New Cyclopiane Diterpenes and Polyketide Derivatives from Marine Sediment-Derived Fungus Penicillium antarcticum KMM 4670 and Their Biological Activities
Abstract
:1. Introduction
2. Results
2.1. Molecular Re-Identification of the Fungal Strain
2.2. Isolated Compounds
2.3. Biological Activity of Isolated Compounds
2.3.1. The Influence on S. aureus, E. coli, and C. albicans
2.3.2. The Influence on Sortase A Activity
2.3.3. The Cardiotoxicity of Compounds 1–6
3. Discussion
3.1. Cyclopiane Derivatives from P. antarcticum KMM 4670
3.2. Polyketides from P. antarcticum KMM 4670
3.3. Biological Activity of Cyclopiane Diterpenes
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Fungal Strain
4.3. DNA Extraction and Amplification
4.4. Phylogenetic Analysis
4.5. Cultivation of Fungus for Metabolite Isolation
4.6. Extraction and Isolation
4.7. Spectral Data
4.8. Preparation of (S)-MTPA and (R)-MTPA Esters of Conidiogenone F (3)
4.9. The Quantum Chemical Calculations
4.10. Antimicrobial Activity
4.11. Biofilm Formation Assay
4.12. Sortase A Activity Inhibition Assay
4.13. Cell Culture
4.14. Cell Viability Assay
4.15. Molecular Docking
4.16. Statistical Data Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Tang, S.; Cao, S. Antimicrobial compounds from marine fungi. Phytochem. Rev. 2021, 20, 85–117. [Google Scholar] [CrossRef]
- Yurchenko, A.N.; Girich, E.V.; Yurchenko, E.A. Metabolites of Marine Sediment-Derived Fungi: Actual Trends of Biological Activity Studies. Mar. Drugs 2021, 19, 88. [Google Scholar] [CrossRef] [PubMed]
- Kirichuk, N.N.; Pivkin, M.V.; Matveeva, T.V. Three new Penicillium species from marine subaqueous soils. Mycol. Prog. 2017, 16, 15–26. [Google Scholar] [CrossRef]
- Visagie, C.M.; Frisvad, J.C.; Houbraken, J.; Visagie, A.; Samson, R.A.; Jacobs, K. A re-evaluation of Penicillium section Canescentia, including the description of five new species. Persoonia Mol. Phylogeny Evol. Fungi 2021, 46, 163–187. [Google Scholar] [CrossRef] [PubMed]
- Marchese, P.; Mahajan, N.; O’Connell, E.; Fearnhead, H.; Tuohy, M.; Krawczyk, J.; Thomas, O.P.; Barry, F.; Murphy, M.J. A novel high-throughput screening platform identifies itaconate derivatives from marine Penicillium antarcticum as inhibitors of mesenchymal stem cell differentiation. Mar. Drugs 2020, 18, 192. [Google Scholar] [CrossRef]
- Vansteelandt, M.; Kerzaon, I.; Blanchet, E.; Tankoua, O.F.; Du Pont, T.R.; Joubert, Y.; Monteau, F.; Le Bizec, B.; Frisvad, J.C.; Pouchus, Y.F. Patulin and secondary metabolite production by marine-derived Penicillium strains. Fungal Biol. 2012, 116, 954–961. [Google Scholar] [CrossRef]
- Geiger, M.; Guitton, Y.; Vansteelandt, M.; Kerzaon, I.; Blanchet, E.; Robiou du Pont, T.; Frisvad, J.C.; Hess, P.; Pouchus, Y.; Grovel, O. Cytotoxicity and mycotoxin production of shellfish-derived Penicillium spp., a risk for shellfish consumers. Lett. Appl. Microbiol. 2013, 57, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Leshchenko, E.V.; Antonov, A.S.; Borkunov, G.V.; Hauschild, J.; Zhuravleva, O.I.; Khudyakova, Y.V.; Menshov, A.S.; Popov, R.S.; Kim, N.Y.; Graefen, M. New Bioactive β-Resorcylic Acid Derivatives from the Alga-Derived Fungus Penicillium antarcticum KMM 4685. Mar. Drugs 2023, 21, 178. [Google Scholar] [CrossRef]
- Shiono, Y.; Seino, Y.; Koseki, T.; Murayama, T.; Kimura, K.-i. Antarones A and B, two polyketides from an endophytic Penicillium antarcticum. Z. Naturforschung B 2008, 63, 909–914. [Google Scholar] [CrossRef]
- Leshchenko, E.V.; Antonov, A.S.; Dyshlovoy, S.A.; Berdyshev, D.V.; Hauschild, J.; Zhuravleva, O.I.; Borkunov, G.V.; Menshov, A.S.; Kirichuk, N.N.; Popov, R.S.; et al. Meroantarctines A-C, Meroterpenoids with Rearranged Skeletons from the Alga-Derived Fungus Penicillium antarcticum KMM 4685 with Potent p-Glycoprotein Inhibitory Activity. J. Nat. Prod. 2022, 85, 2746–2752. [Google Scholar] [CrossRef]
- Afiyatullov, S.S.; Zhuravleva, O.I.; Antonov, A.S.; Leshchenko, E.V.; Pivkin, M.V.; Khudyakova, Y.V.; Denisenko, V.A.; Pislyagin, E.A.; Kim, N.Y.; Berdyshev, D.V.; et al. Piltunines A–F from the Marine-Derived Fungus Penicillium piltunense KMM 4668. Mar. Drugs 2019, 17, 647. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.M.; Van Walbeek, W.; MacLean, W.M. Cladosporin, a new antifungal metabolite from Cladosporium cladosporioides. J. Antibiot. 1971, 24, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Hoepfner, D.; McNamara, C.W.; Lim, C.S.; Studer, C.; Riedl, R.; Aust, T.; McCormack, S.L.; Plouffe, D.M.; Meister, S.; Schuierer, S. Selective and specific inhibition of the Plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin. Cell Host Microbe 2012, 11, 654–663. [Google Scholar] [CrossRef]
- Pang, L.; Weeks, S.D.; Van Aerschot, A. Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. Int. J. Mol. Sci. 2021, 22, 1750. [Google Scholar] [CrossRef] [PubMed]
- Anke, H.; Zähner, H.; König, W.A. Metabolic products of microorganisms. Arch. Microbiol. 1978, 116, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wedge, D.E.; Cutler, S.J. Chemical and Biological Study of Cladosporin, an Antimicrobial Inhibitor: A Review. Nat. Prod. Commun. 2016, 11, 1595–1600. [Google Scholar] [CrossRef]
- Hou, A.; Li, B.; Deng, Z.; Xu, M.; Dickschat, J.S. Cladosporin, A Highly Potent Antimalaria Drug? ChemBioChem 2023, 24, e202300154. [Google Scholar] [CrossRef] [PubMed]
- Baragaña, B.; Forte, B.; Choi, R.; Nakazawa Hewitt, S.; Bueren-Calabuig, J.A.; Pisco, J.P.; Peet, C.; Dranow, D.M.; Robinson, D.A.; Jansen, C. Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proc. Natl. Acad. Sci. USA 2019, 116, 7015–7020. [Google Scholar] [CrossRef]
- Du, L.; Li, D.; Zhu, T.; Cai, S.; Wang, F.; Xiao, X.; Gu, Q. New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron 2009, 65, 1033–1039. [Google Scholar] [CrossRef]
- Gao, S.S.; Li, X.M.; Zhang, Y.; Li, C.S.; Wang, B.G. Conidiogenones H and I, two new diterpenes of cyclopiane class from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Chem. Biodivers. 2011, 8, 1748–1753. [Google Scholar] [CrossRef]
- Chen, H.Y.; Liu, T.K.; Shi, Q.; Yang, X.L. Sesquiterpenoids and diterpenes with antimicrobial activity from Leptosphaeria sp. XL026, an endophytic fungus in Panax notoginseng. Fitoterapia 2019, 137, 104243. [Google Scholar] [CrossRef]
- Maurer, B.; Grieder, A.; Thommen, W. (cis-6-Methyltetrahydropyran-2-yl)acetic acid, a novel compound from civet (Viverra civetta). Helv. Chim. Acta 1979, 62, 44. [Google Scholar] [CrossRef]
- Kusumi, T.; Ooi, T.; Ohkubo, Y.; Yabuuchi, T. The modified Mosher’s method and the sulfoximine method. Bull. Chem. Soc. Jpn. 2006, 79, 965–980. [Google Scholar] [CrossRef]
- Thappeta, K.R.; Zhao, L.N.; Nge, C.E.; Crasta, S.; Leong, C.Y.; Ng, V.; Kanagasundaram, Y.; Fan, H.; Ng, S.B. In-Silico Identified New Natural Sortase A Inhibitors Disrupt S. aureus Biofilm Formation. Int. J. Mol. Sci. 2020, 21, 8601. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Luan, Y.; Hou, J.; Jiang, T.; Zhao, Y.; Song, W.; Wang, L.; Kong, X.; Guan, J.; Song, D.; et al. The protection effect of rhodionin against methicillin-resistant Staphylococcus aureus-induced pneumonia through sortase A inhibition. World J. Microbiol. Biotechnol. 2022, 39, 18. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Bice, T.W.; Ton-That, H.; Schneewind, O.; Narayana, S.V.L. Crystal Structures of Staphylococcus aureus Sortase A and Its Substrate Complex. J. Biol. Chem. 2004, 279, 31383–31389. [Google Scholar] [CrossRef] [PubMed]
- Ferri, N.; Siegl, P.; Corsini, A.; Herrmann, J.; Lerman, A.; Benghozi, R. Drug attrition during pre-clinical and clinical development: Understanding and managing drug-induced cardiotoxicity. Pharmacol. Ther. 2013, 138, 470–484. [Google Scholar] [CrossRef]
- Salimi, A.; Eybagi, S.; Seydi, E.; Naserzadeh, P.; Kazerouni, N.P.; Pourahmad, J. Toxicity of macrolide antibiotics on isolated heart mitochondria: A justification for their cardiotoxic adverse effect. Xenobiotica 2016, 46, 82–93. [Google Scholar] [CrossRef]
- Rubinstein, E.; Camm, J. Cardiotoxicity of fluoroquinolones. J. Antimicrob. Chemother. 2002, 49, 593–596. [Google Scholar] [CrossRef]
- Onódi, Z.; Visnovitz, T.; Kiss, B.; Hambalkó, S.; Koncz, A.; Ágg, B.; Váradi, B.; Tóth, V.É.; Nagy, R.N.; Gergely, T.G.; et al. Systematic transcriptomic and phenotypic characterization of human and murine cardiac myocyte cell lines and primary cardiomyocytes reveals serious limitations and low resemblances to adult cardiac phenotype. J. Mol. Cell. Cardiol. 2022, 165, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Hajimirzaei, N.; Khalili, N.P.; Boroumand, B.; Safari, F.; Pourhosseini, A.; Judi-Chelan, R.; Tavakoli, F. Comparative Study of the Effect of Macrolide Antibiotics Erythromycin, Clarithromycin, and Azithromycin on the ERG1 Gene Expression in H9c2 Cardiomyoblast Cells. Drug Res. 2020, 70, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Sun, W.; Zhang, S.; Gao, W.; Lin, S.; Yang, B.; Chai, C.; Li, H.; Wang, J.; Hu, Z.; et al. New cyclopiane diterpenes with anti-inflammatory activity from the sea sediment-derived fungus Penicillium sp. TJ403-2. Chin. Chem. Lett. 2020, 31, 197–201. [Google Scholar] [CrossRef]
- Zhang, S.; He, Y.; Li, F.; Lin, S.; Yang, B.; Mo, S.; Li, H.; Wang, J.; Qi, C.; Hu, Z.; et al. Bioassay-directed Isolation of antibacterial metabolites from an arthropod-derived Penicillium chrysogenum. J. Nat. Prod. 2020, 83, 3397–3403. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, R.V.K.; Sanichar, R.; Lambkin, G.R.; Reiz, B.; Xu, W.; Tang, Y.; Vederas, J.C. Production of New Cladosporin Analogues by Reconstitution of the Polyketide Synthases Responsible for the Biosynthesis of this Antimalarial Agent. Angew. Chem. Int. Ed. 2016, 55, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, B.J.; Reese, P.B.; Ramer, S.E.; Vederas, J.C. Comparison of fatty acid and polyketide biosynthesis: Stereochemistry of cladosporin and oleic acid formation in Cladosporium cladosporioides. J. Am. Chem. Soc. 1989, 111, 3382. [Google Scholar] [CrossRef]
- de Oliveira Santos, J.V.; da Costa Júnior, S.D.; de Fátima Ramos dos Santos Medeiros, S.M.; Cavalcanti, I.D.L.; de Souza, J.B.; Coriolano, D.L.; da Silva, W.R.C.; Alves, M.H.M.E.; Cavalcanti, I.M.F. Panorama of Bacterial Infections Caused by Epidemic Resistant Strains. Curr. Microbiol. 2022, 79, 175. [Google Scholar] [CrossRef]
- Mahdally, N.H.; George, R.F.; Kashef, M.T.; Al-Ghobashy, M.; Murad, F.E.; Attia, A.S. Staquorsin: A Novel Staphylococcus aureus Agr-Mediated Quorum Sensing Inhibitor Impairing Virulence in vivo without Notable Resistance Development. Front. Microbiol. 2021, 12, 700494. [Google Scholar] [CrossRef]
- Nitulescu, G.; Margina, D.; Zanfirescu, A.; Olaru, O.T.; Nitulescu, G.M. Targeting bacterial sortases in search of anti-virulence therapies with low risk of resistance development. Pharmaceuticals 2021, 14, 415. [Google Scholar] [CrossRef]
- Kudryavtsev, K.V.; Fedotcheva, T.A.; Shimanovsky, N.L. Inhibitors of Sortases of Gram-Positive Bacteria and their Role in the Treatment of Infectious Diseases (Review). Pharm. Chem. J. 2021, 55, 751–756. [Google Scholar] [CrossRef]
- Ton-That, H.; Schneewind, O. Anchor structure of staphylococcal surface proteins: IV. Inhibitors of the cell wall sorting reaction. J. Biol. Chem. 1999, 274, 24316–24320. [Google Scholar] [CrossRef]
- Pecoraro, C.; Carbone, D.; Parrino, B.; Cascioferro, S.; Diana, P. Recent Developments in the Inhibition of Bacterial Adhesion as Promising Anti-Virulence Strategy. Int. J. Mol. Sci. 2023, 24, 4872. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wei, L.; Wang, L.; Chen, X.; Kong, X.; Luan, Y.; Guan, J.; Guo, X.; Shi, Y.; Wang, T.; et al. Scutellarin potentiates vancomycin against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus through dual inhibition of sortase A and caseinolytic peptidase P. Biochem. Pharmacol. 2022, 199, 114982. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Wang, L.; Zhao, Y.; Lanzi, G.; Wang, X.; Zhang, C.; Guan, J.; Wang, W.; Guo, X.; Meng, Y.; et al. Hibifolin, a Natural Sortase A Inhibitor, Attenuates the Pathogenicity of Staphylococcus aureus and Enhances the Antibacterial Activity of Cefotaxime. Microbiol. Spectr. 2022, 10, e00950-22. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplificaion and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: London, UK, 1990; pp. 315–322. [Google Scholar]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. A.03; Gaussian: Wallingford, CT, USA, 2016. [Google Scholar]
- Campbell, J. High-throughput assessment of bacterial growth inhibition by optical density measurements. Curr. Protoc. Chem. Biol. 2010, 2, 195–208. [Google Scholar] [CrossRef]
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef]
- Brooks, B.R.; Brooks, C.L., III; Mackerell, A.D., Jr.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef]
- Haberthür, U.; Caflisch, A. FACTS: Fast analytical continuum treatment of solvation. J. Comput. Chem. 2008, 29, 701–715. [Google Scholar] [CrossRef]
- Grosdidier, A.; Zoete, V.; Michielin, O. Fast docking using the CHARMM force field with EADock DSS. J. Comput. Chem. 2011, 32, 2149–2159. [Google Scholar] [CrossRef]
Position | 1 | 2 | ||
---|---|---|---|---|
δC, Type | δH, Mult (J in Hz) | δC, Type | δH, Mult (J in Hz) | |
1 | 205,0 C | 206.1, C | ||
2 | 126.1, CH | 5.86, d (10.2) | 127.7, CH | 5.97, d (10.0) |
3 | 157.0, CH | 6.68, d (10.3) | 154.8, CH | 6.93, dd (10.0, 5.9) |
4 | 74.2, C | 38.3, CH | 2.96, m | |
5 | 65.1, C | 60.5, C | ||
6 | 52.0, CH | 2.79, dd (9.3, 5.0) | 55.1, CH | 2.52, m |
7 | 34.5, CH2 | α: 1.62, m β: 1.23, m | 35.1, CH2 | α: 1.64, m β: 1.19, m |
8 | 40.0, CH2 | α: 2.12, m β: 1.75, td (13.7, 7.0) | 39.8, CH2 | α: 1.67, m β: 2.08, dd (11.0, 5.3) |
9 | 58.2, C | 57.8, C | ||
10 | 48.8, CH2 | α: 2.27, d (15.2) β: 1.87, d (15.0) | 47.5, CH2 | α: 2.03, d (14.7) β: 1.68, d (14.7) |
11 | 44.4, C | 48.7, C | ||
12 | 51.5, CH2 | α: 2.85, d (18.8) β: 2.33, d (18.8) | 48.5, CH2 | α: 1.73, dd (13.4, 7.1) β: 1.98, dd (13.4, 6.5) |
13 | 224.9, C | 82.8, CH | 3.92, t (6.8) | |
14 | 50.7, C | 45.2, C | ||
15 | 72.3, CH | 1.86, d (5.1) | 73.6, CH | 1.51, d (5.3) |
16 | 29.1, CH3 | 1.41, s | 19.0, CH3 | 1.16, d (7.1) |
17 | 20.6, CH3 | 1.21, s | 21.4, CH3 | 1.21, s |
18 | 34.3, CH3 | 1.41, s | 32.1, CH3 | 1.22, s |
19 | 21.7, CH3 | 1.08, s | 21.1, CH3 | 0.94, s |
20 | 30.1, CH3 | 1.11, s | 31.5, CH3 | 1.05, s |
Position | 5 a | 6 b | ||
---|---|---|---|---|
δC, Mult | δH (J in Hz) | δC, Mult | δH (J in Hz) | |
1 | 174.9, C | 172.5, C | ||
2 | 41.2, CH2 | a: 2.56, brd (5.3) b: 2.57, brd (6.8) | 39.1, CH2 | a: 2.43, dd (14.9, 6.0) b: 2.58, dd (14.9, 7.8) |
3 | 65.9, CH | 4.29, m | 68.7, CH | 4.19, m |
4 | 39.4, CH2 | a: 1.58, m b: 1.87, ddd (14.4, 9.0, 3.4) | 30.3, CH2 | a: 1.37, m b: 1.67, m |
5 | 67.8, CH | 4.08, m | 18.9, CH2 | 1.65, m |
6 | 30.6, CH2 | a: 1.42, m b: 1.62, m | 32.2, CH2 | a: 1.26, m b: 1.64, m |
7 | 18.3, CH2 | a: 1.64, m b: 1.72, m | 67.7 CH | 3.90, m |
8 | 30.8, CH2 | a: 1.37, m b: 1.72, m | 20.0, CH3 | 1.12, d (6.4) |
9 | 68.3, CH | 4.05, m | ||
10 | 18.6, CH3 | 1.23, d (6.5) |
Compound | FF Score, kcal/mol | ∆G, kcal/mol | Hydrogen-Bonding Interactions | Hydrophobic Interactions |
---|---|---|---|---|
1 | −3553.963 | −7.4239464 | Arg197 … O (at C-4), 2.226 Å | Ala104, Ile182, Ala92, Thr93 |
−3549.677 | −6.722709 | Arg197 … O2 (at C-13), 2.234 Å OH-group at C-4 … Glu105, 1.876 Å | Ile199, Ile182, | |
2 | −3531.3604 | −6.4623137 | Arg197 … O (at C-1), 2.681 Å OH-group at C-13 … Glu105, 2.118 Å | Gly192, Val193, Ala104 |
−3541.7644 | −7.16274 | OH-group at C-13 … Glu105, 2.097 Å | Ala92, Thr93, Thr187, Trp194, Ala104, Gly192 | |
3 | −3539.8362 | −6.2875967 | Arg197 … OH-group at C-13, 2.668 Å | Ala104, Ile182, |
4 | −3548.0125 | −6.429369 | Arg197 … O (at C-13), 2.493 Å | Ile182 |
−3549.6343 | −7.032929 | no | Ala92, Gly192, Ile182, Ala104 |
Compound | Cell Viability, % | ||
---|---|---|---|
1 µM | 10 µM | 100 µM | |
1 | 94.8 ± 5.9 | 65.7 ± 9.4 | 63.2 ± 0.5 |
2 | 98.1 ± 1.9 | 107.3 ± 7.8 | 67.3 ± 3.1 |
3 | 103.3 ± 3.2 | 92.9 ± 2.5 | 109.7 ± 9.2 |
4 | 107.2 ± 2.9 | 101.7 ± 4.6 | 92.3 ± 1.9 |
5 | 94.4 ± 3.1 | 88.5 ± 3.1 | 74.1 ± 4.9 |
6 | 98.1 ± 1.6 | 80.9 ± 2.9 | 54.6 ± 2.1 |
Species | Strain Number | GenBank Accession Number | |||
---|---|---|---|---|---|
ITS | BenA | CaM | RPB2 | ||
Penicillium atrovenetum G. Smith | CBS 241.56 T | AF033492 | JX140944 | KJ867004 | JN121467 |
Penicillium antarcticum A.D. Hocking & C.F. McRae | CBS 100492 T | KJ834503 | MN969371 | MN969236 | JN406653 |
Penicillium antarcticum | KMM 4670 | KU358553 | KU358556 | KU358559 | OR271597 |
Penicillium coralligerum Nicot and Pionnat | CBS 123.65 T | JN617667 | MN969378 | MN969248 | JN406632 |
Penicillium nucicola Visagie, Malloch, and Seifert | CBS 140987 T | KT887860 | KT887821 | KT887782 | MN969171 |
Penicillium novae-zeelandiae J.F.H. Beyma | CBS 137.41 T | JN617688 | MN969390 | MN969279 | JN406628 |
Aspergillus glaucus Link | NRRL 116 T | EF652052 | EF651887 | EF651989 | EF651934 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurchenko, A.N.; Zhuravleva, O.I.; Khmel, O.O.; Oleynikova, G.K.; Antonov, A.S.; Kirichuk, N.N.; Chausova, V.E.; Kalinovsky, A.I.; Berdyshev, D.V.; Kim, N.Y.; et al. New Cyclopiane Diterpenes and Polyketide Derivatives from Marine Sediment-Derived Fungus Penicillium antarcticum KMM 4670 and Their Biological Activities. Mar. Drugs 2023, 21, 584. https://doi.org/10.3390/md21110584
Yurchenko AN, Zhuravleva OI, Khmel OO, Oleynikova GK, Antonov AS, Kirichuk NN, Chausova VE, Kalinovsky AI, Berdyshev DV, Kim NY, et al. New Cyclopiane Diterpenes and Polyketide Derivatives from Marine Sediment-Derived Fungus Penicillium antarcticum KMM 4670 and Their Biological Activities. Marine Drugs. 2023; 21(11):584. https://doi.org/10.3390/md21110584
Chicago/Turabian StyleYurchenko, Anton N., Olesya I. Zhuravleva, Olga O. Khmel, Galina K. Oleynikova, Alexandr S. Antonov, Natalya N. Kirichuk, Viktoria E. Chausova, Anatoly I. Kalinovsky, Dmitry V. Berdyshev, Natalya Y. Kim, and et al. 2023. "New Cyclopiane Diterpenes and Polyketide Derivatives from Marine Sediment-Derived Fungus Penicillium antarcticum KMM 4670 and Their Biological Activities" Marine Drugs 21, no. 11: 584. https://doi.org/10.3390/md21110584
APA StyleYurchenko, A. N., Zhuravleva, O. I., Khmel, O. O., Oleynikova, G. K., Antonov, A. S., Kirichuk, N. N., Chausova, V. E., Kalinovsky, A. I., Berdyshev, D. V., Kim, N. Y., Popov, R. S., Chingizova, E. A., Chingizov, A. R., Isaeva, M. P., & Yurchenko, E. A. (2023). New Cyclopiane Diterpenes and Polyketide Derivatives from Marine Sediment-Derived Fungus Penicillium antarcticum KMM 4670 and Their Biological Activities. Marine Drugs, 21(11), 584. https://doi.org/10.3390/md21110584