An Alkaloid from a Highly Invasive Seaweed Increases the Voracity and Reproductive Output of a Model Fish Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of CAU on Fish Voracity
2.2. Changes in the Expression Levels of Genes Controlling Food Intake and Metabolism
2.3. Effects of Dietary CAU on Lipid Metabolism
2.4. Parental Transfer of Dietary CAU to Zebrafish Offspring
2.5. Impact of CAU on Fish Reproductive Performance
2.6. Effects of CAU on Zebrafish Gonadal Differentiation
2.7. Changes in the Expression Levels of Reproductive Genes
3. Materials and Methods
3.1. Zebrafish Maintenance
3.2. Isolation and Identification of CAU
3.3. Food Preparation
3.4. Feeding Trials
3.5. Fatty Acid Analysis
3.6. Quantification of CAU in Diplodus Sargus Gonads
3.7. Reproductive Performance in Zebrafish under Treatment with CAU
3.8. Quantification of CAU in Embryos and Larvae
3.9. Assessment of Gonadosomatic (GSI) and Hepatosomatic (HSI) Indexes
3.10. Histological Analysis of Gonads in Juvenile Zebrafish
3.11. RNA Extraction and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Terlizzi, A.; Felline, S.; Lionetto, M.G.; Caricato, R.; Perfetti, V.; Cutignano, A.; Mollo, E. Detrimental physiological effects of the invasive alga Caulerpa racemosa on the Mediterranean white seabream Diplodus sargus. Aquat. Biol. 2011, 12, 109–117. [Google Scholar] [CrossRef]
- Felline, S.; Mollo, E.; Cutignano, A.; Grauso, L.; Andaloro, F.; Castriota, L.; Consoli, P.; Falautano, M.; Sinopoli, M.; Terlizzi, A. Preliminary observations of caulerpin accumulation from the invasive Caulerpa cylindracea in native Mediterranean fish species. Aquat. Biol. 2017, 26, 27–31. [Google Scholar] [CrossRef]
- Vitale, R.; D’Aniello, E.; Gorbi, S.; Martella, A.; Silvestri, C.; Giuliani, M.; Fellous, T.; Gentile, A.; Carbone, M.; Cutignano, A.; et al. Fishing for targets of alien metabolites: A novel peroxisome proliferator-activated receptor (PPAR) agonist from a marine pest. Mar. Drugs 2018, 16, 431. [Google Scholar] [CrossRef] [PubMed]
- Paul, N.A.; Neveux, N.; Magnusson, M.; de Nys, R. Comparative production and nutritional value of “sea grapes”—The tropical green seaweeds Caulerpa lentillifera and C. racemosa. J. Appl. Phycol. 2014, 26, 1833–1844. [Google Scholar] [CrossRef]
- Defranoux, F.; Noè, S.; Cutignano, A.; Casapullo, A.; Ciavatta, M.L.; Carbone, M.; Mollo, E.; Gianguzza, P. Chemoecological study of the invasive alga Caulerpa taxifolia var. distichophylla from the Sicilian coast. Aquat. Ecol. 2022, 56, 447–457. [Google Scholar] [CrossRef]
- Defranoux, F.; Mollo, E. Molecular interactions as drivers of changes in marine ecosystems. In Co-Evolution of Secondary Metabolites; Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–13. ISBN 9783319768878. [Google Scholar]
- Mollo, E.; Cimino, G.; Ghiselin, M.T. Alien biomolecules: A new challenge for natural product chemists. Biol. Invasions 2015, 17, 941–950. [Google Scholar] [CrossRef]
- Michalik, L.; Auwerx, J.; Berger, J.P.; Chatterjee, V.K.; Glass, C.K.; Gonzalez, F.J.; Grimaldi, P.A.; Kadowaki, T.; Lazar, M.A.; O’Rahilly, S.; et al. International union of pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol. Rev. 2006, 58, 726–741. [Google Scholar] [CrossRef]
- Wang, Y.-X. PPARs: Diverse regulators in energy metabolism and metabolic diseases. Cell Res. 2010, 20, 124–137. [Google Scholar] [CrossRef]
- Li, Q.; Yu, Q.; Lin, L.; Zhang, H.; Peng, M.; Jing, C.; Xu, G. Hypothalamic peroxisome proliferator-activated receptor gamma regulates ghrelin production and food intake. Neuropeptides 2018, 69, 39–45. [Google Scholar] [CrossRef]
- Froment, P.; Gizard, F.; Defever, D.; Staels, B.; Dupont, J.; Monget, P. Peroxisome proliferator-activated receptors in reproductive tissues: From gametogenesis to parturition. J. Endocrinol. 2006, 189, 199–209. [Google Scholar] [CrossRef]
- Komar, C.M. Peroxisome proliferator-activated receptors (PPARs) and ovarian function—Implications for regulating steroidogenesis, differentiation, and tissue remodeling. Reprod. Biol. Endocrinol. 2005, 3, 41. [Google Scholar] [CrossRef]
- Felline, S.; Caricato, R.; Cutignano, A.; Gorbi, S.; Lionetto, M.G.M.G.; Mollo, E.; Regoli, F.; Terlizzi, A. Subtle effects of biological invasions: Cellular and physiological responses of fish eating the exotic pest Caulerpa racemosa. PLoS ONE 2012, 7, e38763. [Google Scholar] [CrossRef]
- Gorbi, S.; Giuliani, M.E.; Pittura, L.; D’Errico, G.; Terlizzi, A.; Felline, S.; Grauso, L.; Mollo, E.; Cutignano, A.; Regoli, F. Could molecular effects of Caulerpa racemosa metabolites modulate the impact on fish populations of Diplodus sargus? Mar. Environ. Res. 2014, 96, 2–11. [Google Scholar] [CrossRef]
- Ulloa, P.E. Zebrafish as animal model for aquaculture nutrition research. Front. Genet. 2014, 5, 313. [Google Scholar] [CrossRef]
- Ribas, L.; Piferrer, F. The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Rev. Aquac. 2014, 6, 209–240. [Google Scholar] [CrossRef]
- Piccinetti, C.C.; Migliarini, B.; Petrosino, S.; Di Marzo, V.; Carnevali, O. Anandamide and AM251, via water, modulate food intake at central and peripheral level in fish. Gen. Comp. Endocrinol. 2010, 166, 259–267. [Google Scholar] [CrossRef]
- Amodeo, P.; D’Aniello, E.; Defranoux, F.; Marino, A.; D’Angelo, L.; Ghiselin, M.T.; Mollo, E. The suitability of fishes as models for studying appetitive behavior in vertebrates. In Results and Problems in Cell Differentiation; Springer: Berlin, Germany, 2018; Volume 65, pp. 423–438. [Google Scholar]
- Matias, I.; Bisogno, T.; Di Marzo, V. Endogenous cannabinoids in the brain and peripheral tissues: Regulation of their levels and control of food intake. Int. J. Obes. 2006, 30, S7–S12. [Google Scholar] [CrossRef]
- Guida, F.; Luongo, L.; Boccella, S.; Giordano, M.E.; Romano, R.; Bellini, G.; Manzo, I.; Furiano, A.; Rizzo, A.; Imperatore, R.; et al. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: Involvement of the CB2 receptor. Sci. Rep. 2017, 7, 375. [Google Scholar] [CrossRef]
- Iannotti, F.A.; Vitale, R.M. The endocannabinoid system and PPARs: Focus on their signalling crosstalk, action and transcriptional regulation. Cells 2021, 10, 586. [Google Scholar] [CrossRef]
- Sarruf, D.A.; Yu, F.; Nguyen, H.T.; Williams, D.L.; Printz, R.L.; Niswender, K.D.; Schwartz, M.W. Expression of peroxisome proliferator-activated receptor-γ in key neuronal subsets regulating glucose metabolism and energy homeostasis. Endocrinology 2009, 150, 707–712. [Google Scholar] [CrossRef]
- Pucci, M.; Zaplatic, E.; Micioni Di Bonaventura, M.V.; Micioni Di Bonaventura, E.; De Cristofaro, P.; Maccarrone, M.; Cifani, C.; D’Addario, C. On the role of central type-1 cannabinoid receptor gene regulation in food intake and eating behaviors. Int. J. Mol. Sci. 2021, 22, 398. [Google Scholar] [CrossRef] [PubMed]
- Flores, Á.; Maldonado, R.; Berrendero, F. Cannabinoid-hypocretin cross-talk in the central nervous system: What we know so far. Front. Neurosci. 2013, 7, 256. [Google Scholar] [CrossRef] [PubMed]
- Imperatore, R.; D’Angelo, L.; Safari, O.; Motlagh, H.A.; Piscitelli, F.; de Girolamo, P.; Cristino, L.; Varricchio, E.; di Marzo, V.; Paolucci, M. Overlapping distribution of orexin and endocannabinoid receptors and their functional interaction in the brain of adult zebrafish. Front. Neuroanat. 2018, 12, 62. [Google Scholar] [CrossRef] [PubMed]
- Mato, S.; Aso, E.; Castro, E.; Martín, M.; Valverde, O.; Maldonado, R.; Pazos, Á. CB 1 knockout mice display impaired functionality of 5-HT 1A and 5-HT 2A/C receptors. J. Neurochem. 2007, 103, 2111–2120. [Google Scholar] [CrossRef]
- Brosda, J.; Müller, N.; Bert, B.; Fink, H. Modulatory role of postsynaptic 5-hydroxytryptamine type 1A receptors in (±)-8-hydroxy- N, N -dipropyl-2-aminotetralin-induced hyperphagia in mice. ACS Chem. Neurosci. 2015, 6, 1176–1185. [Google Scholar] [CrossRef]
- Gonzalez Nunez, V. Identification of two proopiomelanocortin genes in zebrafish (Danio rerio). Mol. Brain Res. 2003, 120, 1–8. [Google Scholar] [CrossRef]
- Zhan, C.; Zhou, J.; Feng, Q.; Zhang, J.-e.; Lin, S.; Bao, J.; Wu, P.; Luo, M. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci. 2013, 33, 3624–3632. [Google Scholar] [CrossRef]
- Assan, D.; Mustapha, U.F.; Chen, H.; Li, Z.; Peng, Y.; Li, G. The roles of neuropeptide Y (Npy) and peptide YY (Pyy) in teleost food intake: A mini review. Life 2021, 11, 547. [Google Scholar] [CrossRef]
- Bauer, P.V.; Hamr, S.C.; Duca, F.A. Regulation of energy balance by a gut–brain axis and involvement of the gut microbiota. Cell. Mol. Life Sci. 2016, 73, 737–755. [Google Scholar] [CrossRef]
- Volkoff, H. The neuroendocrine regulation of food intake in fish: A review of current knowledge. Front. Neurosci. 2016, 10, 1–31. [Google Scholar] [CrossRef]
- Shahjahan, M.; Kitahashi, T.; Parhar, I.S. Central pathways integrating metabolism and reproduction in teleosts. Front. Endocrinol. 2014, 5, 36. [Google Scholar] [CrossRef]
- Magliozzi, L.; Maselli, V.; Almada, F.; Di Cosmo, A.; Mollo, E.; Polese, G. Effect of the algal alkaloid caulerpin on neuropeptide Y (NPY) expression in the central nervous system (CNS) of Diplodus sargus. J. Comp. Physiol. A 2019, 205, 203–210. [Google Scholar] [CrossRef]
- Lopez, S.; Bermudez, B.; Pacheco, Y.M.; Ortega, A.; Varela, L.M.; Abia, R.; Muriana, F.J.G. Oleic Acid. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1385–1393. ISBN 9780123744203. [Google Scholar]
- Granado-Casas, M.; Mauricio, D. Oleic acid in the diet and what it does: Implications for diabetes and its complications. In Bioactive Food as Dietary Interventions for Diabetes; Elsevier: Amsterdam, The Netherlands, 2019; pp. 211–229. ISBN 9780128138229. [Google Scholar]
- Del Coco, L.; Felline, S.; Girelli, C.; Angilè, F.; Magliozzi, L.; Almada, F.; D’Aniello, B.; Mollo, E.; Terlizzi, A.; Fanizzi, F. 1H NMR spectroscopy and MVA to evaluate the effects of caulerpin-based diet on Diplodus sargus lipid profiles. Mar. Drugs 2018, 16, 390. [Google Scholar] [CrossRef]
- Chen, H.; Bi, B.; Kong, L.; Rong, H.; Su, Y.; Hu, Q. Seasonal changes in plasma hormones, sex-related genes transcription in brain, liver and ovary during gonadal development in female rainbow trout (Oncorhynchus mykiss). Fishes 2021, 6, 62. [Google Scholar] [CrossRef]
- Rizzo, E.; Bazzoli, N. Reproduction and embryogenesis. In Biology and Physiology of Freshwater Neotropical Fish; Elsevier: Amsterdam, The Netherlands, 2020; pp. 287–313. ISBN 9780128158722. [Google Scholar]
- Bogacka, I.; Kurzynska, A.; Bogacki, M.; Chojnowska, K. Peroxisome proliferator-activated receptors in the regulation of female reproductive functions. Folia Histochem. Cytobiol. 2015, 53, 189–200. [Google Scholar] [CrossRef]
- Liu, L.-L.; Xian, H.; Cao, J.-C.; Zhang, C.; Zhang, Y.-H.; Chen, M.-M.; Qian, Y.; Jiang, M. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology. Asian J. Androl. 2015, 17, 942. [Google Scholar]
- Peng, L.; Yang, H.; Ye, Y.; Ma, Z.; Kuhn, C.; Rahmeh, M.; Mahner, S.; Makrigiannakis, A.; Jeschke, U.; von Schönfeldt, V. Role of Peroxisome Proliferator-Activated Receptors (PPARs) in trophoblast functions. Int. J. Mol. Sci. 2021, 22, 433. [Google Scholar] [CrossRef]
- Froment, P.; Fabre, S.; Dupont, J.; Pisselet, C.; Chesneau, D.; Staels, B.; Monget, P. Expression and functional role of peroxisome proliferator-activated receptor-γ in ovarian folliculogenesis in the sheep. Biol. Reprod. 2003, 69, 1665–1674. [Google Scholar] [CrossRef]
- Minge, C.E.; Robker, R.L.; Norman, R.J. PPAR Gamma: Coordinating metabolic and immune contributions to female fertility. PPAR Res. 2008, 2008, 243791. [Google Scholar] [CrossRef]
- Thomas, K. Developmental patterns of PPAR and RXR gene expression during spermatogenesis. Front. Biosci. 2011, E3, 324. [Google Scholar] [CrossRef]
- Madak-Erdogan, Z.; Katzenellenbogen, B.S. Aryl hydrocarbon receptor modulation of estrogen receptor α-mediated gene regulation by a multimeric chromatin complex involving the two receptors and the coregulator RIP140. Toxicol. Sci. 2012, 125, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Liu, Y.; Luo, D.; Ogawa, S.; Yin, Y.; Li, S.; Zhang, Y.; Hu, W.; Parhar, I.S.; Lin, H.; et al. The kiss/kissr systems are dispensable for zebrafish reproduction: Evidence from gene knockout studies. Endocrinology 2015, 156, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Tng, E. Kisspeptin signalling and its roles in humans. Singapore Med. J. 2015, 56, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Thaventhiran, T.; Minhas, S.; Dhillo, W.S.; Jayasena, C.N. Kisspeptin and testicular function—Is it necessary? Int. J. Mol. Sci. 2020, 21, 2958. [Google Scholar] [CrossRef] [PubMed]
- Connolly, M.H.; Dutkosky, R.M.; Heah, T.P.; Sayler, G.S.; Henry, T.B. Temporal dynamics of oocyte growth and vitellogenin gene expression in zebrafish (Danio rerio). Zebrafish 2014, 11, 107–114. [Google Scholar] [CrossRef]
- Ibabe, A.; Herrero, A.; Cajaraville, M.P. Modulation of peroxisome proliferator-activated receptors (PPARs) by PPARα- and PPARγ-specific ligands and by 17β-estradiol in isolated zebrafish hepatocytes. Toxicol. Vitr. 2005, 19, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Skipper, J.K.; Hamilton, T.H. Regulation by estrogen of the vitellogenin gene. Proc. Natl. Acad. Sci. USA 1977, 74, 2384–2388. [Google Scholar] [CrossRef]
- Anjaneyulu, A.S.R.; Prakash, C.V.S.; Mallavadhani, U.V. Two caulerpin analogues and a sesquiterpene from Caulerpa racemosa. Phytochemistry 1991, 30, 3041–3042. [Google Scholar] [CrossRef]
- Chay, C.; Cansino, R.; Pinzón, C.; Torres-Ochoa, R.; Martínez, R. Synthesis and anti-tuberculosis activity of the marine natural product caulerpin and its analogues. Mar. Drugs 2014, 12, 1757–1772. [Google Scholar] [CrossRef]
- Maiti, B.C.; Thomson, R.H.; Mahendran, M. The structure of caulerpin, a pigment from Caulerpa algae. J. Chem. Res. Synop. 1978, 126–127. [Google Scholar]
- Cutignano, A.; Luongo, E.; Nuzzo, G.; Pagano, D.; Manzo, E.; Sardo, A.; Fontana, A. Profiling of complex lipids in marine microalgae by UHPLC/tandem mass spectrometry. Algal Res. 2016, 17, 348–358. [Google Scholar] [CrossRef]
- de Girolamo, P.; Lucini, C. Neuropeptide localization in nonmammalian vertebrates. In Neuropeptides: Methods in Molecular Biology (Methods and Protocols); Merighi, A., Ed.; Humana: Totowa, NJ, USA, 2011; Volume 789, pp. 37–56. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Felline, S.; Mollo, E.; Ferramosca, A.; Zara, V.; Regoli, F.; Gorbi, S.; Terlizzi, A. Can a marine pest reduce the nutritional value of Mediterranean fish flesh? Mar. Biol. 2014, 161, 1275–1283. [Google Scholar] [CrossRef]
Name | Forward | Reverse |
---|---|---|
Er1 | CACAGGACAAGAGGAAGAAG | ATGGTGATCTCTGTGTAGGG |
Er2a | TCCGAAAGTGCTATGAAGTT | TTATCTCTTGAGACCTCGGA |
Er2b | AAAGCCATACACTGAGGCTA | CAGATCTCCACATCAATCCT |
Ar | CAAAGCCGTGTCCGTATC | TTCGCCTCTGTCTCGTCCC |
Cyp19a1a | CGCAGAGAAACTTGACCATTC | CGCATCACCATCTCCAACAC |
Fshr | GGCAACACCGAAGACACAC | CGTGTAGTTCAGACAGGGCT |
Cyp19a1b | CAGTCGTTACTTCCAGCCATTC | CCGCTGTTTCTCCGTTGC |
Cyp17 | TCTTTGACCCAGGACGCTTT | CCGACGGGCAGCACAA |
Lhr | CCTGGAGGCTCATTTCAT | GAGATTCATTGTGGCGTAT |
Ahr1a | ATGACATGAATGGTGTTGGAGAG | ACTGTTCCGATGTAAGCTTGT |
5-HT1A | AATCATCGGCTCGCTTTTCC | TAAGGTCTGTAACGGCCAGG |
Cnr1 | TACTGGAAGAGGTCAATC | AGAGTCAATAGTGAGCAA |
Cnr2 | ATTGCAAGCTCCACAGCACT | AAACGCCATTGTGACGCCA |
Ppar-α | TCCACATGAACAAAGCCAAA | AGCGTACTGGCAGAAAAGGA |
Ppar-γ | CTGCCGCATACACAAGAAGA | TCACGTCACTGGAGAACTCG |
Fshb | ATGAGGATGCGTGTGCTTGTTC | GTGATGGAGATGTTGGTGAGTCG |
Lhb | GGCTGGAAATGGTGTCTT | GGCTCTTGTAAACGGGAT |
Lep b | TTCCCCGTCACCTCCAACTA | CCTTGCATGTGCCATTGTGTT |
Lep a | TTCCCCGTCACCTCCAACTA | CCTTGCATGTGCCATTGTGTT |
Acadm | AAGGTTTTGAGGGCAGGTGT | ACTCTTTCTGCTGCTCGGTT |
Kiss1 | CAAGCTCCATACCTGCAAGTG | GTACCCTCGCCACTGACAAC |
Kiss2 | CAGAGCCTATGCCAGACC | CTAGTCGATGTTTGCAGGATATTT |
Hcrt | AGTGCATCTCAACAACGACG | GTGAGTTGTGCAGCAGTTGT |
Npy | ACAAAGCCCGACAACCCG | AGCGCTTGACCTTTTCCCAT |
Pyy-a | CGCGCTGAGACACTACATCA | GTGCTCTGTGTCATCCCCAA |
Gnrh2 | CCAGGACTGCAGTAGAGGAG | GCACTCAGACACAGCATCAG |
Vtg1 | GTCGCTGTTCCCATCAATCC | GCAGTACAGCAGTGGTCTAA |
Pomca | CTGTCGAGACCTCAGCACAG | GCTTTCTCCAGGGTAGACGG |
Rps-18 | TGGTGTGGCTATGAACCCTG | TGGACGGTCTTTGTTCCTCG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiano, V.; Cutignano, A.; Maiello, D.; Carbone, M.; Ciavatta, M.L.; Polese, G.; Fioretto, F.; Attanasio, C.; Palladino, A.; Felline, S.; et al. An Alkaloid from a Highly Invasive Seaweed Increases the Voracity and Reproductive Output of a Model Fish Species. Mar. Drugs 2022, 20, 513. https://doi.org/10.3390/md20080513
Schiano V, Cutignano A, Maiello D, Carbone M, Ciavatta ML, Polese G, Fioretto F, Attanasio C, Palladino A, Felline S, et al. An Alkaloid from a Highly Invasive Seaweed Increases the Voracity and Reproductive Output of a Model Fish Species. Marine Drugs. 2022; 20(8):513. https://doi.org/10.3390/md20080513
Chicago/Turabian StyleSchiano, Valentina, Adele Cutignano, Daniela Maiello, Marianna Carbone, Maria Letizia Ciavatta, Gianluca Polese, Federica Fioretto, Chiara Attanasio, Antonio Palladino, Serena Felline, and et al. 2022. "An Alkaloid from a Highly Invasive Seaweed Increases the Voracity and Reproductive Output of a Model Fish Species" Marine Drugs 20, no. 8: 513. https://doi.org/10.3390/md20080513
APA StyleSchiano, V., Cutignano, A., Maiello, D., Carbone, M., Ciavatta, M. L., Polese, G., Fioretto, F., Attanasio, C., Palladino, A., Felline, S., Terlizzi, A., D’Angelo, L., de Girolamo, P., Turano, M., Lucini, C., & Mollo, E. (2022). An Alkaloid from a Highly Invasive Seaweed Increases the Voracity and Reproductive Output of a Model Fish Species. Marine Drugs, 20(8), 513. https://doi.org/10.3390/md20080513