlorotannins have only recently been studied [4,17–19]. It
has been demonstrated that phlorotannins from brown seaweeds have hypnotic effects in
in vitro and in vivo studies as well as in clinical trials. Studies on the hypnotic effects of
phlorotannins have shown their characteristics as agonists for gamma-aminobutyric acid type
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A (GABAA)-benzodiazepine (BZD) receptors. Several researchers have reviewed the biologi-
cal properties of marine polyphenol phlorotannins; however, their hypnotic effects have not
been reviewed.

Sleep deprivation and disorders, such as insomnia, are now associated with numerous
serious health problems and are appraised as emerging global epidemics that cause social
and financial burdens [20]. As insomnia becomes more common, herbal sleep aids are
gaining popularity worldwide as alternatives to prescription drugs to treat insomnia or im-
prove sleep quality [21,22]. Most sedative–hypnotic drugs have numerous side effects, such
as impairment of memory, cognitive function, and general daytime performance; therefore,
their use is generally not recommended beyond 4 weeks [23,24]. In addition, long-term
administration typically results in dependence and tolerance [25]. Thus, sedative–hypnotic
effects of herbal plants or their phytochemicals have been widely reported, such as valerian
(Valeriana officinalis), St. John’s wort (Hypericum perforatum), kava kava (Piper methysticum),
passion flower (Passiflora incarnata), and hops (Humulus lupulus) [19,24]. Although numer-
ous studies have been conducted on the hypnotic effects of herbal plants, few studies have
investigated marine polyphenol phlorotannins. Currently, it is noteworthy to mention the
sedative–hypnotic effects of the marine polyphenol phlorotannins. This review aims to
present the extraction, purification, safety, sedative–hypnotic effects, and mechanism of
action of phlorotannins.

2. Extraction and Purification of Phlorotannins

Phlorotannins from brown seaweeds have been extracted using traditional extraction
techniques (Soxhlet, solid–liquid, and liquid–liquid extractions), enzymatic hydrolysis, and
solvent extraction [26,27]. Currently, the solvents used in extraction methods should be
non-toxic and inexpensive [28]. Ethanol extraction is the preferred method in the food
industry because of its safety for human consumption, the convenience of processing,
and low cost [29]. The correct selection of the extraction solvent, solvent concentration,
temperature, and time are variables that directly influence the yield of biologically active
compounds. To determine the scale-up, it is important to alter different parameters to
optimize the extraction process [30]. One of the most consistent multivariate techniques
in analytical optimization is response surface methodology [31]. According to a report by
Yoon et al. [26], in which the sedative–hypnotic compound was extracted from Ecklonia cava,
the active total phlorotannin content, yield of phlorotannins, and sleep duration were in-
dependent variables [26]. Sleep duration and total phlorotannin content were highly
correlated (R2 = 0.9102), and the optimal conditions for extraction time, extraction tem-
perature, and ethanol concentration were 22.8 h, 80 ◦C, and 95.0%, respectively [26]. The
optimal conditions for the yield of phlorotannins were 24.0 h extraction time, 80 ◦C, and
88.3% humidity. There were several differences between the hypnotic effect under opti-
mal conditions and the sleep effect under other conditions. Following optimization, the
total phlorotannins and yield of phlorotannins were approximately 570 mg phloroglucinol
equivalents per gram (mg PGE/g) and 7.5%, respectively, which were 1.8- and 1.5-fold
higher than the 315.4 mg PGE/g and 4.9% obtained under the conditions that showed the
lowest results.

Brown algae products are considered a major safety concern for arsenic [32]. In
particular, brown algae have the highest arsenic concentration, whereas red and green
algae have phlorotannin-chelating activity [33]. According to the Ministry of Food and
Drug Safety (MFDS), the acceptable daily intake (ADI) of arsenic is 150 µg for a person
weighing 60 kg. High arsenic intake can cause numerous health concerns, including skin
and lung cancers [34], hyperkeratosis [35], diabetes [36,37], and vascular diseases [38]. In
2014, Kim et al. [39] reported that 1 g of crude phlorotannin extract included 180 µg arsenic.
These results show that, according to the MFDS, the crude phlorotannin extract exceeded the
ADI of arsenic. Several efforts have been made to reduce arsenic through purification [40].
Macroporous adsorption resins have been extensively used to purify phytochemicals
and bioactive compounds from food and plant extracts due to their high adsorption
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capacity, easy recyclability, and various functional groups [41]. These resins can be used
for the absorption of organic constituents because of their weak polar and hydrophobic
properties [42]. A previous study showed that the arsenic content of the final phlorotannin
product was 48 µg/g, which was 3.75-fold lower than that of the crude phlorotannin extract
purified using HP-20 resin [39]. These results suggest that the purification of phlorotannins
using HP-20 resin is effective for arsenic removal.

3. Safety and Toxicity of Phlorotannins
3.1. In Vitro

In human and animal cell lines, such as human epidermal (HaCaT), Henrietta Lacks
(HeLa), human colon adenocarcinoma (Caco-2), highly tumorigenic (HT1080), HepG2,
B16F10 melanoma, KU812, RBL-2H3, MRC-5, HT-29, human fibroblast cells, and rat vibris-
sae immortalized dermal papilla cell line [43–57], phlorotannins decreased the generation
of reactive oxygen species (ROS), malondialdehyde levels, deoxyribonucleic acid (DNA)
damage, and ultraviolet B (UVB) radiation-induced damage. In addition to these activities,
phlorotannins also reduce binding between immunoglobulin E (IgE) and the high-affinity
IgE receptor as well as the expression of several genes, including tumor necrosis factor
alpha, interleukin-1β (IL-1β), IL-6, IL-8β expression, prostaglandin E2 (PGE2) release,
cyclooxygenase 1 (COX-1), COX-2, microsomal prostaglandin E synthase-1 (mPGES-1),
nuclear factor-kappa B, activator protein-1 reporter, the mitogen-activated protein kinase
(MAPK) signaling pathway, and melanin synthesis. Moreover, phlorotannins have been
reported to inhibit the growth of HeLa, A549, HT1080, and HT29 tumor cells. Phlorotannins
also inhibit 5-reductase activity and increase cell viability and glutathione concentration.
Notably, to the best of our knowledge, studies have reported that phlorotannins exhibit
biological activities without toxicity in human and animal cell lines.

3.2. In Vivo

In animals, the safety and toxicity of phlorotannins have been evaluated in fish,
such as seabream (Pagrus major), tiger puffer (Fugu rubripes) [58], zebrafish (Danio rerio)
embryos [59], and zebrafish [60]; in rodents, such as Institute of Cancer Research (ICR)
mice [60,61], HR-1 hairless male mice [46], and Sprague–Dawley (SD) rats [61,62]; and in
Beagle dogs [63]. In fish, phlorotannins reduced ROS levels, cell death, generation of thio-
barbituric acid reactive substances, and adipogenic factors, such as peroxisome proliferator-
activated receptors (PPAR), CCAAT-enhancer-binding proteins (C/EBP), fatty acid-binding
protein 11a (FABP11a), and sterol regulatory element-binding factor-1 (SREBF-1) with mi-
nor side effects including writhing and gasping for several seconds (after which the fish
calmed down) and some discharged oral mucus. However, the survival rate of these fish
was 100% [58–60]. In rodents, phlorotannins reduce the final body weight, the high-fat
diet-induced elevation of liver fat, low-density lipoprotein cholesterol [60], lipid peroxida-
tion, protein carbonylation, epidermal height, and MAPK expression [46]. Phlorotannins
also increased the levels of plasma triglycerides, total cholesterol [60], and α-amylase to
the normal range [62] and increased the survival rate of rodents until the end of the exper-
iments. In Beagles, mild side effects such as soft stool and diarrhea were reported after
phlorotannin treatment. However, the survival rate of the Beagles was 100% at the end of
the treatment [63]. Further research is needed to confirm the potential for phlorotannins as
health-functional feed agents and in veterinary medicine for various animal species.

3.3. Clinical Human Studies

In humans, phlorotannins can be used as food supplements and functional food
ingredients. Phlorotannins have been reported to possess numerous advantages [64–66]
and mild side effects [64]. A study by Paradis et al. [66] found that phlorotannins isolated
from Fucus vesiculosus and Ascophyllum nodosum decreased the incremental areas under
the curve for plasma insulin, the post-load plasma insulin concentration, the plasma
glucose area under the curve, and the postprandial insulin concentration in 23 participants
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following treatment with 250 mg/capsule. Moreover, phlorotannins elevated the level of a
surrogate marker for insulin sensitivity in all participants.

A study by Baldrick et al. [65] reported that phlorotannins extracted from A. nodosum
decreased DNA damage and did not significantly improve C-reactive protein, antioxidant
status, or inflammatory cytokines in 80 participants between 30 and 65 years old following
administration of 100 mg/capsule for 8 weeks. Similarly, Shin et al. [64] reported that
phlorotannins isolated from E. cava decreased the total cholesterol/high-density lipopro-
tein cholesterol level, body fat ratio, atherogenic index, total cholesterol/low-density
lipoprotein cholesterol level, body mass index, waist circumference, and waist/hip ra-
tio in 107 participants (138 men and 69 women) following administration of 72 and 144
mg/capsule. In another study, phlorotannins successfully increased sleep duration scores
and inhibited the onset of wakefulness after sleep [67]. However, phlorotannins showed
no serious adverse effects, such as mild fatigue, dizziness, nausea, and abdominal disten-
sion [67]. The mechanisms of action of other classes of phlorotannins that have not been
tested should be further investigated to evaluate their potential as novel pharmaceutical
agents for humans.

3.4. The Regulation of Phlorotannins as Human Supplements

The European Food Safety Authority Panel on Dietetic Products, Nutrition, and
Allergies, pursuant to Regulation No. 258/97, announced that novel food supplements
from phlorotannins (marketed as SeaPolynolTM) are safe for human consumption [68].
The application of phlorotannins as food supplements and functional food ingredients was
reported by Turck et al. [68] and Catarino et al. [69]. As a food supplement, the daily intake
of phlorotannins depends on the age of the consumer. In adolescents (12–14 years of age),
the maximum daily intake was 163 mg/day. For those above 14 years of age and adults,
the daily intakes were 230 mg/day and 263 mg/day, respectively.

E. cava extract is the main ingredient of Seanol-F sold by Simply Healthy LLC. (Lean-
der, TX, USA) and was reported as a New Dietary Ingredient by the US Food and Drug
Administration (FDA) in 2008 [70]. Daily intake was 47 mg/day for those aged >12 years.
In 2015, the MFDS recognized E. cava extract (No. 2015-6) as a functional ingredient in
health-functional foods that helps improve sleep quality [71].

4. Sedative–Hypnotic Effects of Phlorotannins in Animal Models
4.1. Phlorotannin Preparations

Various phlorotannin preparations, including ethanol and enzymatic extracts, and pu-
rified phlorotannin supplements have been investigated to evaluate their sedative–hypnotic
effects [17,72,73]. Additionally, several solvent fractions from E. cava ethanol extracts have
been shown to have hypnotic effects [17]. Ethanol [17] and enzymatic [72] extracts de-
creased sleep latency and increased sleep duration, respectively, in a pentobarbital-induced
sleep test in mice. In a study by Cho et al. [73], phlorotannin supplementation with 90%
phlorotannin potentiated sleep induced by pentobarbital in a dose-dependent manner.
Among the solvent fractions (hexane, ethyl acetate, and butanol), the ethyl acetate fraction,
which was characterized as a polyphenol-rich fraction, showed the best hypnotic effect.
These results indicate that phlorotannins are responsible for the sedative–hypnotic effects
of brown seaweed extracts or phlorotannin supplementation.

The pentobarbital-induced sleep test is a well-known method to assess suspected
sedative–hypnotic activity [74,75] (Figure 1). However, it is difficult to identify only
pentobarbital-induced sleep tests because the hypnotic effects of compounds can be induced
by toxicity or other side effects [76]. In addition, this method only evaluates sleep quantity,
such as sleep latency and sleep duration. Meanwhile, an analysis of sleep structure based on
polygraphic recordings can verify sleep quality, including delta activity during non-rapid
eye movement sleep (NREMS), and sleep–wake profiles [77] (Figure 1) (Table 1).
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Figure 1. Schematic illustrations of (a) pentobarbital-induced sleep test and (b) polygraphic record-
ings. Abbreviations: p.o., post-oral injection; i.p., intraperitoneal injection; EEG, electroencephalo-
gram; EMG, electromyogram; FFT, fast Fourier transform.

Table 1. In vivo evaluation methods for assessing hypnotic effects.

Methods Pentobarbital-Induced Sleep Test Polygraphic Recordings

Animal ICR mice or SD rats C57BL/6N mice or SD rats

Measurements Righting reflex EEG and EMG

Evaluation markers Sleep latency, sleep duration, and sleep onset Sleep latency, amount of NREMS and REMS, delta
activity, sleep–wake episodes

Advantages Short assay time, possible to screen many samples Assessment of both sleep quantity and quality

Disadvantages Impossible to evaluate sleep quality Long assay time, high cost

Abbreviations: ICR, imprinting control region; SD, Sprague–Dawley; EEG, electroencephalogram; EMG, elec-
tromyogram; NREMS, non-rapid eye movement sleep; REMS, rapid eye movement sleep.
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In the polygraphic recordings, E. cava ethanol extract at 500 mg/kg significantly in-
creased the amount of NREMS by 71.4% during the first 2 h after oral administration [78].
In addition, phlorotannin supplementation at doses of 250 and 500 mg/kg significantly in-
creased the amount of NREMS 2 h immediately after oral administration [4]. The phlorotan-
nin supplement (500 mg/kg) showed sleep-promoting effects similar to those of diazepam
(6 mg/kg). However, while diazepam reduced the electroencephalogram (EEG) power
density of NREMS (frequency range, 0.5–4 Hz), phlorotannin supplementation did not
show any significant difference. These results suggest that phlorotannin supplementation
induces natural sleep without adverse effects following the onset of sleep [79].

Sedative–hypnotic effects can be evaluated using a caffeine-induced sleep disruption
model [8]. Caffeine promotes wakefulness by blocking the activation of the adenosine
A2A receptor [80,81]. Oral administration (500 mg/kg) of the phlorotannin supplement
attenuated caffeine (25 mg/kg)-induced sleep disruption, and its effects were comparable
to those of the hypnotic drug zolpidem (10 mg/kg). This result implies that phlorotannin
supplementation may be useful in relieving the transitory insomnia symptoms caused by
caffeine consumption.

4.2. Individual Phlorotannin Compounds

Phlorotannins are an extremely heterogeneous group, and approximately 150 differ-
ent phlorotannin compounds have been isolated from various brown seaweeds [6,7,82].
Among the phlorotannin constituents, the six major phlorotannins (dieckol, eckstolonol,
eckol, triphlorethol A, fucodiphlorethol G, and 6,6′-bieckol) were found to have sedative-
hypnotics (Figure 2) [4]. All six phlorotannin compounds (50 mg/kg) significantly increased
the sleep duration in mice treated with a hypnotic dose of pentobarbital (Table 2).

Table 2. Results from the pentobarbital-induced sleep test and polygraphic recordings studies on
individual constituents of phlorotannins.

Compound Methods (Dose) and Activities

Eckol Pentobarbital-induced sleep test (50 mg/kg) duration ↑ [4]

Eckstolonol Pentobarbital-induced sleep test (50 mg/kg) duration ↑ [4]
Polygraphic recordings (50 mg/kg) NREMS ↑, latency ↓ Delta activity − [4]

Dieckol Pentobarbital-induced sleep test (50 mg/kg) duration ↑ [4]
Polygraphic recordings (150 mg/kg) NREMS ↑, latency ↓ Delta activity − [19]

Triphlorethol A Pentobarbital-induced sleep test (50 mg/kg) duration ↑ [4]
Polygraphic recordings (50 mg/kg) NREMS ↑, latency ↓ Delta activity − [83]

Fucodiphlorethol G Pentobarbital-induced sleep test (50 mg/kg) duration ↑ [4]

6,6′-Bieckol Pentobarbital-induced sleep test (50 mg/kg) duration ↑ [4]

NREMS, non-rapid eye movement sleep; −, not significant; ↑, increase; ↓, decrease.

In particular, dieckol is the most abundant phlorotannin preparation from brown
seaweeds and has been considered an indicator compound [39]. Yoon et al. [19] reported
that dieckol has sleep-enhancing effects by analyzing its effects on the sleep–wake pro-
files of C57BL/6N mice using the recorded EEG and electromyogram (EMG). Dieckol
administration increased NREMS duration dose-dependently. Dieckol (100 and 150 mg/kg)
significantly increased NREMS levels 2 h after administration. In particular, there were no
significant differences in NREMS or sleep latency between dieckol (150 mg/kg) and zolpi-
dem (10 mg/kg). In addition, there were no significant differences in EEG power density
(0–20 Hz) and delta activity (frequency range of 0.5–4 Hz) of NREMS between dieckol and
the vehicle, whereas zolpidem decreased delta activity. These results imply that dieckol in-
creases sleep quantity without inducing any adverse effects. Eckstolonol and triphlorethol
A were also analyzed for their effects on sleep–wake profiles [4,83]. Eckstolonol (50 mg/kg)
and triphlorethol A (50 mg/kg) significantly decreased sleep latency and increased the
amount of NREMS in C57BL/6N mice, without affecting delta activity (0.5–4 Hz), similar
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to dieckol. Eckstolonol induced sleep effects via a GABAergic mechanism; however, the in-
ducing effects in NREMS were moderate compared to diazepam (6 mg/kg). Triphlorethol
A (50 mg/kg) showed no significant difference from zolpidem (10 mg/kg) in NREMS
(Table 2).
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Phlorotannins are oligomers and polymers of phloroglucinol (1,3,5-tri-hydroxybenzene),
and approximately 150 phlorotannins have been isolated from various brown seaweeds.
However, among the individual phlorotannin compounds, in vitro and in vivo studies
have only been conducted on the six major phlorotannins (dieckol, eckstolonol, eckol,
triphlorethol A, fucodiphlorethol G, and 6,6′-bieckol). Therefore, it is necessary to investigate
the hypnotic effects of phloroglucinol, which is the basic structural unit of a phlorotannin,
and to study further the synergistic effects of phlorotannin compounds.

5. Sleep-Promoting Effects of Phlorotannins in Clinical Trials

The promising sleep-promoting effects of phlorotannins have also been observed in
humans. A clinical case study demonstrated the effects of acupuncture therapy and the
phlorotannin-rich E. cava extract (500 mg/day) on sleep disturbance in patients with amy-
otrophic lateral sclerosis (ALS) [84]. After 5 months of combined treatment, the Pittsburgh
Sleep Quality Index (PSQI) score decreased from 13 to 8 in patients with ALS. Additionally,
in a randomized, double-blind, placebo-controlled trial, the effectiveness and safety of
phlorotannins at a dose of 500 mg/day for 7 d in adults with self-reported sleep distur-
bances were investigated [67]. Sleep parameters were assessed at baseline and 1 week using
the PSQI and polysomnography (PSG). Um et al. reported that phlorotannin supplementa-
tion significantly increased the “Sleep duration” scores compared to those in the placebo
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group. However, there were no significant differences in total PSQI scores. PSG recordings
revealed that wakefulness after sleep onset, total wake time, and the respiratory distur-
bance index during supine rapid eye movement sleep (REMS) were significantly lower in
the phlorotannin group than in the placebo group. There were no serious adverse effects,
and some side effects did not correlate with the consumption of phlorotannins. However,
because this sample size was small and the treatment period was limited to 7 days, a
large-scale controlled/long-term clinical trial is required. In addition, metabolomics studies
are required to explain how phlorotannins affect sleep after intake in the human brain.
Finally, this evidence provides insights into the physiological function of phlorotannins,
suggesting that they might be used as a natural sleep agent.

6. Action Mechanism of Phlorotannins

Previous in vitro and in vivo studies have demonstrated that both preparations and the
individual constituents of phlorotannins exert sedative–hypnotic effects via a GABAergic
(gamma-aminobutyric acid-mediated) mechanism (Figure 3). The BZD-binding site of
the GABAA receptor has been considered the most important molecular target for the
development of sedative–hypnotic drugs [85,86]. Currently, BZD agonists are the most
commonly prescribed hypnotics. These agents act as positive allosteric modulators as
BZD ligands; potentiate GABA-mediated inhibitory neurotransmission, which results in
membrane hyperpolarization by allowing chloride anion (Cl-) influx; and, subsequently,
exhibit sedative–hypnotic effects [87,88]. Similar to BZD agonists, phlorotannins induce
sleep by acting as allosteric agonists of GABAA receptors and binding to the BZD-binding
site of GABAA receptors.
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Figure 3. Sleep-inducing mechanism of phlorotannins.

The in vitro GABAergic mechanism of phlorotannins was demonstrated by the ligand-
binding and functional assays of GABAA receptors. In the GABAA-BZD receptor-binding
assay, ethanol, methanol, and enzymatic extracts from the brown seaweed E. cava were sig-
nificantly displaced [3H]-flumazenil binding [17,72]. Among the three extracts containing
phlorotannins, the ethanol extract had the lowest half-maximal inhibitory concentration
(IC50) (0.127 mg/mL) [17]. The binding affinities (IC50) of the ethyl acetate fraction [17]
and purified phlorotannin supplement [4] from the E. cava ethanol extract were 0.019
and 0.012 mg/mL, respectively. In addition, four phlorotannin compounds (eckstolonol,
eckol, triphlorethol-A, and dieckol) were identified as ligands for the BZD-binding site of
GABAA receptors [17]. The significant results of the binding assay imply that phlorotannins
act as BZD ligands to GABAA receptors; however, they cannot provide information to
demonstrate phlorotannins are BZD agonists (positive allosteric modulators). This can
be demonstrated using a functional assay based on electrophysiological measurements.
Purified phlorotannin supplementation and dieckol potentiated the GABA-mediated in-
ward current cultured neurons, and their activities were blocked by the co-application of a
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BZD antagonist flumazenil, such as the BZD agonist diazepam [18]. Flumazenil inhibits
the sedative–hypnotic activity of diazepam by blocking the binding of diazepam to the
BZD site of GABAA receptors [89]. These results provide direct evidence that purified
phlorotannins and dieckol act as positive allosteric modulators of GABAA receptors. It
has been demonstrated that eckstolonol is a partial BZD agonist based on electrophysio-
logical measurements and pharmacophore modeling [4]. The GABAergic mechanism of
phlorotannins has also been demonstrated through in vivo animal assays. The hypnotic
activities of all phlorotannin preparations (except butanol and hexane fractions) and the
individual constituents shown in Table 3 were completely blocked by the BZD antagonist
flumazenil [4,17,18,72].

Table 3. Results from in vitro GABAergic mechanism studies on preparations and individual con-
stituents of phlorotannins.

Samples Binding Affinity to the BZD Binding
Site (IC50)

Functional Assay for the GABAA
Receptors

Preparations from Ecklonia cava

Enzymatic extract 1.409 mg/mL [72] -

Methanol extract 0.392 mg/mL [17] -

Ethanol extract (EE) 0.127 mg/mL [17] -

Ethyl acetate fraction from EE 0.019 mg/mL [17] -

Butanol fraction from EE 0.103 mg/mL [17] -

Hexane fraction from EE 0.141 mg/mL [17] -

Purified phlorotannin supplement 0.012 mg/mL [4] Positive allosteric activation to the
GABAA receptors [18]

Individual phlorotannin compounds

Eckstolonol 2.422 µM [17] Positive allosteric activation to the
GABAA receptors [4]

Eckol 1.739 µM [17] -

Triphlorethol-A 7.180 µM [17] -

Dieckol 4.991 µM [17] Positive allosteric activation to the
GABAA receptors [18]

7. Conclusions

Numerous studies on the biological properties of phlorotannins and their constituents
have been performed. Recently, marine polyphenol phlorotannins have been demonstrated
to have sedative–hypnotic effects in animal models and clinical trials. In Korea, the MFDS
has approved E. cava supplementation as a functional ingredient for health foods that help
improve sleep quality. The sedative–hypnotic effects of phlorotannins suggest that they
possess other neuropharmacological activities. It is necessary to demonstrate their anxi-
olytic or antidepressant effects and possible mechanisms of action. Red and green seaweeds
contain non-phlorotannin polyphenol compounds. To date, the sedative–hypnotic effects
of red or green seaweeds have not yet been reported. Therefore, these seaweeds could be
promising raw materials for finding sedative–hypnotic compounds with novel structures
or mechanisms.
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