Impact of Degree of Ionization and PEGylation on the Stability of Nanoparticles of Chitosan Derivatives at Physiological Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of Polymers
2.1.1. Polymer Composition
2.1.2. Compositional Effects on the Degree of Ionization (α) and Buffering Capacity (BC)
2.2. Effect of the Degree of Ionization on the Physicochemical Properties of Nanoparticles
2.2.1. Electrophoresis
2.2.2. Effect of the Degree of Ionization and PEGylation on Nanoparticle Properties: Size, Morphology, Surface Charge, and Colloidal Stability of Nanocarriers
2.3. In Vitro Studies of Polymers and Nanoparticles
Cytotoxicity, Cellular Uptake and Gene Knockdown
3. Materials and Methods
3.1. Materials
3.2. Polymers: Synthesis and Characterization
3.2.1. Deacetylated Chitosan
3.2.2. DIPEA-Chitosan Derivatives
3.2.3. PEGylated Chitosan Derivatives by Disulfide Bonds
3.2.4. Rhodamine-Labeled Chitosan Derivative
3.2.5. Hydrogen (1H) and Carbon (13C) Nuclear Magnetic Resonance (NMR) Spectroscopy
3.2.6. Fourier Transform Infrared (FTIR)
3.2.7. Gel Permeation Chromatography (GPC)
3.2.8. Ionization Degree and Buffering Capacity
3.3. Nanoparticles: Formulation and Characterization
3.3.1. siRNA Nanoparticle Formulation
3.3.2. Electrophoresis Assay: Evaluation of siRNA-Polycation Interaction
3.3.3. Zeta Potential (ζ) and Hydrodynamic Diameter (Dh) of Nanoparticles
3.3.4. Morphology
3.4. Biological Assays
3.4.1. Cell Culture
3.4.2. Cytotoxicity of Polymers and Nanoparticles
3.4.3. Confocal Microscopy: Cellular Uptake and GFP Knockdown
3.4.4. Transfection Efficiency Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.J. Therapeutic SiRNA: State of the Art. Signal Transduct. Target. Ther. 2020, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- de Brito e Cunha, D.; Frederico, A.; Azamor, T.; Melgaço, J.; da Costa Neves, P.; Bom, A.; Tilli, T.; Missailidis, S. Biotechnological Evolution of SiRNA Molecules: From Bench Tool to the Refined Drug. Pharmaceuticals 2022, 15, 575. [Google Scholar] [CrossRef] [PubMed]
- Abu Abed, O.S. Gene Therapy Avenues and COVID-19 Vaccines. Genes Immun. 2021, 22, 120–124. [Google Scholar] [CrossRef]
- Zamboulis, A.; Nanaki, S.; Michailidou, G.; Koumentakou, I.; Lazaridou, M.; Ainali, N.M.; Xanthopoulou, E.; Bikiaris, D.N. Chitosan and Its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers 2020, 12, 1519. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Tan, Y.F.; Wong, Y.S.; Liew, M.W.J.; Venkatraman, S. Recent Advances in Chitosan-Based Carriers for Gene Delivery. Mar. Drugs 2019, 17, 381. [Google Scholar] [CrossRef] [Green Version]
- Iranpur Mobarakeh, V.; Modarressi, M.H.; Rahimi, P.; Bolhassani, A.; Arefian, E.; Atyabi, F.; Vahabpour, R. Optimization of Chitosan Nanoparticles as an Anti-HIV SiRNA Delivery Vehicle. Int. J. Biol. Macromol. 2019, 129, 305–315. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, Y.; Wang, L.; Liang, Z.; Li, D.; Xu, X.; Chen, Y.; Yang, X.; Zhang, H.; Niu, H. Self-Crosslinkable Chitosan-Hyaluronic Acid Dialdehyde Nanoparticles for CD44-Targeted SiRNA Delivery to Treat Bladder Cancer. Bioact. Mater. 2021, 6, 433–446. [Google Scholar] [CrossRef]
- Sava, V.; Fihurka, O.; Khvorova, A.; Sanchez-Ramos, J. Enriched Chitosan Nanoparticles Loaded with SiRNA are Effective in Lowering Huntington’s Disease Gene Expression Following Intranasal Administration. Nanomed. Nanotechnol. Biol. Med. 2020, 24, 102119. [Google Scholar] [CrossRef]
- Koli, U.; Nilgiriwala, K.; Sriraman, K.; Jain, R.; Dandekar, P. Targeting Tuberculosis Infection in Macrophages Using Chitosan Oligosaccharide Nanoplexes. J. Nanoparticle Res. 2019, 21, 200. [Google Scholar] [CrossRef]
- Moraru, C.; Mincea, M.; Menghiu, G.; Ostafe, V. Understanding the Factors Influencing Chitosan-Based Nanoparticles-Protein Corona Interaction and Drug Delivery Applications. Molecules 2020, 25, 4758. [Google Scholar] [CrossRef]
- Pathomthongtaweechai, N.; Muanprasat, C. Potential Applications of Chitosan-Based Nanomaterials to Surpass the Gastrointestinal Physiological Obstacles and Enhance the Intestinal Drug Absorption. Pharmaceutics 2021, 13, 887. [Google Scholar] [CrossRef]
- Zhang, C.G.; Zhu, W.J.; Liu, Y.; Yuan, Z.Q.; Yang, S.D.; Chen, W.L.; Li, J.Z.; Zhou, X.F.; Liu, C.; Zhang, X.N. Novel Polymer Micelle Mediated Co-Delivery of Doxorubicin and P-Glycoprotein SiRNA for Reversal of Multidrug Resistance and Synergistic Tumor Therapy. Sci. Rep. 2016, 6, 23859. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Chen, J.; Zhao, Y.; Yan, X.; Zhang, L.; Choy, K.; Hu, J.; Sant, H.J.; Gale, B.K.; Tang, T. Transdermal Delivery of SiRNA through Microneedle Array. Sci. Rep. 2016, 6, 21422. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.P.; Nah, J.W. Target Gene Delivery from Targeting Ligand Conjugated Chitosan-PEI Copolymer for Cancer Therapy. Carbohydr. Polym. 2016, 135, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.O.; Segalla Petrônio, M.; Furuyama Lima, A.M.; Martinez Junior, A.M.; de Oliveira Tiera, V.A.; de Freitas Calmon, M.; Leite Vilamaior, P.S.; Han, S.W.; Tiera, M.J. Amphipathic Chitosans Improve the Physicochemical Properties of SiRNA-Chitosan Nanoparticles at Physiological Conditions. Carbohydr. Polym. 2019, 216, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Martinez Junior, A.M.; de Souza, R.H.F.V.; Petrônio, M.S.; Martins, G.O.; Fernandes, J.C.; Benderdour, M.; Tiera, V.A.d.O.; Tiera, M.J. Double-Grafted Chitosans as SiRNA Nanocarriers: Effects of Diisopropylethylamine Substitution and Labile-PEG Coating. J. Nanostructure Chem. 2022, 1–20. [Google Scholar] [CrossRef]
- de Souza, R.H.F.V.; Picola, I.P.D.; Shi, Q.; Petrônio, M.S.; Benderdour, M.; Fernandes, J.C.; Lima, A.M.F.; Martins, G.O.; Martinez Junior, A.M.; de Oliveira Tiera, V.A.; et al. Diethylaminoethyl-Chitosan as an Efficient Carrier for SiRNA Delivery: Improving the Condensation Process and the Nanoparticles Properties. Int. J. Biol. Macromol. 2018, 119, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Alameh, M.; Lavertu, M.; Tran-Khanh, N.; Chang, C.Y.; Lesage, F.; Bail, M.; Darras, V.; Chevrier, A.; Buschmann, M.D. SiRNA Delivery with Chitosan: Influence of Chitosan Molecular Weight, Degree of Deacetylation, and Amine to Phosphate Ratio on In Vitro Silencing Efficiency, Hemocompatibility, Biodistribution, and In Vivo Efficacy. Biomacromolecules 2018, 19, 112–131. [Google Scholar] [CrossRef]
- Yang, C.; Gao, S.; Dagnæs-Hansen, F.; Jakobsen, M.; Kjems, J. Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/SiRNA Nanoparticles In Vitro and In Vivo. ACS Appl. Mater. Interfaces 2017, 9, 12203–12216. [Google Scholar] [CrossRef]
- Rheiner, S.; Bae, Y. Increased Poly(Ethylene Glycol) Density Decreases Transfection Efficacy of SiRNA/Poly(Ethylene Imine) Complexes. AIMS Bioeng. 2016, 3, 454–467. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, H.; Zhang, S.; Huang, X.; Wang, Y.; Huang, G.; Sumer, B.D.; Gao, J. Multicolored pH-Tunable and Activatable Fluorescence Nanoplatform Responsive to Physiologic PH Stimuli. J. Am. Chem. Soc. 2012, 134, 7803–7811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weißpflog, J.; Vehlow, D.; Müller, M.; Kohn, B.; Scheler, U.; Boye, S.; Schwarz, S. Characterization of Chitosan with Different Degree of Deacetylation and Equal Viscosity in Dissolved and Solid State–Insights by Various Complimentary Methods. Int. J. Biol. Macromol. 2021, 171, 242–261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Helm, J.; Peschel, D.; Gruner, M.; Groth, T.; Fischer, S. NMR and FT Raman Characterisation of Regioselectively Sulfated Chitosan Regarding the Distribution of Sulfate Groups and the Degree of Substitution. Polymer 2010, 51, 4698–4705. [Google Scholar] [CrossRef]
- Mansur, H.S.; Mansur, A.A.P.; Curti, E.; De Almeida, M.V. Functionalized-Chitosan/Quantum Dot Nano-Hybrids for Nanomedicine Applications: Towards Biolabeling and Biosorbing Phosphate Metabolites. J. Mater. Chem. B 2013, 1, 1696–1711. [Google Scholar] [CrossRef]
- Rumengan, I.F.M.; Suryanto, E.; Modaso, R.; Wullur, S.; Tallei, T.E.; Limbong, D. Structural Characteristics of Chitin and Chitosan Isolated from the Biomass of Cultivated Rotifer, Brachionus Rotundiformis. Int. J. Fish. Aquat. Sci. 2014, 3, 12–18. [Google Scholar]
- Yuan, Y.; Chesnutt, B.M.; Haggard, W.O.; Bumgardner, J.D. Deacetylation of Chitosan: Material Characterization and In Vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures. Materials 2011, 4, 1399–1416. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.D.P.P.; Picola, I.P.D.; Shi, Q.; Barbosa, H.F.G.; de Oliveira Tiera, V.A.; Fernandes, J.C.; Tiera, M.J. Synthesis and Evaluation of Diethylethylamine-Chitosan for Gene Delivery: Composition Effects on the In Vitro Transfection Efficiency. Nanotechnology 2013, 24, 055101. [Google Scholar] [CrossRef]
- Foroozandeh, P.; Aziz, A.A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018, 13, 339. [Google Scholar] [CrossRef]
- Doriti, A.; Brosnan, S.M.; Weidner, S.M.; Schlaad, H. Synthesis of Polysarcosine from Air and Moisture Stable N-Phenoxycarbonyl-N-Methylglycine Assisted by Tertiary Amine Base. Polym. Chem. 2016, 7, 3067–3070. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.H.; Chen, C.K.; Ravikrishnan, A.; Rane, S.; Pfeifer, B.A. Overcoming Nonviral Gene Delivery Barriers: Perspective and Future. Mol. Pharm. 2013, 10, 4082–4098. [Google Scholar] [CrossRef] [Green Version]
- De Tian, W.; Ma, Y.Q. pH-Responsive Dendrimers Interacting with Lipid Membranes. Soft Matter 2012, 8, 2627–2632. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, T.; Li, Y.; Huang, G.; White, M.A.; Gao, J. Investigation of Endosome and Lysosome Biology by Ultra pH-Sensitive Nanoprobes. Adv. Drug Deliv. Rev. 2017, 113, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.Q.; Wang, T.Y.; Webster, T.J.; Duan, H.J.; Qiu, J.Y.; Zhao, Z.M.; Yin, X.X.; Zheng, C.L. Intracellular Disposition of Chitosan Nanoparticles in Macrophages: Intracellular Uptake, Exocytosis, and Intercellular Transport. Int. J. Nanomed. 2017, 12, 6383–6398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojnilowicz, M.; Glab, A.; Bertucci, A.; Caruso, F.; Cavalieri, F. Super-Resolution Imaging of Proton Sponge-Triggered Rupture of Endosomes and Cytosolic Release of Small Interfering RNA. ACS Nano 2019, 13, 187–202. [Google Scholar] [CrossRef]
- Casey, J.R.; Grinstein, S.; Orlowski, J. Sensors and Regulators of Intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61. [Google Scholar] [CrossRef]
- Kulkarni, A.D.; Vanjari, Y.H.; Sancheti, K.H.; Patel, H.M.; Belgamwar, V.S.; Surana, S.J.; Pardeshi, C.V. Polyelectrolyte Complexes: Mechanisms, Critical Experimental Aspects, and Applications. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1615–1625. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Lee, K.; Li, S. Nucleic Acids Based Polyelectrolyte Complexes: Their Complexation Mechanism, Morphology, and Stability. Chem. Mater. 2021, 33, 7923–7943. [Google Scholar] [CrossRef]
- Agirre, M.; Zarate, J.; Ojeda, E.; Puras, G.; Desbrieres, J.; Pedraz, J.L. Low Molecular Weight Chitosan (LMWC)-Based Polyplexes for pDNA Delivery: From Bench to Bedside. Polymers 2014, 6, 1727–1755. [Google Scholar] [CrossRef] [Green Version]
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the Nano-Bio Interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef]
- Tiera, M.J.; Shi, Q.; Winnik, F.M.; Fernandes, J.C. Polycation-Based Gene Therapy: Current Knowledge and New Perspectives. Curr. Gene Ther. 2011, 11, 288–306. [Google Scholar] [CrossRef]
- Picola, I.P.D.; Busson, K.A.N.; Casé, A.H.; Nasário, F.D.; Tiera, V.A.D.O.; Taboga, S.R.; Neto, J.R.; Tiera, M.J. Effect of Ionic Strength Solution on the Stability of Chitosan-DNA Nanoparticles. J. Exp. Nanosci. 2013, 8, 703–716. [Google Scholar] [CrossRef] [Green Version]
- Mazumdar, S.; Chitkara, D.; Mittal, A. Exploration and Insights into the Cellular Internalization and Intracellular Fate of Amphiphilic Polymeric Nanocarriers. Acta Pharm. Sin. B 2021, 11, 903–924. [Google Scholar] [CrossRef] [PubMed]
- Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block Copolymer Micelles in Nanomedicine Applications. Chem. Rev. 2018, 118, 6844–6892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hühn, D.; Kantner, K.; Geidel, C.; Brandholt, S.; De Cock, I.; Soenen, S.J.H.; Riveragil, P.; Montenegro, J.M.; Braeckmans, K.; Müllen, K.; et al. Polymer-Coated Nanoparticles Interacting with Proteins and Cells: Focusing on the Sign of the Net Charge. ACS Nano 2013, 7, 3253–3263. [Google Scholar] [CrossRef] [PubMed]
- Giacomelli, F.C.; Stepánek, P.; Giacomelli, C.; Schmidt, V.; Jäger, E.; Jäger, A.; Ulbrich, K. pH-Triggered Block Copolymer Micelles Based on a PH-Responsive PDPA (Poly [2-(Diisopropylamino)Ethyl Methacrylate]) Inner Core and a PEO (Poly(Ethylene Oxide)) Outer Shell as a Potential Tool for the Cancer Therapy. Soft Matter 2011, 7, 9316–9325. [Google Scholar] [CrossRef]
- Kun, R.; Szekeres, M.; Dékány, I. Isothermal Titration Calorimetric Studies of the pH Induced Conformational Changes of Bovine Serum Albumin. J. Therm. Anal. Calorim. 2009, 96, 1009–1017. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, X.; Wang, S.; Sun, Y.; Wang, Z.; Fan, J.; Song, P.; Ju, D. Inhibition of Autophagy Protects against PAMAM Dendrimers-Induced Hepatotoxicity. Nanotoxicology 2015, 9, 344–355. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, G.; Xia, X.; Zhao, X.; Zhang, P.; Wu, H.; Guo, Q.; Qian, Z.; Wei, Y.; Liang, S. Comparisons of Three Polyethyleneimine-Derived Nanoparticles as a Gene Therapy Delivery System for Renal Cell Carcinoma. J. Transl. Med. 2011, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Gao, Y.; Zhou, D.; Zeng, M.; Alshehri, F.; Newland, B.; Lyu, J.; O’Keeffe-Ahern, J.; Greiser, U.; Guo, T.; et al. Highly Branched Poly(β-Amino Ester) Delivery of Minicircle DNA for Transfection of Neurodegenerative Disease Related Cells. Nat. Commun. 2019, 10, 3307. [Google Scholar] [CrossRef] [Green Version]
- Raik, S.V.; Andranovitš, S.; Petrova, V.A.; Xu, Y.; Lam, J.K.W.; Morris, G.A.; Brodskaia, A.V.; Casettari, L.; Kritchenkov, A.S.; Skorik, Y.A. Comparative Study of Diethylaminoethyl-Chitosan and Methylglycol-Chitosan as Potential Non-Viral Vectors for Gene Therapy. Polymers 2018, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- BCRJ: Banco de Células do Rio de Janeiro (RAW 264.7|APABCAM). Available online: https://bcrj.org.br/celula/0212 (accessed on 11 July 2022).
- BCRJ: Banco de Células do Rio de Janeiro (HeLa/GFP|APABCAM). Available online: https://bcrj.org.br/celula/HELA-GFP-CERVIX-ADENOCARCINOMA (accessed on 11 July 2022).
- ATCC® (NIH/3T3). Available online: https://www.atcc.org/products/crl-1658 (accessed on 11 July 2022).
- Tiera, M.J.; Qiu, X.P.; Bechaouch, S.; Shi, Q.; Fernandes, J.C.; Winnik, F.M. Synthesis and Characterization of Phosphorylcholine-Substituted Chitosans Soluble in Physiological pH Conditions. Biomacromolecules 2006, 7, 3151–3156. [Google Scholar] [CrossRef] [PubMed]
- Ma, O.; Lavertu, M.; Sun, J.; Nguyen, S.; Buschmann, M.D.; Winnik, F.M.; Hoemann, C.D. Precise Derivatization of Structurally Distinct Chitosans with Rhodamine B Isothiocyanate. Carbohydr. Polym. 2008, 72, 616–624. [Google Scholar] [CrossRef]
- Casé, A.H.; Picola, I.P.D.; Zaniquelli, M.E.D.; Fernandes, J.C.; Taboga, S.R.; Winnik, F.M.; Tiera, M.J. Physicochemical Characterization of Nanoparticles Formed between DNA and Phosphorylcholine Substituted Chitosans. J. Colloid Interface Sci. 2009, 336, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Dragicevic, N.; Maibach, H.I. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2016; pp. 337–361. [Google Scholar] [CrossRef]
Polymer | DIPEA-Cl/NH2 i | PEG-SH/NH2 (×10−2) i | DDA (%) ii | DSDIPEA (%) ii | DSPEG (%) ii | (kDa) iii | ĐM iii |
---|---|---|---|---|---|---|---|
Chc | 76 | 208.2 | 1.92 | ||||
Chd iv | 96 | 141.1 | 3.02 | ||||
DIPEA5Chd | 0.14 | 4.7 | 113.6 | 3.26 | |||
DIPEA15Chd | 0.44 | 15 | 98.3 | 2.74 | |||
DIPEA34Chd | 0.76 | 34 | 83.0 | 2.45 | |||
DIPEA55Chd | 0.97 | 55 | 90.6 | 2.71 | |||
PEG-DIPEA15Chd | 2.0 | 15 v | 1.7 | ||||
PEG-DIPEA34Chd | 2.0 | 34 v | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez Junior, A.M.; Lima, A.M.F.; Martins, G.O.; Tiera, V.A.d.O.; Benderdour, M.; Fernandes, J.C.; Tiera, M.J. Impact of Degree of Ionization and PEGylation on the Stability of Nanoparticles of Chitosan Derivatives at Physiological Conditions. Mar. Drugs 2022, 20, 476. https://doi.org/10.3390/md20080476
Martinez Junior AM, Lima AMF, Martins GO, Tiera VAdO, Benderdour M, Fernandes JC, Tiera MJ. Impact of Degree of Ionization and PEGylation on the Stability of Nanoparticles of Chitosan Derivatives at Physiological Conditions. Marine Drugs. 2022; 20(8):476. https://doi.org/10.3390/md20080476
Chicago/Turabian StyleMartinez Junior, André Miguel, Aline Margarete Furuyama Lima, Grazieli Olinda Martins, Vera Aparecida de Oliveira Tiera, Mohamed Benderdour, Julio Cesar Fernandes, and Marcio José Tiera. 2022. "Impact of Degree of Ionization and PEGylation on the Stability of Nanoparticles of Chitosan Derivatives at Physiological Conditions" Marine Drugs 20, no. 8: 476. https://doi.org/10.3390/md20080476
APA StyleMartinez Junior, A. M., Lima, A. M. F., Martins, G. O., Tiera, V. A. d. O., Benderdour, M., Fernandes, J. C., & Tiera, M. J. (2022). Impact of Degree of Ionization and PEGylation on the Stability of Nanoparticles of Chitosan Derivatives at Physiological Conditions. Marine Drugs, 20(8), 476. https://doi.org/10.3390/md20080476