Mining Xanthine Oxidase Inhibitors from an Edible Seaweed Pterocladiella capillacea by Using In Vitro Bioassays, Affinity Ultrafiltration LC-MS/MS, Metabolomics Tools, and In Silico Prediction
Abstract
:1. Introduction
2. Results
2.1. Evaluation of XOD Inhibition Activity
2.2. Evaluation of Anti-Inflammatory Activity
2.3. UF-LC-MS Screening of XOD Ligands in P. capillacea Extract
2.4. Comparison of Metabolite Profiles by LC-MS/MS and Multiple Database Mining
2.5. Molecular Docking and ADMET Analysis
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Preparation of Crude Extracts of P. capillacea
4.3. Separation of the Crude Extract
4.4. In Vitro Determination of XOD-Inhibitory Activity
4.5. Cellular Anti-Inflammatory Activity Assay
4.6. UF-LC-MS/MS
4.6.1. Affinity Ultrafiltration Treatment
4.6.2. HPLC Preliminary Analysis
4.6.3. LC-MS/MS Analysis
4.7. Annotation of the Bioactive Molecules Using Metabolomics Tools
4.8. Molecular Docking and ADMET Analysis
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kwon, H.C.; Ahn, S.S.; Yoo, B.W.; Yoo, J.; Jung, S.M.; Song, J.J.; Park, Y.B.; Lee, S.W. Hyperuricemia is associated with decreased renal function and occurrence of end-stage renal disease in patients with microscopic polyangiitis and granulomatosis with polyangiitis: A retrospective study. Rheumatol. Int. 2020, 40, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- So, A.K.; Martinon, F. Inflammation in gout: Mechanisms and therapeutic targets. Nat. Rev. Rheumatol. 2017, 13, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Mount, D.B.; Reginato, A.M. Pathogenesis of Gout. Ann. Intern. Med. 2005, 143, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Zhang, W.L.; Qian, T.T.; Sun, H.; Xu, Q. Reduced renal function may explain the higher prevalence of hyperuricemia in older people. Sci. Rep. 2021, 11, 1302–1308. [Google Scholar] [CrossRef]
- Ruiz-Miyazawa, K.W.; Borghi, S.M.; Pinho-Ribeiro, F.A.; Staurengo-Ferrari, L.; Fattori, V.; Fernandes, G.S.A.; Casella, A.M.; Alves-Filho, J.C.; Cunha, T.M.; Cunha, F.Q.; et al. Quercetin inhibits gout arthritis in mice: Induction of an opioid-dependent regulation of inflammasome. Inflammopharmacology 2017, 25, 555–570. [Google Scholar] [CrossRef]
- Barros, C.H.; Matosinhos, R.C. Lychnophora pinaster’s effects on inflammation and pain in acute gout. J. Ethnopharmacol. 2021, 280, 114460. [Google Scholar] [CrossRef]
- Hille, R.; Hall, J.; Basu, P. The mononuclear molybdenum enzymes. Chem. Rev. 1996, 96, 2757–2816. [Google Scholar] [CrossRef]
- Zhao, M.M. In Vitro and In Vivo studies on adlay-derived seed extracts: Phenolic profiles, antioxidant activities, serum uric acid suppression, and xanthine oxidase inhibitory effects. J. Agric. Food Chem. 2014, 62, 7771–7778. [Google Scholar] [CrossRef]
- Lee, B.E.; Toledo, A.H.; Anaya-Prado, R.; Roach, R.R.; Toledo-Pereyra, L.H. Allopurinol, xanthine oxidase, and cardiac ischemia. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2009, 57, 902–909. [Google Scholar] [CrossRef]
- Bruce, S.P. Febuxostat: A selective xanthine oxidase inhibitor for the treatment of hyperuricemia and gout. Ann. Pharmacother. 2006, 40, 2187–2194. [Google Scholar] [CrossRef]
- Takashi, N.; Takayo, M.; Mai, N.; Nobutaka, M.; Naoki, A.; Takashi, I.; Ryusuke, S. Effects of topiroxostat and febuxostat on urinary albumin excretion and plasma xanthine oxidoreductase activity in dbidb mice. Eur. J. Pharmacol. Int. J. 2016, 780, 224–231. [Google Scholar]
- Gliozzi, M.; Malara, N.; Muscoli, S.; Mollace, V. The treatment of hyperuricemia. Int. J. Cardiol. 2016, 213, 23–27. [Google Scholar] [CrossRef]
- Badve, S.V.; Pascoe, E.M.; Tiku, A.; Boudville, N.; Brown, F.G.; Cass, A.; Clarke, P.; Dalbeth, N.; Day, R.O.; Zoysa, J.R.d.; et al. Effects of Allopurinol on the Progression of Chronic Kidney Disease. N. Engl. J. Med. 2020, 382, 2504–2513. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.F.; Zhang, R.; Fu, R.J.; Chen, J.; He, W. Effect and mechanism study of the same doses of Quercetin and Apigenin on hyperuricemic rats. Mod. Prev. Med. 2012, 39, 1365–1367. [Google Scholar]
- Zhu, J.X.; Wang, Y.; Kong, L.D.; Yang, C.; Zhang, X. Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. J. Ethnopharmacol. 2004, 93, 133–140. [Google Scholar] [CrossRef]
- Shin-Ichi, A.; Mifuyu, O.; Shinji, K.; Kazumi, Y. Comparative effects of quercetin, luteolin, apigenin and their related polyphenols on uric acid production in cultured hepatocytes and suppression of purine bodies-induced hyperuricemia by rutin in mice. Cytotechnology 2021, 73, 343–351. [Google Scholar]
- Ou, R.R.; Lin, L.Z.; Zhao, M.M.; Xie, Z.Q. Action mechanisms and interaction of two key xanthine oxidase inhibitors in galangal: Combination of In Vitro and in silico molecular docking studies. Int. J. Biol. Macromol. 2020, 162, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, G.W.; Pan, J.H.; Gong, D.M. Galangin competitively inhibits xanthine oxidase by a ping-pong mechanism. Food Res. Int. 2016, 89, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.C.; Shen, G.Z.; Wei, T.; Wu, D.M. Study on interaction between myricetin and XO via spectroscopy. J. Harbin Univ. Commer. Nat. Sci. Ed. 2011, 27, 279–281. [Google Scholar]
- Zhang, C.; Zhang, G.W.; Liao, Y.J. Myricetin inhibits the generation of superoxide anion by reduced form of xanthine oxidase. Food Chem. 2017, 221, 1569–1577. [Google Scholar] [CrossRef]
- Cengiz, S.; Yurdakoc, K.; Aksu, S. Inhibition of xanthine oxidase by Caulerpenyne from Caulerpa prolifera. Turk. J. Biochem. 2012, 37, 445–451. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Liu, H.Z.; Luo, P.; Li, Y.Q. Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice. Mar. Drugs 2018, 16, 472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, X.H.; Lin, Z.; Liu, H.Z.; Shang, J.H. Fucoidan from Laminaria japonica inhibits expression of GLUT9 and URAT1 via PI3K/Akt, JNK and NF-κB pathways in uric acid-exposed HK-2 Cells. Mar. Drugs 2021, 19, 238. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Q.; Gao, X.X. The anti-hyperuricemic effects of green alga Enteromorpha prolifera polysaccharide via regulation of the uric acid transporters In Vivo. Food Chem. Toxicol. 2021, 158, 112630. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.L.; Guo, M.Q. Rapid screening for α-Glucosidase inhibitors from Gymnema sylvestre by Affinity Ultrafiltration–HPLC-MS. Front. Pharmacol. 2017, 8, 228. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Tsugawa, H. Computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Compr. Nat. Prod. III 2020, 7, 189–210. [Google Scholar]
- Oppong-Danquah, E.; Parrot, D.; Bluemel, M.; Labes, A.; Tasdemir, D. Molecular networking-based metabolome and bioactivity analyses of marine-adapted fungi co-cultivated with phytopathogens. Front. Microbiol. 2018, 9, 2072. [Google Scholar] [CrossRef]
- Nothias, L.F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J. Feature-based Molecular Networking in the GNPS analysis environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef]
- Remy, S.; Solis, D.; Silland, P.; Neyts, J.; Roussi, F.; Touboul, D.; Litaudon, M. Isolation of phenanthrenes and identification of phorbol ester derivatives as potential anti-CHIKV agents using FBMN and NAP from Sagotia racemosa. Phytochemistry 2019, 167, 112101. [Google Scholar] [CrossRef]
- Nie, Y.Y.; Yang, W.C.; Liu, Y.Y.; Yang, J.M.; Lei, X.L.; Gerwick, W.H.; Zhang, Y. Acetylcholinesterase inhibitors and antioxidants mining from marine fungi: Bioassays, bioactivity coupled LC–MS/MS analyses and molecular networking. Mar. Life Sci. Technol. 2020, 2, 386–397. [Google Scholar] [CrossRef]
- Patarra, R.F.; Iha, C.; Pereira, L.; Neto, A.I. Concise review of the species Pterocladiella capillacea (S.G. Gmelin) Santelices & Hommersand. J. Appl. Phycol. 2020, 32, 787–808. [Google Scholar]
- Cavalli, P.A.; Wanderlind, E.H.; Hemmer, J.V.; Gerlach, O.M.S.; Emmerich, A.K.; Bella-Cruz, A.; Tamanahae, M.r.; Almerindo, G.I. Pterocladiella capillacea-stabilized silver nanoparticles as a green approach toward antibacterial biomaterials. New J. Chem. 2021, 45, 3382–3386. [Google Scholar] [CrossRef]
- Alencar, D.B.D.; Diniz, J.C.; Rocha, S.A.S.; Pires-Cavalcante, K.M.S.; Lima, R.L.D.; Sousa, K.C.D.; Freitas, J.O.; Bezerra, R.M.; Baracho, B.M.; Sampaio, A.H.; et al. Fatty acid composition from the marine red algae Pterocladiella capillacea (S. G. Gmelin) Santelices & Hommersand 1997 and Osmundaria obtusiloba (C. Agardh) R. E. Norris 1991 and its antioxidant activity. An. Acad. Bras. Ciências 2018, 90, 449–459. [Google Scholar]
- Alencar, D.B.d.; Carvalho, F.C.T.d.; Rebouças, R.H.; Santos, D.R.D.; Pires-Cavalcante, K.M.D.S.; Lima, R.L.d.; Baracho, B.M.; Bezerra, R.M.; Viana, F.A.; Vieira, R.H.S.D.F.; et al. Bioactive extracts of red seaweeds Pterocladiella capillacea and Osmundaria obtusiloba (Floridophyceae:Rhodophyta) with antioxidant and bacterial agglutination potential. Asian Pac. J. Trop. Med. 2016, 9, 372–379. [Google Scholar] [CrossRef]
- Bou-Salah, L.; Benarous, K.; Linani, A.; Rabhi, F.; Chaib, K.; Chine, I.; Bensaidane, H.; Yousfi, M. Anti-inflammatory drugs as new inhibitors to xanthine oxidase: In vitro and in silico approach. Mol. Cell. Probes 2021, 58, 101733. [Google Scholar] [CrossRef]
- Nile, S.H.; Ko, E.Y.; Kim, D.H.; Keum, Y.-S. Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity. Rev. Bras. Farmacogn. 2015, 26, 50–55. [Google Scholar] [CrossRef]
- Preethi, J.; Chitra, L.; Ancy, I.; Kumaradhas, P.; Palvannan, T. S-allyl cysteine as potent anti-gout drug: Insight into the xanthine oxidase inhibition and anti-inflammatory activity. Biochimie 2018, 154, 1–9. [Google Scholar]
- Hsiao, G.; Chi, W.C.; Pang, K.L.; Chen, J.; Kuo, Y. Hirsutane-Type sesquiterpenes with inhibitory activity of microglial nitric oxide production from the red alga-derived fungus Chondrostereum sp. NTOU4196. J. Nat. Prod. 2017, 80, 1615–1622. [Google Scholar] [CrossRef]
- Tsugawa, H.; Nakabayashi, R.; Mori, T.; Yamada, Y.; Takahashi, M. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods 2019, 16, 295–298. [Google Scholar] [CrossRef]
- He, J.Y.; Liu, C.C.; Du, M.Z.; Zhou, X.Y.; Hu, Z.L.; Lei, A.P.; Wang, J.X. Metabolic responses of a model green microalga Euglena gracilis to different environmental stresses. Front. Bioeng. Biotechnol. 2021, 9, 662655. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Montanari, A.M.; Widmer, W.W. Two new polymethoxylated flavones, a class of compounds with potential anticancer activity, isolated from cold pressed dancy tangerine peel oil solids. J. Agric. Food Chem. 1997, 45, 364–368. [Google Scholar] [CrossRef]
- Yang, D.; Yang, R.G.; Shen, J.Y.; Huang, L.; Men, S.; Wang, T.C. Sinensetin attenuates oxygen-glucose deprivation/reperfusion-induced neurotoxicity by MAPK pathway in human cerebral microvascular endothelial cells. J. Appl. Toxicol. JAT 2021, 42, 683–693. [Google Scholar] [CrossRef]
- Findwy, J.A.; Patil, A.D. Antibacterial constituents of the red alga Cystoclonium purpureum. Phytochemistry 1986, 25, 548–550. [Google Scholar] [CrossRef]
- Useini, L.; Mojić, M.; Laube, M.; Lönnecke, P.; Mijatović, S. Carborane analogues of Fenoprofen exhibit Improved antitumor activity. ChemMedChem 2023, 18, e202200583. [Google Scholar] [CrossRef] [PubMed]
- Ashry, E.S.H.E.; Atta-ur-Rahman; Choudhary, M.I.; Kandil, S.H.; Nemr, A.E.; Gulzar, T.; Shobier, A.H. Studies on the constituents of the green alga Ulva lactuca. Chem. Nat. Compd. 2011, 47, 335–338. [Google Scholar] [CrossRef]
- Naik, R.R.; Shakya, A.K.; Oriquat, G.A.; Katekhaye, S. Fatty acid analysis, chemical constituents, biological activity and pesticide residues screening in jordanian propolis. Molecules 2021, 26, 5076. [Google Scholar] [CrossRef]
- Elakkad, Y.E.; Younis, M.K.; Allam, R.M.; Mohsen, A.F.; Khalil, I.A. Tenoxicam loaded hyalcubosomes for osteoarthritis. Int. J. Pharm. 2021, 601, 120483. [Google Scholar] [CrossRef]
- Ardellina, J.H.; Moore, R.E. Sphingosine derivatives from red algae of the ceramiales. Phytochemistry 1978, 17, 554–555. [Google Scholar] [CrossRef]
- Verstockt, B.; Vetrano, S.; Salas, A.; Nayeri, S.; Duijvestein, M.; Casteele, N.V. Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 351–366. [Google Scholar] [CrossRef]
- Furukawa, T.; Sakamoto, N.; Suzuki, M.; Kimura, M.; Nagasawa, H.; Sakuda, S. Precocene II, a trichothecene production inhibitor, binds to voltage-dependent anion channel and increases the superoxide level in mitochondria of Fusarium graminearum. PLoS ONE 2015, 10, e0135031. [Google Scholar] [CrossRef] [PubMed]
- Sukmawan, Y.P.; Anggadiredja, K.; Adnyana, I.K. Anti-neuropathic pain mechanistic study on A. conyzoides essential oil, Precocene II, Caryophyllene, or Longifolene as single agents and in combination with pregabalin. CNS Neurol. Disord.—Drug Targets 2023, 22, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, G.O.; Nisar-ur-Rehman; Onyeneke, C.E.; Rauf, K. Medicinal plants of the genus Anthocleista—A review of their ethnobotany, phytochemistry and pharmacology. J. Ethnopharmacol. 2015, 175, 648–667. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, T.Y.; Shan, L.Z.; Cao, L.; Zhu, X.X.; Xue, Y. Estradiol regulates intestinal ABCG2 to promote urate excretion via the PI3K/Akt pathway. Nutr. Metab. 2021, 18, 63–73. [Google Scholar] [CrossRef]
- Wang, Y.G.; Feng, F.F.; He, W.F.; Sun, L.F.; He, Q.; Jin, J. MiR-188-3p abolishes germacrone-mediated podocyte protection in a mouse model of diabetic nephropathy in type I diabetes through triggering mitochondrial injury. Bioengineered 2022, 13, 774–788. [Google Scholar] [CrossRef]
- Jin, T.; Leng, B. Cynaropicrin averts the oxidative stress and neuroinfammation in ischemic/reperfusion injury through the modulation of NF-κB. Appl. Biochem. Biotechnol. 2023, 195, 5424–5438. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Matsumura, T.; Ichida, K.; Okamoto, K.; Nishino, T. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: Roles of active site residues in binding and activation of purine substrate. J. Biochem. 2007, 141, 513–524. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Ma, K.; Bao, L.; Han, J.J.; Jin, T.; Yang, X.L.; Zhao, F.; Li, S.F.; Song, F.H.; Liu, M.M.; Liu, H.W. New benzoate derivatives and hirsutane type sesquiterpenoids with antimicrobial activity and cytotoxicity from the solid-state fermented rice by the medicinal mushroom Stereum hirsutum. Food Chem. 2014, 143, 239–245. [Google Scholar] [CrossRef]
- Qi, Q.Y.; Bao, L.; Ren, J.W.; Han, J.J.; Zhang, Z.Y.; Li, Y.; Yao, Y.J.; Cao, R.; Liu, H.W. Sterhirsutins A and B, two new heterodimeric sesquiterpenes with a new skeleton from the culture of Stereum hirsutum collected in Tibet Plateau. Org. Lett. 2014, 16, 5092–5095. [Google Scholar] [CrossRef]
- Huang, L.; Lan, W.J.; Li, H.J. Two new hirsutane-type sesquiterpenoids chondrosterins N and O from the marine fungus Chondrostereum sp. Nat. Prod. Res. 2018, 32, 1578–1582. [Google Scholar] [CrossRef]
- Huang, L.; Lan, W.J.; Deng, R.; Feng, G.K.; Xu, Q.Y.; Hu, Z.Y. Additional new cytotoxic triquinane-type sesquiterpenoids chondrosterins K-M from the marine fungus Chondrostereum sp. Mar. Drugs 2016, 14, 157. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.X.; Tan, H.B.; Chen, K.; Chen, Y.C.; Li, S.N.; Li, H.H.; Zhang, W.M. Cerrenins A-C, cerapicane and isohirsutane sesquiterpenoids from the endophytic fungus Cerrena sp. Fitoterapia 2018, 129, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Cha, H.J.; Chiang, M.W.L.; Guo, S.Y.; Lin, S.M.; Pang, K.L. Culturable fungal community of Pterocladiella capillacea in Keelung, Taiwan: Effects of surface sterilization method and isolation medium. J. Fungi 2021, 7, 651. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Bae, H. Endophytic Fungi: Key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms 2022, 10, 360. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Si, S.; Liu, L. Analysis of bovine serum albumin ligands from Puerariae flos using ultrafiltration combined with HPLC-MS. J. Chem. 2015, 2015, 648361. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Ma, B.; Chen, L. Rapid screening and detection of XOD inhibitors from S. tamariscina by ultrafiltration LC-PDA-ESI-MS combined with HPCCC. Anal. Bioanal. Chem. 2014, 406, 7379–7387. [Google Scholar] [CrossRef]
- Chen, G.L.; Huang, B.X.; Guo, M.Q. Current advances in screening for bioactive components from medicinal plants by affinity ultrafiltration mass spectrometry. Phytochem. Anal. PCA 2018, 29, 375–386. [Google Scholar] [CrossRef]
- Wang, M.X.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Andriana, Y.; Xuan, T.D.; Quy, T.N.; Minh, T.N.; Van, T.M.; Viet, T.D. Antihyperuricemia, Antioxidant, and Antibacterial Activities of Tridax procumbens L. Foods 2019, 8, 21. [Google Scholar] [CrossRef]
- Chen, M.Q.; Liang, J.Y.; Wang, Y.; Liu, Y.; Zhou, C.X.; Hong, P.Z.; Zhang, Y.; Qian, Z.J. A new benzaldehyde from the coral-derived fungus Aspergillus terreus C23-3 and its anti-Inflammatory effects via suppression of MAPK signaling pathway in RAW264.7 cells. J. Zhejiang Univ.-Sci. B Biomed. Biotechnol. 2022, 23, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, W.C.; Shi, X.; Zheng, H.Z.; Zheng, Z.; Lu, X.H.; Xing, Y. Inducing secondary metabolite production of Aspergillus sydowii through microbial co-culture with Bacillus subtilis. Microb. Cell Factories 2021, 20, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Triastuti, A.; Haddad, M.; Barakat, F.; Mejia, K.; Rabouille, G.; Fabre, N.; Amasifuen, C.; Jargeat, P.; Vansteelandt, M. Dynamics of chemical diversity during co-cultures: An integrative time-scale metabolomics study of fungal Endophytes Cophinforma mamane and Fusarium solani. Chem. Biodivers. 2021, 18, e2000672. [Google Scholar] [CrossRef] [PubMed]
Number | Average Retention Time (min) | Average M/Z | Adduct Ion Name | Area Ratio (4-2P/4-2B) | Predicted Formula | Compound Name | Annotation Method | MS/MS Matched (Y/N) | Bioresource | Reports on Anti-Gout or Anti-Inflammatory Activities |
---|---|---|---|---|---|---|---|---|---|---|
Compound 1 | 19.92 | 233.1533 | [M+H]+ | ---(Area of 4-2B is 0) | C15H22O3 | Chondroterpene C | MW-MF searching | N | P. capillacea symbiotic fungus | effectively inhibits the production of NO in BV-2 cells stimulated by LPS [39] |
Compound 2 | 11.28 | 247.1686 | [M+H]+ | ---(Area of 4-2B is 0) | C16H24O3 | Chondroterpene H | MW-MF searching | N | P. capillacea symbiotic fungus [39] | - |
Compound 3 | 14.97 | 637.3047 | [M+H]+ | 23.67 | C29H48O15 | [6-[4-acetyloxy-3-hydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-2-(hydroxymethyl)-4,5-di(pentanoyloxy)oxan-3-yl] pentanoate | MW-MF searching, MS/MS matching (MSDIAL, FBMN) | Y | Nicotiana tabacum [40] | - |
Compound 4 | 17.17 | 223.2052 | [M+H]+ | 23.02 | C15H26O | unknown | MW-MF searching, MS/MS matching (MSDIAL, FBMN) | Y | Euglena gracilis [41] | - |
Compound 5 | 11.98 | 373.1336 | [M+H]+ | 12.85 | C20H20O7 | Sinensetin | MW-MF searching, MS/MS matching (MSDIAL, FBMN) | Y | Citrus tankan, Citrus keraji [42] | anti-inflammatory and anti-oxidative activities [43] |
Compound 6 | 15.97 | 277.2161 | [M+H]+ | 9.39 | C18H28O2 | Octadeca-2,4,6,8-tetraenoic acid | MW-MF searching, MS/MS matching (MSDIAL, MSFINDER, FBMN) | Y | Cystoclonium purpureum [44] | - |
Compound 7 | 14.96 | 243.1008 | [M+H]+ | 7.73 | C15H14O3 | Fenoprofen | MW-MF searching, MS/MS matching (MSDIAL, MSFINDER, FBMN) | N | unknown | non-steroidal drug used for acute pain and chronic arthritis [45] |
Compound 8 | 17.39 | 274.2743 | [M+H-H2O]+ | 1.91 | C16H32O2 | Palmitic acid | MW-MF searching, MS/MS matching (MSDIAL, FBMN) | Y | Ulva lactuca [46] Pterocladiella tenuis (NPASS) | palmitic acid in propolis exhibits XO-inhibitory activity [47] |
Compound 9 | 14.89 | 263.1275 | [M+H]+ | 1.77 | C15H18O4 | Chondroterpene B | MW-MF searching | N | P. capillacea symbiotic fungus [39] | - |
Compound 10 | 0.72 | 235.1689 | [M+H]+ | 1.31 | C15H24O3 | Chondroterpene E | MW-MF searching | N | P. capillacea symbiotic fungus [39] | - |
Compound 11 | 14.97 | 338.0263 | [M+H]+ | 1.55 | C13H11N3O4S2 | Tenoxicam | MW-MF searching, MS/MS matching (MSDIAL, MSFINDER, FBMN) | Y | unknown | used as drug to treat pain and inflammation in osteoarthritis and rheumatoid arthritis [48] |
Number | Average Retention Time (min) | Average M/Z | Adduct Ion Name | Area Ratio (4-2P/4-2B) | Predicted Formula | Compound Name | Annotation Method | MS/MS Matched (Y/N) | Bioresource | Reports on Anti-Gout or Anti-Inflammatory Activities |
---|---|---|---|---|---|---|---|---|---|---|
Compound 12 | 12.86 | 300.2905 | [M+H]+ | 35.22 | C18H37NO2 | C18-sphingosine | MW-MF searching, MS/MS matching (MSDIAL, MSFINDER, FBMN) | Y | Amansia glomerata, Laurencia nidifica [49] | anti-inflammatory activity [50] |
Compound 13 | 0.91 | 221.1241 | [M+H]+ | 21.12 | C13H16O3 | Precocene ii | MW-MF searching, MS/MS matching (MSDIAL, MSFINDER, FBMN) | Y | Artemisia capillaris, Boenninghausenia albiflora (LOTUS) | antibacterial and antioxidant activities [51,52] |
Compound 14 | 11.97 | 385.0913 | [M+Na]+ | 20.07 | C18H18O8 | Methyl Asterrate | MW-MF searching, MS/MS matching (MSDIAL, MSFINDER, FBMN) | Y | Ruprechtia tangarana (COCONUT) | - |
Compound 15 | 11.97 | 577.1323 | [M+K]+ | 16.89 | C25H30O13 | Grandifloroside | MW-MF searching, MS/MS matching (MSDIAL, MSFINDER, FBMN) | Y | Neonauclea sessilifolia (PubChem) | used in traditional medicine to treat gout [53] |
Compound 16 | 15.02 | 670.3364 | [2M+ACN+H]+ | 6950.76 | unknown | unknown | MW-MF searching, MS/MS matching (MSFINDER) | N | unknown | - |
Compound 17 | 14.99 | 295.1728 | [M+Na]+ | 13.80 | C18H24O2 | Estradiol | MW-MF searching, MS/MS matching (MSDIAL, MSFINDER, FBMN) | Y | Punica granatum (LOTUS) | reduces serum urate levels [54] |
Compound 18 | 15.11 | 241.1587 | [M+Na]+ | 11.67 | C15H22O | Germacrone | MW-MF searching, MS/MS matching (MSDIAL, FBMN) | Y | Curcuma amada, Curcuma aeruginosa (COCONUT) | reduces serum uric acid levels in mice in diabetes-related studies [55] |
Compound 19 | 13.27 | 369.1823 | [M+Na]+ | 9.99 | C19H22O6 | Cynaropicrin | MW-MF searching, MS/MS matching (MSDIAL, FBMN) | Y | Centaurea scoparia (NPASS) | showes a defensive mechanism against oxidative stress and neuroinflammation by inhibiting the NF-κB pathway. [56] |
Compound 20 | 17.17 | 258.2422 | [M+NH4]+ | 23.02 | C15H28O2 | Proximadiol | MW-MF searching, MS/MS matching (MSDIAL, MSFINDER, FBMN) | Y | Euglena gracilis (LOTUS) | - |
Compound 7 | 12.18 | 243.1013 | [M+H]+ | 1.88 | C15H14O3 | Fenoprofen | MW-MF searching, MS/MS matching (MSDIAL, MSFINDER, FBMN) | Y | unknown | non-steroidal drug used for acute pain and chronic arthritis [45] |
Compound 8 | 12.60 | 274.2735 | [M+H-H2O]+ | 1.91 | C16H32O2 | Palmitic acid | MW-MF searching, MS/MS matching (MSDIAL, MSFINDER, FBMN) | Y | Ulva lactuca (LOTUS) | palmitic acid in propolis exhibits XOD-inhibitory activity [47] |
PubChem ID | Compound Name | Hydrogen-Bonding Residues | Minimum Binding Affinity (kcal/mol) |
---|---|---|---|
139589725 | Chondroterpene B | THR-1083, SER-1080, SER-1082 | −8.4 |
139589728 | Chondroterpene E | SER-1080, THR-1083, SER-1082, GLN-1040 | −7.8 |
165258 | Proximadiol | GLN-1194 | −7.5 |
11778225 | Octadeca-2,4,6,8-tetraenoic acid | ARG-880, THR-1010 | −7.4 |
139589726 | Chondroterpene C | TRY-735, ILE-698 | −6.8 |
139589731 | Chondroterpene H | HIS-1212 | −6.3 |
1104 | Sphingosine | — | — |
Name | Chondroterpene C | Chondroterpene H | Proximadiol | Octadeca-2,4,6,8-Tetraenoic Acid | Chondroterpene B | Chondroterpene E | C18-Sphingosine |
---|---|---|---|---|---|---|---|
MW | 250.160 | 264.170 | 240.210 | 276.210 | 254.190 | 252.170 | 299.280 |
LogS | −2.596 | −3.083 | −1.99 | −3.054 | −2.835 | −1.967 | −4.193 |
HIA | 0.019 | 0.023 | 0.006 | 0.019 | 0.029 | 0.045 | 0.314 |
PPB | 62.65% | 64.28% | 84.36% | 95.56% | 58.72% | 38.63% | 98.30% |
BBB | 0.932 | 0.859 | 0.875 | 0.013 | 0.982 | 0.969 | 0.167 |
CYP1A2-inhibitor | 0.017 | 0.008 | 0.022 | 0.459 | 0.021 | 0.007 | 0.317 |
CYP2C19-inhibitor | 0.038 | 0.139 | 0.028 | 0.26 | 0.013 | 0.049 | 0.249 |
CYP2C9-inhibitor | 0.02 | 0.108 | 0.107 | 0.588 | 0.03 | 0.049 | 0.103 |
CYP2D6-inhibitor | 0.007 | 0.011 | 0.009 | 0.849 | 0.003 | 0.006 | 0.483 |
CL | 9.426 | 11.781 | 8.425 | 0.957 | 13.004 | 11.913 | 3.769 |
H-HT | 0.283 | 0.221 | 0.049 | 0.449 | 0.332 | 0.246 | 0.358 |
DILI | 0.048 | 0.148 | 0.026 | 0.552 | 0.039 | 0.091 | 0.02 |
Skin Sensitization | 0.041 | 0.297 | 0.096 | 0.959 | 0.061 | 0.061 | 0.928 |
Lipinski Rule | Accepted | Accepted | Accepted | Accepted | Accepted | Accepted | Accepted |
Pfizer Rule | Accepted | Accepted | Rejected | Rejected | Accepted | Accepted | Rejected |
GSK Rule | Accepted | Accepted | Accepted | Rejected | Accepted | Accepted | Rejected |
Golden Triangle | Accepted | Accepted | Accepted | Accepted | Accepted | Accepted | Accepted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhou, L.; Chen, M.; Liu, Y.; Yang, Y.; Lu, T.; Ban, F.; Hu, X.; Qian, Z.; Hong, P.; et al. Mining Xanthine Oxidase Inhibitors from an Edible Seaweed Pterocladiella capillacea by Using In Vitro Bioassays, Affinity Ultrafiltration LC-MS/MS, Metabolomics Tools, and In Silico Prediction. Mar. Drugs 2023, 21, 502. https://doi.org/10.3390/md21100502
Wang Y, Zhou L, Chen M, Liu Y, Yang Y, Lu T, Ban F, Hu X, Qian Z, Hong P, et al. Mining Xanthine Oxidase Inhibitors from an Edible Seaweed Pterocladiella capillacea by Using In Vitro Bioassays, Affinity Ultrafiltration LC-MS/MS, Metabolomics Tools, and In Silico Prediction. Marine Drugs. 2023; 21(10):502. https://doi.org/10.3390/md21100502
Chicago/Turabian StyleWang, Yawen, Longjian Zhou, Minqi Chen, Yayue Liu, Yu Yang, Tiantian Lu, Fangfang Ban, Xueqiong Hu, Zhongji Qian, Pengzhi Hong, and et al. 2023. "Mining Xanthine Oxidase Inhibitors from an Edible Seaweed Pterocladiella capillacea by Using In Vitro Bioassays, Affinity Ultrafiltration LC-MS/MS, Metabolomics Tools, and In Silico Prediction" Marine Drugs 21, no. 10: 502. https://doi.org/10.3390/md21100502
APA StyleWang, Y., Zhou, L., Chen, M., Liu, Y., Yang, Y., Lu, T., Ban, F., Hu, X., Qian, Z., Hong, P., & Zhang, Y. (2023). Mining Xanthine Oxidase Inhibitors from an Edible Seaweed Pterocladiella capillacea by Using In Vitro Bioassays, Affinity Ultrafiltration LC-MS/MS, Metabolomics Tools, and In Silico Prediction. Marine Drugs, 21(10), 502. https://doi.org/10.3390/md21100502