Utility of a Hydrolysate from Overproduced Paralichthys olivaceus for Hypertension Treatment: Correlation between Physical Properties and Potent Anti-Hypertensive Activities
Abstract
:1. Introduction
2. Results
2.1. Preparation of POpH and POppH and Their ACE Inhibitory Activities
2.2. Physical Characterization of POpH and POppH
2.3. Amino Acid Profiles of POpH and POppH
2.4. POppH Reduces SBP and DBP in the SHR Model
2.5. Effect of POppH on Rat Blood Serum Biochemical Indices
2.6. Measurement of the Thickness and Ultrasound Imaging of the Carotid Aorta
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Preparation of Enzymatic Hydrolysate from Paralichthys olivaceus
4.3. ACE Inhibitory Activity
4.4. Molecular Distribution Based on Liquid Chromatography-Mass Spectrometry (LC-MS)
4.5. Determining Average Molecular Weight by Multi-Angle Light Scattering (MALS)
4.6. Rheometry
4.7. Scanning Electron Microscopy (SEM)
4.8. Amino Acid Composition
4.9. Animal Studies
4.10. Blood Serum Profiles
4.11. Histology
4.12. Ultrasound Image Analysis
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, F.; Qing, P.; Hou, M.-H. Analysis on the influencing factors of consumers’ wasting food behaviors: Based on the theory of planned behaviors. Res. Agric. Mod. 2020, 41, 115–124. [Google Scholar]
- Zhongming, Z.; Linong, L.; Wangqiang, Z.; Wei, L. Key Messages on the International Day of Awareness of Food Loss and Waste; United States Department of Agriculture: Washington, DC, USA, 2021.
- Rivera-Ferre, M.G.; López-i-Gelats, F.; Ravera, F.; Oteros-Rozas, E.; di Masso, M.; Binimelis, R.; El Bilali, H. The relation of food systems with the COVID19 pandemic: Causes and consequences. Agric. Syst. 2021, 191, 103134. [Google Scholar] [CrossRef]
- Loboguerrero, A.M.; Campbell, B.M.; Cooper, P.J.; Hansen, J.W.; Rosenstock, T.; Wollenberg, E. Food and earth systems: Priorities for climate change adaptation and mitigation for agriculture and food systems. Sustainability 2019, 11, 1372. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.C.; Lee, S. Culture of olive flounder: Korean perspective. In Practical Flatfish Culture and Stock Enhancement; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 156–168. [Google Scholar]
- Getu, A.; Misganaw, K.; Bazezew, M. Post-harvesting and major related problems of fish production. Fish. Aquac. J. 2015, 6, 1000154. [Google Scholar] [CrossRef]
- UG, Y.; Bhat, I.; Karunasagar, I.; Mamatha, B.S. Antihypertensive activity of fish protein hydrolysates and its peptides. Crit. Rev. Food Sci. Nutr. 2019, 59, 2363–2374. [Google Scholar]
- Ishak, N.H.; Shaik, M.I.; Yellapu, N.K.; Howell, N.K.; Sarbon, N.M. Purification, characterization and molecular docking study of angiotensin-I converting enzyme (ACE) inhibitory peptide from shortfin scad (Decapterus macrosoma) protein hydrolysate. J. Food Sci. Technol. 2021, 58, 1–11. [Google Scholar] [CrossRef]
- Oh, J.-Y.; Kim, E.-A.; Lee, H.; Kim, H.-S.; Lee, J.-S.; Jeon, Y.-J. Antihypertensive effect of surimi prepared from olive flounder (Paralichthys olivaceus) by angiotensin-I converting enzyme (ACE) inhibitory activity and characterization of ACE inhibitory peptides. Process Biochem. 2019, 80, 164–170. [Google Scholar] [CrossRef]
- García, J.; Méndez, D.; Álvarez, M.; Sanmartin, B.; Vázquez, R.; Regueiro, L.; Atanassova, M. Design of novel functional food products enriched with bioactive extracts from holothurians for meeting the nutritional needs of the elderly. LWT 2019, 109, 55–62. [Google Scholar] [CrossRef]
- Ishak, N.; Sarbon, N. A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food Bioprocess Technol. 2018, 11, 2–16. [Google Scholar] [CrossRef]
- Karoud, W.; Sila, A.; Krichen, F.; Martinez-Alvarez, O.; Bougatef, A. Characterization, surface properties and biological activities of protein hydrolysates obtained from hake (Merluccius merluccius) heads. Waste Biomass Valorization 2019, 10, 287–297. [Google Scholar] [CrossRef]
- Jin, C.; Nam, K.-H.; Paeng, D.-G. Asymmetric pulsation of rat carotid artery bifurcation in three-dimension observed by ultrasound imaging. Int. J. Cardiovasc. Imaging 2016, 32, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, S.E. Hypertension and cardiovascular risk: General aspects. Pharmacol. Res. 2018, 129, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, J. Central hemodynamics and target organ damage in hypertension. Tohoku J. Exp. Med. 2014, 233, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, J.N.; Gore, J.M.; Amin, A.; Anderson, F.A.; Dasta, J.F.; Ferguson, J.J.; Kleinschmidt, K.; Mayer, S.A.; Multz, A.S.; Peacock, W.F. Practice patterns, outcomes, and end-organ dysfunction for patients with acute severe hypertension: The Studying the Treatment of Acute hyperTension (STAT) registry. Am. Heart J. 2009, 158, 599–606.e1. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ryu, B.; Zhang, Y.; Liang, P.; Li, C.; Zhou, C.; Yang, P.; Hong, P.; Qian, Z.J. Comparison of an angiotensin-I-converting enzyme inhibitory peptide from tilapia (Oreochromis niloticus) with captopril: Inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study. J. Sci. Food Agric. 2020, 100, 315–324. [Google Scholar] [CrossRef]
- Fu, W.; Wang, P.; Wu, H.; Zhang, Z.; Zeng, H.; Zhang, Y.; Zheng, B.; Hu, J. Antihypertensive effects of Trichiurus lepturus myosin hydrolysate in spontaneously hypertensive rats. Food Funct. 2020, 11, 3645–3656. [Google Scholar] [CrossRef]
- Je, J.-G.; Kim, H.-S.; Lee, H.-G.; Oh, J.-Y.; Lu, Y.A.; Wang, L.; Rho, S.; Jeon, Y.-J. Low-molecular weight peptides isolated from seahorse (Hippocampus abdominalis) improve vasodilation via inhibition of angiotensin-converting enzyme in vivo and in vitro. Process Biochem. 2020, 95, 30–35. [Google Scholar] [CrossRef]
- Oh, J.-Y.; Je, J.-G.; Lee, H.-G.; Kim, E.-A.; Kang, S.I.; Lee, J.-S.; Jeon, Y.-J. Anti-Hypertensive Activity of Novel Peptides Identified from Olive Flounder (Paralichthys olivaceus) Surimi. Foods 2020, 9, 647. [Google Scholar] [CrossRef]
- Lin, F.; Chen, L.; Liang, R.; Zhang, Z.; Wang, J.; Cai, M.; Li, Y. Pilot-scale production of low molecular weight peptides from corn wet milling byproducts and the antihypertensive effects in vivo and in vitro. Food Chem. 2011, 124, 801–807. [Google Scholar] [CrossRef]
- Gu, R.-Z.; Li, C.-Y.; Liu, W.-Y.; Yi, W.-X.; Cai, M.-Y. Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Res. Int. 2011, 44, 1536–1540. [Google Scholar] [CrossRef]
- Lee, J.K.; Jeon, J.-K.; Byun, H.-G. Antihypertensive effect of novel angiotensin I converting enzyme inhibitory peptide from chum salmon (Oncorhynchus keta) skin in spontaneously hypertensive rats. J. Funct. Foods 2014, 7, 381–389. [Google Scholar] [CrossRef]
- Hong, F.; Ming, L.; Yi, S.; Zhanxia, L.; Yongquan, W.; Chi, L. The antihypertensive effect of peptides: A novel alternative to drugs? Peptides 2008, 29, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Hur, S.J. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chem. 2017, 228, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.J.; Shenoy, V.; Yamazato, Y.; Sriramula, S.; Francis, J.; Yuan, L.; Castellano, R.K.; Ostrov, D.A.; Oh, S.P.; Katovich, M.J. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2009, 179, 1048–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández Prada, J.A.; Ferreira, A.J.; Katovich, M.J.; Shenoy, V.; Qi, Y.; Santos, R.A.; Castellano, R.K.; Lampkins, A.J.; Gubala, V.; Ostrov, D.A. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension 2008, 51, 1312–1317. [Google Scholar] [CrossRef] [Green Version]
- Chappell, M.C. Emerging evidence for a functional angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS receptor axis: More than regulation of blood pressure? Hypertension 2007, 50, 596–599. [Google Scholar] [CrossRef] [Green Version]
- Malayeri, A.A.; Natori, S.; Bahrami, H.; Bertoni, A.G.; Kronmal, R.; Lima, J.A.; Bluemke, D.A. Relation of aortic wall thickness and distensibility to cardiovascular risk factors (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am. J. Cardiol. 2008, 102, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.-Z.; Nam, K.-H.; Paeng, D.-G. The spatio-temporal variation of rat carotid artery bifurcation by ultrasound imaging. In Proceedings of the 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; IEEE: New York, NY, USA, 2014; pp. 1900–1903. [Google Scholar]
POpH | POppH | |
---|---|---|
ACE inhibitory activity, IC50 value (mg/mL) | 0.56 ± 0.02 | 0.43 ± 0.03 |
Amino Acid | MW of Amino Acids | Concentration (µg/100 µL) | |
---|---|---|---|
POpH | POppH | ||
Cys | 121.160 | 12.49 | 14.95 |
Asp | 133.100 | 97.36 | 121.21 |
Glu | 147.130 | 203.10 | 236.56 |
Ser | 105.090 | 48.64 | 59.63 |
Gly | 75.070 | 47.24 | 61.93 |
Ala | 89.100 | 81.76 | 90.16 |
His | 155.160 | 5.59 | 6.79 |
Arg | 174.200 | 83.67 | 105.54 |
Thr | 119.120 | 40.52 | 48.17 |
Pro | 115.130 | 31.68 | 36.96 |
Tyr | 181.190 | 41.09 | 47.90 |
Val | 117.150 | 60.24 | 69.74 |
Met | 149.210 | 23.78 | 25.13 |
Ile | 131.170 | 56.00 | 63.44 |
Leu | 131.180 | 93.77 | 108.71 |
Phe | 165.190 | 37.79 | 44.13 |
Trp | 204.230 | 18.19 | 14.79 |
Lys | 146.188 | 85.64 | 103.60 |
Total | 1068.55 | 1259.34 |
Groups | ANG Ⅱ (pg/mL) | ACE (ng/mL) |
---|---|---|
WYK control | 1823.31 ± 294.33 # | 8.78 ± 0.87 ### |
SHR control | 1926.94 ± 266.36 | 9.98 ± 0.56 |
L-POppH | 1729.47 ± 429.05 *** | 8.70 ± 0.66 ** |
H-POppH | 1445.30 ± 253.30 **** | 8.40 ± 0.78 **** |
SP | 1685.36 ± 374.94 *** | 9.01 ± 1.79 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-G.; Oh, J.-Y.; Chung, D.-M.; Seo, M.-Y.; Park, S.-J.; Jeon, Y.-J.; Ryu, B.-M. Utility of a Hydrolysate from Overproduced Paralichthys olivaceus for Hypertension Treatment: Correlation between Physical Properties and Potent Anti-Hypertensive Activities. Mar. Drugs 2022, 20, 346. https://doi.org/10.3390/md20060346
Lee H-G, Oh J-Y, Chung D-M, Seo M-Y, Park S-J, Jeon Y-J, Ryu B-M. Utility of a Hydrolysate from Overproduced Paralichthys olivaceus for Hypertension Treatment: Correlation between Physical Properties and Potent Anti-Hypertensive Activities. Marine Drugs. 2022; 20(6):346. https://doi.org/10.3390/md20060346
Chicago/Turabian StyleLee, Hyo-Geun, Jae-Young Oh, Dong-Min Chung, Min-Young Seo, Shin-Jae Park, You-Jin Jeon, and Bo-Mi Ryu. 2022. "Utility of a Hydrolysate from Overproduced Paralichthys olivaceus for Hypertension Treatment: Correlation between Physical Properties and Potent Anti-Hypertensive Activities" Marine Drugs 20, no. 6: 346. https://doi.org/10.3390/md20060346
APA StyleLee, H. -G., Oh, J. -Y., Chung, D. -M., Seo, M. -Y., Park, S. -J., Jeon, Y. -J., & Ryu, B. -M. (2022). Utility of a Hydrolysate from Overproduced Paralichthys olivaceus for Hypertension Treatment: Correlation between Physical Properties and Potent Anti-Hypertensive Activities. Marine Drugs, 20(6), 346. https://doi.org/10.3390/md20060346