Polyunsaturated Aldehydes Profile in the Diatom Cyclotella cryptica Is Sensitive to Changes in Its Phycosphere Bacterial Assemblages
Abstract
:1. Introduction
2. Results
2.1. Co-Cultures Assemblages Description
2.2. Growth Rates
2.3. PUA
2.3.1. Total pPUA Concentration
2.3.2. Quantitative and Qualitative Analysis of pPUA Types
2.3.3. Total dPUA Concentration
2.3.4. Quantitative and Qualitative Analysis of dPUA Types
2.3.5. Percentage of Released PUA (%dPUA)
2.4. Fatty Acid Composition
3. Discussion
4. Materials and Methods
4.1. Biological Material
4.2. Experimental Design
4.3. Cell Density Quantification
4.4. Microalgal and Bacterial Growth Rates
4.5. PUA Sampling, Extraction, and Quantification
4.6. Analysis of Fatty Acids
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armbrust, E. The life of diatoms in the world’s oceans. Nature 2009, 459, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Bell, W.; Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 1972, 143, 265–277. [Google Scholar] [CrossRef]
- Cole, J.J. Interaction between bacteria and algae in aquatic ecosystems. Ann. Rev. Ecol. Syst. 1982, 13, 291–314. [Google Scholar] [CrossRef]
- Azam, F.; Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 2007, 5, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.R.; Amin, S.A.; Raina, J.B.; Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2017, 2, 17065. [Google Scholar] [CrossRef]
- Amin, S.A.; Parker, M.S.; Armbrust, E.V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 2012, 76, 667–684. [Google Scholar] [CrossRef]
- Kazamia, E.; Helliwell, K.E.; Purton, S.; Smith, A.G. How mutualisms arise in phytoplankton communities: Building eco-evolutionary principles for aquatic microbes. Ecol. Lett. 2016, 19, 810–822. [Google Scholar] [CrossRef]
- Cirri, E.; Pohnert, G. Algae−bacteria interactions that balance the planktonic microbiome. New Phytol. 2019, 223, 100–106. [Google Scholar] [CrossRef]
- Meyer, N.; Rettner, J.; Werner, M.; Werz, O.; Pohnert, G. Algal oxylipins mediate the resistance of diatoms against algicidal bacteria. Mar. Drugs 2018, 16, 486. [Google Scholar] [CrossRef]
- Meyer, N.; Bigalke, A.; Kaulfuß, A.; Pohnert, G. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol. Rev. 2017, 41, 880–899. [Google Scholar] [CrossRef]
- Miralto, A.; Barone, G.; Romano, G.; Poulet, S.A.; Ianora, A.; Russo, G.L.; Buttino, I.; Mazzarella, G.; Laabir, M.; Cabrini, M.; et al. The insidious effect of diatoms on copepod reproduction. Nature 1999, 402, 173–176. [Google Scholar] [CrossRef]
- Wichard, T.; Poulet, S.; Pohnert, G. Determination and quantification of α,β,γ,δ-unsaturated aldehydes as pentafluorobenzyl-oxime derivates in diatom cultures and natural phytoplankton populations: Application in marine field studies. J. Chromatogr. B 2005, 814, 155. [Google Scholar] [CrossRef] [PubMed]
- Fontana, A.; d’Ippolito, G.; Cutignano, A.; Miralto, A.; Ianora, A.; Romano, G.; Cimino, G. Chemistry of oxylipin pathways in marine diatoms. Pure Appl. Chem. 2007, 79, 481–490. [Google Scholar] [CrossRef]
- Ribalet, F.; Wichard, T.; Pohnert, G.; Ianora, A.; Miralto, A.; Casotti, R. Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry 2007, 68, 2059–2067. [Google Scholar] [CrossRef]
- Ianora, A.; Bentley, M.G.; Caldwell, G.S.; Casotti, R.; Cembella, A.D.; Engström-Öst, J.; Halsband, C.; Sonnenschein, E.; Legrand, C.; Llewellyn, C.A.; et al. The relevance of marine chemical ecology to plankton and ecosystem function: An emerging field. Mar. Drugs 2011, 9, 1625–1648. [Google Scholar] [CrossRef]
- Ianora, A.; Miralto, A.; Poulet, S.A.; Carotenuto, Y.; Buttino, I.; Romano, G.; Casotti, R.; Pohnert, G.; Wichard, T.; Colucci-D’Amato, L.; et al. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 2004, 429, 403–407. [Google Scholar] [CrossRef]
- Caldwell, G.S. The influence of marine oxylipins from marine diatoms on invertebrate reproduction and development. Mar. Drugs 2009, 7, 367–400. [Google Scholar] [CrossRef]
- Franzè, G.; Pierson, J.J.; Stoecker, D.K.; Lavrentyev, P.J. Diatom-produced allelochemicals trigger trophic cascades in the planktonic food web. Limnol. Oceanogr. 2017, 63, 1093–1108. [Google Scholar] [CrossRef]
- Russo, E.; Ianora, A.; Carotenuto, Y. Re-shaping marine plankton communities: Effects of diatom oxylipins on copepods and beyond. Mar. Biol. 2019, 166, 9. [Google Scholar] [CrossRef]
- Morillo-García, S.; Valcárcel-Pérez, N.; Cózar, A.; Ortega, M.J.; Macías, D.; Ramírez-Romero, E.; García, C.M.; Echevarría, F.; Bartual, A. Potential polyunsaturated aldehydes in the Strait of Gibraltar under two tidal regimes. Mar. Drugs 2014, 12, 1438–1459. [Google Scholar] [CrossRef]
- Cózar, A.; Morillo-García, S.; Ortega, M.J.; Li, Q.P.; Bartual, A. Macroecological patterns of the phytoplankton production of polyunsaturated aldehydes. Sci. Rep. 2018, 8, 12282. [Google Scholar] [CrossRef] [PubMed]
- Ribalet, F.; Intertaglia, L.; Lebaron, P.; Casotti, R. Differential effect of three polyunsaturated aldehydes on marine bacterial isolates. Aquat. Toxicol. 2008, 86, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Balestra, C.; Alonso-Sáez, L.; Gasol, J.M.; Casotti, R. Group-specific effects on coastal bacterioplankton of polyunsaturated aldehydes produced by diatoms. Aquat. Microb. Ecol. 2011, 63, 123–131. [Google Scholar] [CrossRef]
- Edwards, B.R.; Bidle, K.D.; Van Mooy, B.A.S. Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: Implications for the carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 5909–5914. [Google Scholar] [CrossRef] [PubMed]
- Eastabrook, C.L.; Whitworth, P.; Robinson, G.; Caldwell, G.S. Diatom-derived polyunsaturated aldehydes are unlikely to influence the microbiota composition of laboratory-cultured diatoms. Life 2020, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, Q.P.; Rivkin, R.B.; Lin, S. Role of diatom-derived oxylipins in organic phosphorus recycling during coastal diatom blooms in the northern South China Sea. Sci. Total Environ. 2023, 903, 166518. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Q.P.; Ge, Z.; Huang, B.; Dong, C. Impacts of biogenic polyunsaturated aldehydes on metabolism and community composition of particle-attached bacteria in coastal hypoxia. Biogeosciences 2021, 18, 1049–1065. [Google Scholar] [CrossRef]
- Wu, J.; Chen, C.; Wu, H.; Li, T.; Chen, X.; Wu, H.; Xiang, W. Enhancement in lipid productivity of the marine algae Nannochloropsis sp. SCSIO-45217 through phosphate adjustment strategies. J. Appl. Phycol. 2023, 35, 1023–1035. [Google Scholar] [CrossRef]
- Cupo, A.; Landi, S.; Morra, S.; Nuzzo, G.; Gallo, C.; Manzo, E.; Fontana, A.; d’Ippolito, G. Autotrophic vs. Heterotrophic cultivation of marine diatom Cyclotella cryptica for EPA production. Mar. Drugs 2021, 19, 355. [Google Scholar] [CrossRef]
- Provasoli, L. Nutrition and ecology of protozoa and algae. Annu. Rev. Microbiol. 1958, 12, 279–308. [Google Scholar] [CrossRef]
- Amin, S.A.; Hmelo, L.R.; van Tol, H.M.; Durham, B.P.; Carlson, L.T.; Heal, K.R.; Morales, R.L.; Berthiaume, C.T.; Parker, M.S.; Djunaedi, B.; et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015, 522, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Croft, M.T.; Lawrence, A.D.; Raux-Deery, E.; Warren, M.J.; Smith, A.G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 2005, 438, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Z.; Koch, F.; Gobler, C.J. Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proc. Natl. Acad. Sci. USA 2010, 107, 20756–20761. [Google Scholar] [CrossRef] [PubMed]
- Grossart, H.-P.; Levold, F.; Allgaier, M.; Simon, M.; Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 2005, 7, 860–873. [Google Scholar] [CrossRef]
- Windler, M.; Bova, D.; Kryvenda, A.; Straile, D.; Gruber, A.; Kroth, P.G. Influence of bacteria on cell size development and morphology of cultivated diatoms. Phycol. Res. 2014, 62, 269–281. [Google Scholar] [CrossRef]
- Ribalet, F.; Vidoudez, C.; Cassin, D.; Pohnert, G.; Ianora, A.; Miralto, A.; Casotti, R. High plasticity in the production of diatom-derived polyunsaturated aldehydes under nutrient limitation: Physiological and ecological implications. Protist 2009, 160, 444–451. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Q.P.; Dong, Y.; Xu, J.; Luo, L. High resolution surveys of phytoplankton-derived polyunsaturated aldehydes at frontal zones outside a eutrophic estuary. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005808. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Q.P. Spatial distributions of polyunsaturated aldehydes and their biogeochemical implications in the Pearl River estuary and the adjacent northern South China Sea. Prog. Oceanogr. 2016, 147, 1–9. [Google Scholar] [CrossRef]
- D’Ippolito, G.; Iadicicco, O.; Romano, G.; Fontana, A. Detection of short-chain aldehydes in marine organisms: The diatom Thalassiosira rotula. Tetrahedron Lett. 2002, 43, 6137–6140. [Google Scholar] [CrossRef]
- Bartual, A.; Arandia-Gorostidi, N.; Cózar, A.; Morillo-García, S.; Ortega, M.J.; Vidal, M.; Cabello, A.M.; González-Gordillo, J.I.; Echevarría, F. Polyunsaturated aldehydes from large phytoplankton of the Atlantic Ocean surface (42° N to 33° S). Mar. Drugs 2014, 12, 682–699. [Google Scholar] [CrossRef]
- Pohnert, G. Wound-activated chemical defense in unicellular planktonic algae. Angew. Chem. Int. Ed. 2000, 39, 4352–4354. [Google Scholar] [CrossRef]
- D’Ippolito, G.; Romano, G.; Caruso, T.; Spinella, A.; Cimino, G.; Fontana, A. Production of octadienal in the marine diatom Skeletonema costatum. Org. Lett. 2003, 5, 885–887. [Google Scholar] [CrossRef] [PubMed]
- Behringer, G.; Ochsenkühn, M.A.; Fei, C.; Fanning, J.; Koester, J.A.; Amin, S.A. Bacterial communities of diatoms display strong conservation across strains and time. Front. Microbiol. 2018, 9, 659. [Google Scholar] [CrossRef] [PubMed]
- Moejes, F.; Succurro, A.; Popa, O.; Maguire, J.; Ebenhöh, O. Dynamics of the bacterial community associated with Phaeodactylum tricornutum cultures. Processes 2017, 5, 77. [Google Scholar] [CrossRef]
- Mönnich, J.; Tebben, J.; Bergemann, J.; Case, R.; Wohlrab, S.; Harder, T. Niche-based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and reproducible. ISME J. 2020, 14, 1614–1625. [Google Scholar] [CrossRef]
- Segev, E.; Wyche, T.P.; Kim, K.H.; Petersen, J.; Ellebrandt, C.; Vlamakis, H.; Barteneva, N.; Paulson, J.N.; Chai, L.; Clardy, J.; et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. eLife 2016, 5, e17473. [Google Scholar] [CrossRef]
- Paul, C.; Pohnert, G. Interactions of the algicidal bacterium Kordia algicida with diatoms: Regulated protease excretion for specific algal lysis. PLoS ONE 2011, 6, e21032. [Google Scholar] [CrossRef]
- Paul, C.; Mausz, M.A.; Pohnert, G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 2013, 9, 349–359. [Google Scholar] [CrossRef]
- Seyedsayamdost, M.R.; Case, R.J.; Kolter, R.; Clardy, J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat. Chem. 2011, 3, 331–335. [Google Scholar] [CrossRef]
- Van Tol, H.; Amin, S.; Armbrust, E. Ubiquitous marine bacterium inhibits diatom cell division. ISME J. 2017, 11, 31–42. [Google Scholar] [CrossRef]
- Zimmermann, J.; Jahn, R.; Gemeinholzer, B. Barcoding diatoms: Evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org. Divers. Evol. 2011, 11, 173–192. [Google Scholar] [CrossRef]
- Guillard, R.R.L. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport; Smith, W.L., Chanley, M.H., Eds.; Springer: Boston, MA, USA, 1975; pp. 29–60. [Google Scholar] [CrossRef]
- Surek, B.; Melkonian, M. CCAC-Culture collection of algae at the University of Cologne: A new culture collection of axenic algae with emphasis on flagellates. Nova Hedwig. 2004, 79, 77–79. [Google Scholar] [CrossRef]
- Gasol, J.M.; Morán, X.A.G. Flow cytometric determination of microbial abundances and its use to obtain indices of community structure and relative activity. In Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks (2016); McGenity, T.J., Timmis, K.N., Nogales, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 159–187. [Google Scholar] [CrossRef]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis, 2nd ed.; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972; p. 167. [Google Scholar] [CrossRef]
- Hildebrand, M.; Davis, A.; Abbriano, R.; Pugsley, H.R.; Traller, J.C.; Smith, S.R.; Shrestha, R.P.; Cook, O.; Sánchez-Alvarez, E.L.; Manandhar-Shrestha, K.; et al. Applications of imaging flow cytometry for microalgae. In Imaging Flow Cytometry: Methods and Protocols; Barteneva, N., Vorobjev, I., Eds.; Humana Press: New York, NY, USA, 2016; Volume 1389, pp. 47–67. [Google Scholar] [CrossRef]
- Roth, B.L.; Poot, M.; Yue, S.T.; and Millard, P.J. Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl. Environ. Microbiol. 1997, 63, 2421–2431. [Google Scholar] [CrossRef]
- Lebaron, P.; Catala, P.; Parthuisot, N. Effectiveness of SYTOX Green Stain for bacterial viability assessment. Appl. Environ. Microbiol. 1998, 64, 2697–2700. [Google Scholar] [CrossRef]
- Veldhuis, M.J.W.; Kraay, G.W. Application of flow cytometry in marine phytoplankton research: Current applications and future perspectives. Sci. Mar. 2000, 64, 121–134. [Google Scholar] [CrossRef]
- Bartual, A.; Ortega, M.J. Temperature differentially affects the persistence of polyunsaturated aldehydes in seawater. Environ. Chem. 2013, 10, 403–408. [Google Scholar] [CrossRef]
- Moser, G.A.O.; Barrera-Alba, J.J.; Ortega, M.J.; Alves-de-Souza, C.; Bartual, A. Comparative characterization of three Tetraselmis chui (Chlorophyta) strains as sources of nutraceuticals. J. Appl. Phycol. 2022, 34, 821–835. [Google Scholar] [CrossRef]
C. cryptica Cultures | Heterotrophic Bacteria | ||||
---|---|---|---|---|---|
Phosphate Availability Treatment | A | N | I | Autochthonous Bacteria | Introduced Bacteria |
F2 | 0.35 ± 0.06 | 0.52 ± 0.08 *** | 0.82 ± 0.21 ** | 0.22 ± 0.11 | 2.13 ± 0.10 *** |
Low P | 0.42 ± 0.02 | 0.53 ± 0.08 * | 0.73 ± 0.04 *** | 0.13 ± 0.04 | 1.57 ± 0.15 *** |
Phosphate Availability | C. cryptica Cultures | Total pPUA (fmol cell−1) |
---|---|---|
F2 | A | 0.02 ± 0.00 |
N | 2.42 ± 0.49 *** | |
I | 0.16 ± 0.07 ** | |
Low P | A | 0.24 ± 0.05 |
N | 3.46 ± 0.43 *** | |
I | 0.02 ± 0.01 *** |
Phosphate Availability | C. cryptica Cultures | pHD | pOD | pDD | pOT | pDT |
---|---|---|---|---|---|---|
F2 | A | 0.01 ± 0.00 | 0.005 ± 0.00 | 0.002 ± 0.00 | n.d. | n.d. |
N | 1.41 ± 0.37 *** | 0.44 ± 0.09 *** | 0.27 ± 0.05 *** | 0.08 ± 0.05 | 0.21 ± 0.04 | |
I | 0.05 ± 0.02 * | 0.04 ± 0.02 ** | 0.006 ± 0.00 ** | 0.01 ± 0.01 | 0.05 ± 0.03 | |
Low P | A | 0.14 ± 0.01 | 0.05 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.015 ± 0.00 |
N | 2.27 ± 0.21 *** | 0.59 ± 0.09 *** | 0.08 ± 0.03 * | 0.01 ± 0.00 | 0.51 ± 0.29 ** | |
I | 0.01 ± 0.00 *** | 0.01 ± 0.00 *** | 0.002 ± 0.00 *** | n.d. | 0.01 ± 0.01 * |
Phosphate Availability | C. cryptica Cultures | Total dPUA (nM) |
---|---|---|
F2 | A | 4.79 ± 1.08 |
N | 9.72 ± 2.13 ** | |
I | 2.03 ± 1.65 * | |
Low P | A | 8.39 ± 2.19 |
N | 4.81 ± 0.32 ** | |
I | 3.64 ± 1.12 ** |
Phosphate Availability | C. cryptica Cultures | dHD | dOD | dDD | dOT | dDT |
---|---|---|---|---|---|---|
F2 | A | 2.33 ± 0.70 | 1.79 ± 0.25 | 0.67 ± 0.21 | n.d. | n.d. |
N | 4.01 ± 1.14 * | 1.43 ± 0.08 * | 0.58 ± 0.12 | 2.59 ± 0.38 | 1.10 ± 0.48 | |
I | 1.65 ± 1.40 | n.d. | n.d. | n.d. | 0.37 ± 0.26 | |
Low P | A | 2.04 ± 0.54 | 2.20 ± 0.73 | 1.45 ± 0.35 | 0.69 ± 0.13 | 2.01 ± 0.57 |
N | 2.46 ± 0.32 | 1.22 ± 0.01 * | n.d. | 1.14 ± 0.00 *** | n.d. | |
I | 2.89 ± 1.05 | n.d. | n.d. | n.d. | 0.75 ± 0.16 ** |
Phosphate Availability | FAME | % TFA (Exponential) | % TFA (Late Exponential) |
---|---|---|---|
F2 | SFA | 30.82 | 22.16 |
MUFA | 29.85 | 32.62 | |
PUFA | 39.32 | 45.22 | |
EPA | 14.90 | 21.92 | |
DHA | 2.93 | 4.31 | |
Low P | SFA | 38.93 | 32.75 |
MUFA | 40.65 | 51.09 | |
PUFA | 20.42 | 16.16 | |
EPA | 9.18 | 8.75 | |
DHA | 2.60 | 2.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernanz-Torrijos, M.; Ortega, M.J.; Úbeda, B.; Bartual, A. Polyunsaturated Aldehydes Profile in the Diatom Cyclotella cryptica Is Sensitive to Changes in Its Phycosphere Bacterial Assemblages. Mar. Drugs 2023, 21, 571. https://doi.org/10.3390/md21110571
Hernanz-Torrijos M, Ortega MJ, Úbeda B, Bartual A. Polyunsaturated Aldehydes Profile in the Diatom Cyclotella cryptica Is Sensitive to Changes in Its Phycosphere Bacterial Assemblages. Marine Drugs. 2023; 21(11):571. https://doi.org/10.3390/md21110571
Chicago/Turabian StyleHernanz-Torrijos, María, María J. Ortega, Bárbara Úbeda, and Ana Bartual. 2023. "Polyunsaturated Aldehydes Profile in the Diatom Cyclotella cryptica Is Sensitive to Changes in Its Phycosphere Bacterial Assemblages" Marine Drugs 21, no. 11: 571. https://doi.org/10.3390/md21110571
APA StyleHernanz-Torrijos, M., Ortega, M. J., Úbeda, B., & Bartual, A. (2023). Polyunsaturated Aldehydes Profile in the Diatom Cyclotella cryptica Is Sensitive to Changes in Its Phycosphere Bacterial Assemblages. Marine Drugs, 21(11), 571. https://doi.org/10.3390/md21110571