Dextranase Production Using Marine Microbacterium sp. XD05 and Its Application
Abstract
:1. Introduction
2. Results
2.1. Screened Dextranase-Producing Strains
2.2. Identification of the XD05 Strain
2.3. Culture Conditions of Strain XD05
2.3.1. Effects of Carbon and Nitrogen Sources on the Growth of the Strain
2.3.2. Effects of Temperature, pH and Other Parameters on the Growth of the Strain
2.4. Optimization of Dextranase Production by Strain XD05
2.4.1. Effects of Carbon and Nitrogen Source on Dextranase Production
2.4.2. Effects of Temperature and pH on Dextranase Production
2.5. Characterization of Dextranase Activity
2.5.1. Effects of Temperature and pH on Dextranase Activity and Stability
2.5.2. Effects of Metal Ions on Dextranase Activity
2.5.3. Substrate Specificity and Final Hydrolysis Products
2.6. Effect of Dextranase on Starch Porosity
3. Discussion
4. Materials and Methods
4.1. Materials
Samples and Chemicals
4.2. Methods
4.2.1. Screening of Dextranase-Producing Marine Bacterial Strains
4.2.2. Identification and Characterization of the Bacteria
4.2.3. Culture Conditions for the Growth of the Strain
4.2.4. Culture Conditions for Dextranase Production and Purification
4.2.5. Enzyme Assay
4.2.6. Effects of Carbon and Nitrogen Sources on Dextranase Production
4.2.7. Effects of Initial pH, and Temperature on Dextranase Production
4.2.8. Effects of Temperature on Dextranase Production Activity and Stability
4.2.9. Effects of pH on Dextranase Activity and Stability
4.2.10. Analysis of Final Hydrolysis Products
4.3. Preparation of Porous Starch
4.4. Water and Oil Absorption
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rui, L.; Reis, N.M.N.; João, F.; Mano Manuela, E.; Gomes Alexandra, P.; Marques Helena, S. 18—Hydrogels from Polysaccharide-Based Materials: Fundamentals and Applications in Regenerative Medicine. In Natural-Based Polymers for Biomedical Applications; Woodhead Publishing: Sawston, UK, 2008; pp. 485–514. [Google Scholar] [CrossRef]
- Díaz-Montes, E. Dextran: Sources, Structures, and Properties. Polysaccharides 2021, 2, 554–565. [Google Scholar]
- Ren, W.; Cai, R.; Yan, W.; Lyu, M.; Fang, Y.; Wang, S. Purification and Characterization of a Biofilm-Degradable Dextranase from a Marine Bacterium. Mar. Drugs 2018, 16, 51. [Google Scholar] [CrossRef] [PubMed]
- Juntarachot, N.; Kantachote, D.; Peerajan, S.; Sirilun, S.; Chaiyasut, C. Optimization of fungal dextranase production and its antibiofilm activity, encapsulation and stability in toothpaste. Molecules 2020, 25, 4784. [Google Scholar] [CrossRef] [PubMed]
- Ameen, F.; AlNadhari, S.; Al-Homaidan, A.A. Marine microorganisms as an untapped source of bioactive compounds. Saudi J. Biol. Sci. 2021, 28, 224–231. [Google Scholar] [PubMed]
- Sufiate, B.L.; Soares, F.E.D.F.; Moreira, S.S.; Gouveia, A.D.S.; Cardoso, E.F.; Braga, F.R.; de Araújo, J.V.; de Queiroz, J.H. In Vitro and In Silico Characterization of a Novel Dextranase from Pochonia chlamydosporia. Biotech 2018, 8, 167. [Google Scholar] [CrossRef]
- Barzkar, N.; Babich, O.; Das, R.; Sukhikh, S.; Tamadoni Jahromi, S.; Sohail, M. Marine Bacterial Dextranases: Fundamentals and Applications. Molecules 2022, 27, 5533. [Google Scholar]
- Xu, L.; Zhang, Y.; Liu, N.; Wei, Z.; Wang, Z.; Wang, Y.; Wang, S. Purification and characterization of cold-adapted and salt-tolerant dextranase from Cellulosimicrobium sp. THN1 and its potential application for treatment of dental plaque. Front. Microbiol. 2022, 13, 1012957. [Google Scholar]
- Barzkar, N.; Sohail, M.; Tamadoni Jahromi, S.; Nahavandi, R.; Khodadadi, M. Marine microbial L-glutaminase: From pharmaceutical to food industry. Appl. Microbiol. Biotechnol. 2021, 105, 4453–4466. [Google Scholar]
- Bhatia, S.; Bhakri, G.; Arora, M.; Uppal, S.K.; Batta, S.K. Dextranase production from Paecilomyces lilacinus and its application for dextran removal from sugarcane juice. Sugar Tech. 2010, 12, 133–138. [Google Scholar] [CrossRef]
- Ning, Z.; Dong, D.; Tian, X.; Zu, H.; Tian, X.; Lyu, M.; Wang, S. Alkalic dextranase produced by marine bacterium Cellulosimicrobium sp. PX02 and its application. J. Basic Microbiol. 2021, 61, 1002–1015. [Google Scholar] [CrossRef]
- Huang, R.; Zhong, L.; Xie, F.; Wei, L.; Gan, L.; Wang, X.; Liao, A. Purification, characterization and degradation performance of a novel dextranase from Penicillium cyclopium CICC-4022. Int. J. Mol. Sci. 2019, 20, 1360. [Google Scholar] [CrossRef] [PubMed]
- Purushe, S.; Prakash, D.; Nawani, N.N.; Dhakephalkar, P.; Kapadnis, B. Biocatalytic potential of an alkalophilic and thermophilic dextranase as a remedial measure for dextran removal during sugar manufacture. Bioresour. Technol. 2012, 115, 2–7. [Google Scholar] [PubMed]
- Lai, X.; Liu, X.; Liu, X.; Deng, T.; Feng, Y.; Tian, X.; Lyu, M.; Wang, S. The Marine Catenovulum agarivorans MNH15 and Dextranase: Removing Dental Plaque. Mar. Drugs 2019, 17, 592. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.; Singh, J.; kumar Bharti, R.; Thakur, I.S. Isolation, purification and characterization of lipase from Microbacterium sp. and its application in biodiesel production. Energy Procedia 2014, 54, 518–529. [Google Scholar]
- Saggu, S.K.; Jha, G.; Mishra, P.C. Enzymatic degradation of biofilm by metalloprotease from Microbacterium sp. SKS10. Front. Bioeng. Biotechnol. 2019, 7, 192. [Google Scholar]
- Yang, L.; Zhou, N.; Tian, Y. Purification, characterization, and biocatalytic potential of a novel dextranase from Chaetomium globosum. Biotechnol. Lett. 2018, 40, 1407–1418. [Google Scholar]
- Liu, H.; Ren, W.; Ly, M.; Li, H.; Wang, S. Characterization of an Alkaline GH49 Dextranase from Marine Bacterium Arthrobacteroxydans oxydans KQ11 and Its Application in the Preparation of Isomalto-Oligosaccharide. Mar. Drugs 2019, 17, 479. [Google Scholar] [CrossRef]
- Ojwach, J.; Adetunji, A.I.; Mutanda, T.; Mukaratirwa, S. Oligosaccharides production from coprophilous fungi: An emerging functional food with potential health-promoting properties. Biotechnol. Rep. 2022, 33, e00702. [Google Scholar]
- Lv, M.; Lei, Q.; Yin, H.; Hu, T.; Wang, S.; Dong, K.; Pan, H.; Liu, Y.; Lin, Q.; Cao, Z. In vitro Effects of Prebiotics and Synbiotics on Apis cerana Gut Microbiota. Pol. J. Microbiol. 2021, 70, 511–520. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Cummings, J.H. Probiotics and prebiotics: Can regulating the activities of intestinal bacteria benefit health? West. J. Med. 1999, 171, 187–191. [Google Scholar] [CrossRef]
- Zhang, W.F.; Li, D.F.; Lu, W.Q.; Yi, G.F. Effects of isomalto-oligosaccharides on broiler performance and intestinal microflora. Poult. Sci. 2003, 82, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Hj Latip, D.N.; Samsudin, H.; Utra, U.; Alias, A.K. Modification methods toward the production of porous starch: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2841–2862. [Google Scholar] [PubMed]
- Han, X.; Wen, H.; Luo, Y.; Yang, J.; Xiao, W.; Ji, X.; Xie, J. Effects of α-amylase and glucoamylase on the characterization and function of maize porous starches. Food Hydrocoll. 2021, 116, 106661. [Google Scholar] [CrossRef]
- Weirong, Y.; Huiyuan, Y. Adsorbent characteristics of porous starch. Starch-Stärke 2002, 54, 260–263. [Google Scholar] [CrossRef]
- Cao, F.; Lu, S.; Wang, L.; Zheng, M.; Quek, S.Y. Modified porous starch for enhanced properties: Synthesis, characterization and applications. Food Chem. 2023, 415, 135765. [Google Scholar]
- Chen, J.; Wang, Y.; Liu, J.; Xu, X. Preparation, characterization, physicochemical property and potential application of porous starch: A review. Int. J. Biol. Macromol. 2020, 148, 1169–1181. [Google Scholar]
- Zhang, B.; Cui, D.; Liu, M.; Gong, H.; Huang, Y.; Han, F. Corn porous starch: Preparation, characterization and adsorption property. Int. J. Biol. Macromol. 2012, 50, 250–256. [Google Scholar] [CrossRef]
- Dura, A.; Błaszczak, W.; Rosell, C.M. Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohydr. Polym. 2014, 101, 837–845. [Google Scholar] [CrossRef]
- Sujka, M.; Pankiewicz, U.; Kowalski, R.; Nowosad, K.; Noszczyk-Nowak, A. Porous starch and its application in drug delivery systems. Polim. Med. 2018, 48, 25–29. [Google Scholar] [CrossRef]
- Zhou, M.; Shen, L.; Lin, X.; Hong, Y.; Feng, Y. Design and pharmaceutical applications of porous particles. RSC Adv. 2017, 7, 39490–39501. [Google Scholar] [CrossRef]
Item | Result | Item | Result |
---|---|---|---|
Colony color Shape 4 °C | Milky Rod − | Phenylalanine Mannose Lactose | − + + |
37 °C | + | Sorbitol | − |
Arginine dihydrolase | − | Sucrose | + |
Laetrile broth | + | Glucose | + |
Maltose | + | Arabic gum | + |
Nitrate (Reduction) | − | Inositol | + |
Relative Activity (%) (1 mM) | Relative Activity (%) (10 mM) | |
---|---|---|
Control | 100 ± 0.20 | 100 ± 0.20 |
Ca2+ | 114.13 ± 1.32 | 115.08 ± 1.87 |
NH4+ | 76.18 ± 1.59 | 116.77 ± 0.88 |
Co2+ | 135.66 ± 1.43 | 113.80 ± 0.20 |
Mn2+ | 154.52 ± 0.60 | 119.54 ± 2.23 |
Mg2+ | 76.85 ± 1.83 | 121.62 ± 2.07 |
K+ | 64.67 ± 1.77 | 113.51 ± 3.79 |
Reaction Time (h) | Hydrolysates (%) | |||
---|---|---|---|---|
Maltoheptanose | Maltohexanose | Maltopentose | Maltotriose | |
0.5 | 46.35 | 29.34 | 3.99 | 20.32 |
1 | 46.78 | 29.39 | 3.83 | 19.99 |
2 | 44.23 | 30.78 | 3.97 | 21.03 |
3 | 45.87 | 30.06 | 3.80 | 20.27 |
4 | 46.82 | 29. 20 | 3.73 | 20.25 |
Time (h) | Water Absorption (%) | Oil Absorption (%) |
---|---|---|
0 | 75.38 ± 2.29 | 55.63 ± 2.48 |
6 | 100.02 ± 0.80 | 92.94 ± 1.41 |
12 | 82.71 ± 2.91 | 100.00 ± 1.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boualis, H.; Wu, X.; Wang, B.; Li, Q.; Liu, M.; Zhang, L.; Lyu, M.; Wang, S. Dextranase Production Using Marine Microbacterium sp. XD05 and Its Application. Mar. Drugs 2023, 21, 528. https://doi.org/10.3390/md21100528
Boualis H, Wu X, Wang B, Li Q, Liu M, Zhang L, Lyu M, Wang S. Dextranase Production Using Marine Microbacterium sp. XD05 and Its Application. Marine Drugs. 2023; 21(10):528. https://doi.org/10.3390/md21100528
Chicago/Turabian StyleBoualis, Hind, Xudong Wu, Boyan Wang, Qiang Li, Mingwang Liu, Lei Zhang, Mingsheng Lyu, and Shujun Wang. 2023. "Dextranase Production Using Marine Microbacterium sp. XD05 and Its Application" Marine Drugs 21, no. 10: 528. https://doi.org/10.3390/md21100528
APA StyleBoualis, H., Wu, X., Wang, B., Li, Q., Liu, M., Zhang, L., Lyu, M., & Wang, S. (2023). Dextranase Production Using Marine Microbacterium sp. XD05 and Its Application. Marine Drugs, 21(10), 528. https://doi.org/10.3390/md21100528