Biochemical Characterization and Elucidation of the Hybrid Action Mode of a New Psychrophilic and Cold-Tolerant Alginate Lyase for Efficient Preparation of Alginate Oligosaccharides
Abstract
:1. Introduction
2. Results
2.1. Sequence Analysis of Gene TAPL7A
2.2. Cloning and Expression of TAPL7A
2.3. Substrate Specificity and Enzymatic Kinetics of TAPL7A
2.4. Effect of Temperature and pH on TAPL7A
2.5. Effect of Metal Ions on TAPL7A
2.6. Effect of NaCl on TAPL7A
2.7. Products Distribution and Action Pattern of TAPL7A
2.8. Molecular Modeling
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Sequence Analysis of Gene TAPL7A
4.3. Cloning, Expression and Purification of TAPL7A
4.4. Substrate Specificity and Enzymatic Kinetics of TAPL7A
4.5. Effect of Temperature and pH on TAPL7A
4.6. Effect of Metal Ions on TAPL7A
4.7. Effect of NaCl on TAPL7A
4.8. Products Distribution and Action Pattern of TAPL7A
4.9. Molecular Modeling
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [Green Version]
- Turquois, T.; Gloria, H. Determination of the Absolute Molecular Weight Averages and Molecular Weight Distributions of Alginates Used as Ice Cream Stabilizers by Using Multiangle Laser Light Scattering Measurements. J. Agric. Food Chem. 2000, 48, 5455–5458. [Google Scholar] [CrossRef]
- Wang, Y.; Han, F.; Hu, B.; Li, J.; Yu, W. In vivo Prebiotic Properties of Alginate Oligosaccharides Prepared Through Enzymatic Hydrolysis of Alginate. Nutr. Res. 2006, 26, 597–603. [Google Scholar] [CrossRef]
- Xu, Y.I.; Yoshie, K.; Tatsuya, O.; Tsuyoshi, M. Root Growth-promoting Activity of Unsaturated Oligomeric Uronates from Alginate on Carrot and Rice Plants. Biosci. Biotechnol. Biochem. 2003, 67, 2022–2025. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Wang, Q.; Lu, D.; Han, W.; Li, F. A Novel Bifunctional Endolytic Alginate Lyase with Variable Alginate-Degrading Modes and Versatile Monosaccharide-Producing Properties. Front. Microbiol. 2018, 9, 167. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, L.; Guo, Z.; Tang, T.; Zhu, B. Alginate Degrading Enzymes: An Updated Comprehensive Review of the Structure, Catalytic mechanism, Modification Method and Applications of Alginate Lyases. Crit. Rev. Biotechnol. 2021, 41, 953–968. [Google Scholar] [CrossRef]
- Yang, J.; Cui, D.; Ma, S.; Chen, W.; Chen, D.; Shen, H. Characterization of a Novel PL 17 Family Alginate Lyase with Exolytic and Endolytic Cleavage Activity from Marine Bacterium Microbulbifer sp. SH-1. Int. J. Biol. Macromol. 2021, 169, 551–563. [Google Scholar] [CrossRef]
- Zhu, B.; Hu, F.; Yuan, H.; Sun, Y.; Yao, Z. Biochemical Characterization and Degradation Pattern of a Unique pH-Stable PolyM-Specific Alginate Lyase from Newly Isolated Serratia marcescens NJ-07. Mar. Drugs 2018, 16, 129. [Google Scholar] [CrossRef] [Green Version]
- Cavicchioli, R.; Charlton, T.; Ertan, H.; Mohd Omar, S.; Siddiqui, K.S.; Williams, T.J. Biotechnological Uses of Enzymes from Psychrophiles. Microb. Biotechnol. 2011, 4, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Y.; Wang, Z.P.; Wang, L.N.; Peng, J.X.; Wang, Y.N.; Han, Y.T.; Zhao, S.F. Combined Enzymatic Hydrolysis and Selective Fermentation for Green Production of Alginate Oligosaccharides from Laminaria japonica. Bioresour. Technol. 2019, 281, 84–89. [Google Scholar] [CrossRef]
- Siddiqui, K.S.; Cavicchioli, R. Cold-adapted Enzymes. Annu. Rev. Biochem. 2006, 75, 403–433. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Dong, F.; Wang, P.; Cao, H.Y.; Li, C.Y.; Li, P.Y.; Pang, X.H.; Zhang, Y.Z.; Chen, X.L. Novel Molecular Insights into the Catalytic Mechanism of Marine Bacterial Alginate Lyase AlyGC from Polysaccharide Lyase Family 6. J. Biol. Chem. 2017, 292, 4457–4468. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Chen, X.L.; Sun, X.H.; Dong, F.; Li, C.Y.; Li, P.Y.; Ding, H.; Chen, Y.; Zhang, Y.Z.; Wang, P. Structural and Molecular Basis for the Substrate Positioning Mechanism of a New PL7 Subfamily Alginate Lyase from the Arctic. J. Biol. Chem. 2020, 295, 16380–16392. [Google Scholar] [CrossRef]
- He, M.; Guo, M.; Zhang, X.; Chen, K.; Yan, J.; Irbis, C. Purification and Characterization of Alginate Lyase from Sphingomonas sp. ZH0. J. Biosci. Bioeng. 2018, 126, 310–316. [Google Scholar] [CrossRef]
- Thomas, F.; Lundqvist, L.C.; Jam, M.; Jeudy, A.; Barbeyron, T.; Sandstrom, C.; Michel, G.; Czjzek, M. Comparative Characterization of Two Marine Alginate Lyases from Zobellia galactanivorans Reveals Distinct Modes of Action and Exquisite Adaptation to Their Natural Substrate. J. Biol. Chem. 2013, 288, 23021–23037. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Wang, Y.; Gao, S.; Wu, H.; Wang, D.; Yu, W.; Han, F. Biochemical characteristics and molecular mechanism of an exo-type alginate lyase VxAly7D and its use for the preparation of unsaturated monosaccharides. Biotechnol. Biofuels 2020, 13, 99. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Zhang, L.; Yu, W.; Han, F. Cloning, Expression, and Characterization of a Cold-Adapted and Surfactant-Stable Alginate Lyase from Marine Bacterium Agarivorans sp. L11. J. Microbiol. Biotechnol. 2015, 25, 681–686. [Google Scholar] [CrossRef]
- Hicks, S.J.; Gacesa, P. Heterologous Expression of Full-length and Truncated Forms of the Recombinant Guluronate-specific Alginate Lyase of Klebsiella pneumoniae. Enzyme Microb. Technol. 1996, 19, 68–73. [Google Scholar] [CrossRef]
- Kim, H.T.; Ko, H.J.; Kim, N.; Kim, D.; Lee, D.; Choi, I.G.; Woo, H.C.; Kim, M.D.; Kim, K.H. Characterization of a Recombinant Endo-type Alginate Lyase (Alg7D) from Saccharophagus degradans. Biotechnol. Lett. 2012, 34, 1087–1092. [Google Scholar] [CrossRef]
- Singh, S.M.; Panda, A.K. Solubilization and Refolding of Bacterial Inclusion Body Proteins. J. Biosci. Bioeng. 2005, 99, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Li, Q.; Zhu, B.; Ni, F.; Sun, Y.; Yao, Z. Effects of Module Truncation on Biochemical Characteristics and Products Distribution of a New Alginate Lyase with Two Catalytic Modules. Glycobiology 2019, 29, 876–884. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, L.; Bao, M.; Liu, Z.; Yu, W.; Han, F. Functional Characterization of Carbohydrate-Binding Modules in a New Alginate Lyase, TsAly7B, from Thalassomonas sp. LD5. Mar. Drugs 2019, 18, 25. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.P.; Cao, M.; Li, B.; Ji, X.F.; Zhang, X.Y.; Zhang, Y.Q.; Wang, H.Y. Cloning, Secretory Expression and Characterization of a Unique pH-Stable and Cold-Adapted Alginate Lyase. Mar. Drugs 2020, 18, 189. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Zhang, Z.; Li, S.; Su, H.; Tang, L.; Tan, Y.; Yu, W.; Han, F. Characterization of a New Endo-type Polysaccharide Lyase (PL) Family 6 Alginate Lyase with Cold-adapted and Metal Ions-resisted Property. Int. J. Biol. Macromol. 2018, 120, 729–735. [Google Scholar] [CrossRef]
- Akira Inoue, C.M.; Toshiki, U.; Naotsune, S.; Koji, M.; Takao, O. Characterization of an Eukaryotic PL-7 Alginate Lyase in the Marine Red Alga Pyropia yezoensis. Curr. Biotechnol. 2015, 4, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.L.; Dong, S.; Xu, F.; Dong, F.; Li, P.Y.; Zhang, X.Y.; Zhou, B.C.; Zhang, Y.Z.; Xie, B.B. Characterization of a New Cold-Adapted and Salt-Activated Polysaccharide Lyase Family 7 Alginate Lyase from Pseudoalteromonas sp. SM0524. Front. Microbiol. 2016, 7, 1120. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Jiang, C.; Xu, J.; Liu, Z.; Mao, X. Characteristics and Applications of Alginate Lyases: A review. Int. J. Biol. Macromol. 2020, 164, 1304–1320. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Bao, M.; Wu, Y.; Yu, W.; Han, F. Family 13 Carbohydrate-binding Module of Alginate Lyase from Agarivorans sp. L11 Enhances Its Catalytic Efficiency and Thermostability, and Alters Its Substrate Preference and Product Distribution. FEMS Microbiol. Lett. 2015, 362, fnv054. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Yang, S.X.; Liu, Z.M.; Li, N.N.; Li, L.; Mou, H.J. Rational Design of Alginate Lyase from Microbulbifer sp. Q7 to Improve Thermal Stability. Mar. Drugs 2019, 17, 378. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Ni, F.; Ning, L.; Sun, Y.; Yao, Z. Cloning and Characterization of a New pH-stable Alginate Lyase with High Salt Tolerance from Marine Vibrio sp. NJ-04. Int. J. Biol. Macromol. 2018, 115, 1063–1070. [Google Scholar] [CrossRef]
- Huang, H.; Li, S.; Bao, S.; Mo, K.; Sun, D.; Hu, Y. Expression and Characterization of a Cold-Adapted Alginate Lyase with Exo/Endo-Type Activity from a Novel Marine Bacterium Alteromonas portus HB161718(T). Mar. Drugs 2021, 19, 155. [Google Scholar] [CrossRef]
- Zhu, B.; Tan, H.; Qin, Y.; Xu, Q.; Du, Y.; Yin, H. Characterization of a New Endo-type Alginate Lyase from Vibrio sp. W13. Int. J. Biol. Macromol. 2015, 75, 330–337. [Google Scholar] [CrossRef]
- Uchimura, K.; Miyazaki, M.; Nogi, Y.; Kobayashi, T.; Horikoshi, K. Cloning and Sequencing of Alginate Lyase Genes from Deep-sea Strains of Vibrio and Agarivorans and Characterization of a New Vibrio Enzyme. Mar. Biotechnol. 2010, 12, 526–533. [Google Scholar] [CrossRef]
- Huang, G.; Wang, Q.; Lu, M.; Xu, C.; Li, F.; Zhang, R.; Liao, W.; Huang, S. AlgM4: A New Salt-Activated Alginate Lyase of the PL7 Family with Endolytic Activity. Mar. Drugs 2018, 16, 120. [Google Scholar] [CrossRef] [Green Version]
- Lian, F.B.; Jiang, S.; Ren, T.Y.; Zhou, B.J.; Du, Z.J. Thalassotalea algicola sp. nov., an Alginate-utilizing Bacterium Isolated from a Red Alga. Antonie Van Leeuwenhoek 2021, 114, 835–844. [Google Scholar] [CrossRef]
- Enquist-Newman, M.; Faust, A.M.E.; Bravo, D.D.; Santos, C.N.S.; Raisner, R.M.; Hanel, A.; Sarvabhowman, P.; Le, C.; Regitsky, D.D.; Cooper, S.R.; et al. Efficient Ethanol Production from Brown Macroalgae Sugars by a Synthetic Yeast Platform. Nature 2014, 505, 239–243. [Google Scholar] [CrossRef]
- Yamasaki, M.; Moriwaki, S.; Miyake, O.; Hashimoto, W.; Murata, K.; Mikami, B. Structure and Function of a Hypothetical Pseudomonas aeruginosa Protein PA1167 Classified into Family PL-7: A Novel Alginate Lyase with a β-sandwich Fold. J. Biol. Chem. 2004, 279, 31863–31872. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.M.; Miyakawa, T.; Inoue, A.; Nishiyama, R.; Nakamura, A.; Asano, A.; Ojima, T.; Tanokura, M. Structural Basis for Controlling the Enzymatic Properties of Polymannuronate Preferred Alginate Lyase FlAlyA from the PL-7 Family. Chem. Commun. 2018, 54, 555–558. [Google Scholar] [CrossRef] [Green Version]
- Zeinali, F.; Homaei, A.; Kamrani, E.; Patel, S. Use of Cu/Zn-superoxide dismutase tool for biomonitoring marine environment pollution in the Persian Gulf and the Gulf of Oman. Ecotoxicol. Environ. Saf. 2018, 151, 236–241. [Google Scholar] [CrossRef]
- Zeinali, F.; Homaei, A.; Kamrani, E. Identification and kinetic characterization of a novel superoxide dismutase from Avicennia marina: An antioxidant enzyme with unique features. Int. J. Biol. Macromol. 2017, 105, 1556–1562. [Google Scholar] [CrossRef]
- Sharifian, S.; Homaei, A.; Kim, S.-K.; Satari, M. Production of newfound alkaline phosphatases from marine organisms with potential functions and industrial applications. Process Biochem. 2018, 64, 103–115. [Google Scholar] [CrossRef]
- Beygmoradi, A.; Homaei, A.; Hemmati, R.; Arco, J.D.; Fernandez-Lucas, J. Identification of a novel tailor-made chitinase from white shrimp Fenneropenaeus merguiensis. Colloids Surf. B Biointerfaces 2021, 203, 111747. [Google Scholar] [CrossRef]
- Shojaei, F.; Homaei, A.; Taherizadeh, M.R.; Kamrani, E. Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannameiprotease: An eco-friendly nanobiocatalyst. Int. J. Food Prop. 2017, 20, 1413–1423. [Google Scholar]
- Qeshmi, F.I.; Homaei, A.; Fernandes, P.; Hemmati, R.; Dijkstra, B.W.; Khajeh, K. Xylanases from marine microorganisms: A brief overview on scope, sources, features and potential applications. Biochim. Biophys. Acta Proteins Proteom. 2020, 1868, 140312. [Google Scholar] [CrossRef]
- Izadpanah Qeshmi, F.; Homaei, A.; Khajeh, K.; Kamrani, E.; Fernandes, P. Production of a Novel Marine Pseudomonas aeruginosa Recombinant L-Asparaginase: Insight on the Structure and Biochemical Characterization. Mar. Biotechnol. 2022, 24, 599–613. [Google Scholar] [CrossRef]
- Dadshahi, Z.; Homaei, A.; Zeinali, F.; Sajedi, R.H.; Khajeh, K. Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Penaeus vannamei suitable for food and detergent industries. Food Chem. 2016, 202, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Federico Abascal, A.V. Abascal—Automatic Annotation of Protein Function Based on Family Identification. Proteins 2003, 53, 683–692. [Google Scholar] [CrossRef]
- Fischer, B.; Summner, I.; Goodenough, P. Isolation, Renaturation, and Formation of Disulfide Bonds of Eukaryotic Proteins Expressed in Escherichia coli as Inclusion Bodies. Biotechnol. Bioeng. 1993, 41, 3–13. [Google Scholar] [CrossRef]
- Zhu, B.; Ni, F.; Ning, L.; Yao, Z.; Du, Y. Cloning and Biochemical Characterization of a Novel κ-carrageenase from Newly Isolated Marine Bacterium Pedobacter hainanensis NJ-02. Int. J. Biol. Macromol. 2018, 108, 1331–1338. [Google Scholar] [CrossRef]
Substrate | Activity | Km (mM) | Vmax (μmol/s) | kcat (s−1) |
---|---|---|---|---|
Alginate | 2314.9 U/mg | 0.26 | 0.0648 | 14.305 |
PolyM | 4186.1 U/mg | 3.43 | 0.0622 | 13.730 |
PolyG | 2494.8 U/mg | 1.89 | 0.07412 | 16.362 |
Enzyme | PL Family | Organism | Optimal Temperature (°C)/pH | Activity/Residual Activity at 5–15 °C | Degree of Polymerization of the Product (DP) | Mode of Action | Refs. |
---|---|---|---|---|---|---|---|
TAPL7A | PL7 | Thalassotalea algicola | 15/8.0 | 80–100%/90–100% | 1–2 | Endo+Exo | This study |
Alyw201 | PL7 | Vibrio sp. W2 | 35/8.0 | No data-60%/No data-90% | 2–6 | Endo | [23] |
AlyC3 | PL7 | Psychromonas sp. C-3 | 20/8.0 | 58–92%/No data | 1–3 | Endo | [13] |
AlyL1 | PL7 | Agarivorans sp. L11 | 40/8.6 | 20–54.5%/80–95% | 2–3 | Endo | [17] |
TsAly7B | PL7 | Thalassomonas sp. LD5 | 30/7.6 | 10–40%/60–80% | 2–4 | Endo | [22] |
AlyPM | PL7 | Pseudoalteromonas sp. SM0524 | 30/8.5 | 19–45%/90–100% | 2–4 | Endo | [26] |
AlgB | PL7 | Vibrio sp. W13 | 30/8.0 | No data | 2–5 | Endo | [32] |
A9mT | PL7 | Vibrio sp. A9mT | 30/7.5 | No data/60–75% | No data | No data | [33] |
Alg2951 | PL7 | Alteromonas portus HB161718T | 25/8.0 | 40–70%/100% | 1, 3 | Endo+Exo | [31] |
AlyGC | PL6 | Glaciecola chathamensis | 30/7.0 | 50–60%/No data | 1 | Exo | [12] |
AlgSH17 | PL17 | Microbulbifer sp. SH-1 | 30/7.0 | No data | 1, 2–6 | Endo+Exo | [7] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Li, L.; Zhu, B.; Yao, Z. Biochemical Characterization and Elucidation of the Hybrid Action Mode of a New Psychrophilic and Cold-Tolerant Alginate Lyase for Efficient Preparation of Alginate Oligosaccharides. Mar. Drugs 2022, 20, 506. https://doi.org/10.3390/md20080506
Cao S, Li L, Zhu B, Yao Z. Biochemical Characterization and Elucidation of the Hybrid Action Mode of a New Psychrophilic and Cold-Tolerant Alginate Lyase for Efficient Preparation of Alginate Oligosaccharides. Marine Drugs. 2022; 20(8):506. https://doi.org/10.3390/md20080506
Chicago/Turabian StyleCao, Shengsheng, Li Li, Benwei Zhu, and Zhong Yao. 2022. "Biochemical Characterization and Elucidation of the Hybrid Action Mode of a New Psychrophilic and Cold-Tolerant Alginate Lyase for Efficient Preparation of Alginate Oligosaccharides" Marine Drugs 20, no. 8: 506. https://doi.org/10.3390/md20080506
APA StyleCao, S., Li, L., Zhu, B., & Yao, Z. (2022). Biochemical Characterization and Elucidation of the Hybrid Action Mode of a New Psychrophilic and Cold-Tolerant Alginate Lyase for Efficient Preparation of Alginate Oligosaccharides. Marine Drugs, 20(8), 506. https://doi.org/10.3390/md20080506