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Abstract: Echinoderms, such as sea cucumbers, have the remarkable property of changing the stiffness
of their dermis according to the surrounding chemical environments. When sea cucumber dermal
specimens are constantly strained, stress decays exponentially with time. Such stress relaxation
is a hallmark of visco-elastic mechanical behavior. In this paper, in contrast, we attempted to
interpret stress relaxation from the chemoelasticity viewpoint. We used a finite element model for the
microstructure of the sea cucumber dermis. We varied stiffness over time and framed such changes
against the first-order reactions of the interfibrillar matrix. Within this hypothetical scenario, we
found that stress relaxation would then occur primarily due to fast crosslink splitting between the
chains and a much slower macro-chain scission, with characteristic reaction times compatible with
relaxation times measured experimentally. A byproduct of the model is that the concentration of
undamaged macro-chains in the softened state is low, less than 10%, which tallies with physical
intuition. Although this study is far from being conclusive, we believe it opens an alternative route
worthy of further investigation.

Keywords: chemoelasticity; sea cucumber; finite element method; first-order reactions

1. Introduction

Mutable collagenous tissue (MCT), found in all echinoderms, is a remarkable example
of a collagenous tissue that can alter its mechanical state (e.g., stiffness) within a few
seconds [1]. Echinoderms are an evolutionarily ancient animal phylum and include starfish,
sea cucumbers, and sea urchins. Physiologically, mutability in MCT mechanics manifests
in energy-efficient rigid posture maintenance with minimal muscle involvement [2], in
irreversible softening processes, including autotomy (or defensive tissue detachment) [3],
or in the generation of tensile force in feather stars [4]. MCT has attracted attention as a
template for developing mechanically adaptive materials, with applications in biomedical,
cosmetics, and bioinspired fields [1,5–7]. Understanding the dynamic mechanical and stress-
relaxation behavior of MCT can have important implications in the biomedical materials
and cosmetics field. The ability to regulate (increase or decrease) the stress relaxation
rate in MCT (or its mimics) by controlling chemical bond breakage and reformation could
enable the development of reconfigurable or injectable biomaterial implants in soft tissues.
Especially in tissues with very low stiffness, such as neural tissue and its surroundings,
regulating or increasing the stress relaxation or creep of MCT-based biomaterials would
facilitate implantation without injury. In a similar manner, our understanding of the time
dependence of mechanical properties in MCT would aid in optimizing the processes of the
topical application and absorption of collagen-based cosmetics derived from MCT.

However, there is still a lack of clarity on how mechanical mutability—especially
dynamic or time-dependent changes—occurs in MCT, specifically in models that link the
extracellular matrix (ECM) to mechanical behavior.
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1.1. Structure and Mechanics

Structurally, the major components of the MCT ECM are collagen fibrils with a char-
acteristic axial electron-density periodicity D (≈65–67 nm) [1,8,9] and a heterotrimeric
structure at the molecular level, along with fibrillin-rich microfibrils, and proteoglycans in
the interfibrillar space. Neural effector cells (called juxtaligamental cells or JLCs), closely
interpenetrating the ECM, are likely to play a significant role in modulating MCT mechanics
by releasing effector molecules like tensilin or softenin [10,11], though the evidence is still
indirect. Biomechanically, MCT stiffness (elastic modulus) ranges from 1–200 MPa on
average [1], assessed using tensile tests or cyclic dynamic mechanical analysis. Failure
strains of between 20–60% are intermediate between those of aligned fiber composites like
tendons and tissues, with a wide range of fiber orientations like skin [1,12]. A change in
mechanical properties can be induced in the laboratory by changing the ionic composition
of the tissue bathing fluid or by mechanical stimulation. Regarding the modulus, eleva-
tions of 4–6x have been reported for immersion in potassium-enriched artificial seawater
(KASW) [8] and a factor of 2–3x for mechanical stimulation [13,14]. A range of biological
effector molecules isolated from MCT, like tensilin, NSF, softenin, and stiparin, have been
implicated in the stiffening and softening of MCT [1], potentially by increasing interfibrillar
crosslinking or stiffening the interfibrillar matrix. Local water content has also been known
to change (reduce) during MCT stiffening [15], which can cause increased or closer fibril
packing, which, in turn, may lead to greater interfibrillar stress transfer and stiffness. In this
regard, fiber-composite models have been proposed to explain the variation in mechanics in
MCT due to changes in the structure and properties of the ultrastructural constituents—the
collagen fibrils and interfibrillar ECM components [8,16]. By using synchrotron X-ray
nanomechanical imaging to quantify the fibril strains and orientation under different states
of mechanical stimulation and quasi-static deformation, we showed that mutability in
MCT arises from changes in the interfibrillar matrix properties and effective interfibrillar
cohesion [8] rather than changes in collagen fibril properties.

1.2. Modeling the Time-Dependent Behavior

However, modeling the dynamic mechanical changes of MCT ECM—like stress relax-
ation, creep, or changes in mechanical state—in terms of the behavior of the ultrastructural
building blocks is more challenging. MCT exhibits the visco-elastic behavior seen in most
hydrated soft tissues, but the characteristics change with the altered mechanical state [17].
In order to estimate viscosity or flow in the ECM, earlier experiments tested the speed
of bending of tissues under set weights and in the presence of stiffening factors [10] or
with changes in calcium concentration [18], as the force is proportional to strain rate in
Newtonian viscosity, the time for bending was taken as proportional to material viscosity.
Structurally, however, the mechanisms by which the ECM mechanics change during typical
time-dependent mechanical alterations, like stress relaxation, have been studied little at
the ultrastructural level. Recently, we used experimental data on the time-dependent
fibril stress-relaxation in chemically stimulated MCT (determined using small-angle X-ray
scattering) to develop an ultrastructural model with shear-lag between the fully elastic
collagen fibrils embedded in a viscous extra-fibrillar matrix, (which can contain fibrillin,
proteoglycans, water, and effector molecules) [17].

In this previous work [17], we assumed a fully elastic behavior for the fibrils embedded
into a visco-elastic interfibrillar matrix. A shear-lag model connected the fibrils and matrix.
The matrix can only withstand shear stress, τ, and the relationship with the shear strain,
γ, is related to a convolution integral with the derivative of the interfibrillar matrix shear
modulus Gm(t), which was unknown.

τ(t) = Gm(0) γ(t)−
∫ t

0

dGm(t− τ)

dτ
γ(τ)dτ (1)

Equation (1) is typical of visco-elastic behaviors [19]. We then obtained Gm(t) and
tried to explain the origin of Gm(t) visco-elasticity by framing the visco-elastic parameters
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within an extended Doi-Edwards model. This interpretation agreed with some intuitive
findings on the visco-elasticity of sea cucumbers: the increase in crosslinks and interchain
friction from a standard-to-stiffening solution and the decrease in crosslinks and interchain
friction from a standard-to-softening solution. However, these two results implied an
apparent counter-intuitive conclusion on the elastic chain scission of the interfibrillar
matrix. Specifically, we found that the molecular weight decreased during stiffening, and it
increased during softening.

In order to address this discrepancy, we interpret stress relaxation as a chemical process
in this paper, following [20], where elastically active chains and crosslinks break and reform
dynamically. Here, by elastically active chains, we mean the chains in tension contributing
to the shear modulus, Gm(t), as in the molecular theory of rubber elasticity [21].

Gm(t) = N(t) k T (2)

where k is the Boltzmann constant, T is the absolute temperature, and N is the number
density of elastically active chains.

In a chemoelastic stress relaxation process, N changes over time due to chemical
reactions. The chemoelasticity, which is sometimes referred to as chemorheology, has been
applied, for example, to model aging-induced fracturing [22], a high-temperature elastomer
response [23,24], and reversible crosslinking in hydrogels [25].

In summary, firstly, we built a staggered finite element numerical model. We extracted
an approximate solution of the finite element model to obtain insights into the possible
mechanisms behind tissue stress relaxation. From this solution, we inferred that a chemoe-
lastic model with a shear modulus that degrades exponentially with time is very plausible.
Based on this assumption, we used an optimization algorithm to derive the mechanical
parameters. Finally, we explain these mechanical parameters for fibrils and interfibrillar
matrix with first-order reaction kinetics to reveal the mechano-cracking mechanisms.

2. Materials and Methods

The experimental results, re-analyzed here using the chemoelastic model, were col-
lected, reported, and published in previous papers [8,17]. Hence, only a summary of the
experimental methods used in those papers is provided here as the experimental work
was not part of the current study, and we refer to [8,17] for the details. Black sea cu-
cumber (Holothuria atria) specimens were collected from a commercial wholesaler. After
placing them in a −20◦ freezer, sections of tissue of 12 mm× (1.8 mm)2 were dissected
out. All studies were carried out in accordance with the Animals (Scientific Procedures)
Act 1986 of the UK, including revision 2013: invertebrates (except cephalopods) are not
considered protected species under the Act. Samples were incubated in artificial (ASW;
control), potassium-enriched ASW (KASW), and calcium-free ASW (CaFASW) seawater,
following the protocols published previously [8,26]. Synchrotron SAXS measurements were
carried out at beamline I22, Diamond Light Source (Harwell, UK), using an X-ray energy of
12.46 keV, a collimated beam size of 20× 25µm2, and an exposure time of 0.5 s per SAXS
pattern. For the SAXS measurements, the tissues were mounted in a hydrated condition
in a custom micromechanical tester in line with the X-ray beam at BL-I22 (developed by
us [8]), using sandpaper to ensure adhesion to the grips. Stress-relaxation tests were carried
out as described, and the SAXS patterns were azimuthally integrated to obtain radial line
plots, from which the fibril strain was calculated as a percentage change in the 5th-order
Bragg peak from the meridional fibril scattering, as described previously [8]. By combining
the stress, tissue strain, and fibril strain plots as functions of time, the tissue and fibril-level
mechanical data re-analyzed in this paper were obtained.

We formulate a shear-lag finite element model, where the interfibrillar matrix can
only transmit shear stresses but not carry tensile loads (Figure 1). The implementation and
solution details are in Appendix A.
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Figure 1. Finite element model of staggered fibrils of length LF, connected by an interfibrillar matrix.
(a) Tissue specimen of length LT , with an applied constant strain εT and fibrillar microstructure;
(b) fibril elements (cylinders), shear elements (blue lines) and node numbering (circled numbers);
(c) The matrix cannot carry tensile loads, only shear stresses, τij.

We proceed in two steps. Firstly, we use approximated analytical results (Appendix B)
to deduce qualitatively the mechanical properties of the fibrils and matrix. Such an analyti-
cal solution can be obtained only for a small number of fibrils; for more fibrils, the models
can only be solved numerically.

Secondly, we use full numerical simulations to quantitatively derive the parameters of
the elastic models for fibril and matrix for all the cases.

From the qualitative approximate analytical solution (Appendix B), we obtain

σT(t) ≈
1
2

N ρ2
F

√
φ

π
Gm(t) εT (3)

where N is the number of fibrils, φ is the fibril volume fraction, ρF is the fibril aspect ratio,
and εT is the constant applied strain.

Equation (3) states that the tissue stress directly relates to the interfibrillar matrix.
Experimentally, the tissue stress is captured by a two-term Prony series [8,17], as seen in
Figure 2. Therefore, in the following, we assume that Gm(t) is given by

Gm(t) = G∞

(
1 + γ1 e−t/tM1 + γ2 e−t/tM2

)
(4)

where G∞ is the asymptotic shear modulus, γ1 and γ2 are dimensionless parameters of
magnitude O(1), and tM1 < tM2 are time constants.

Furthermore, experimentally, fibril strains are given simply by a one-term Prony
series in the stiffened and softened state and by a two-term Prony series in the artificial
seawater [8], as in Figure 3. From the approximate analytical solution in Appendix B,

εF(t) ≈ εT N ρ2
F
√

φ/π
Gm(t)
EF(t)

(5)

where EF is the fibril Young modulus.
In order to minimize the total number of parameters involved in the analysis, we

assume that EF is expressed by a one-term Prony series:
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EF(t) = E∞

(
1 + e1 e−t/tK1

)
(6)

with E∞ being the asymptotic fibril Young modulus, e1 being a dimensionless parameter of
magnitude O(1), and tK1 a relaxation time constant.

From experimental values [8], we know that fibril strain decays rapidly, with a time
constant close to tM1 . As we can see from Equation (5), the ratio Gm(t)/EF(t) is close to a
one-term Prony series with a time constant tM1 if γ2 ≈ e1 and if tK1 ≈ tM2 , meaning that
the time constant for the fibril chemoelastic relaxation must be close to the largest time
constant for the interfibrillar matrix chemoelastic relaxation. We use these insights to guide
the numerical optimizations to quantitatively obtain the parameters of the elastic models
for the fibrils and matrix. Therefore, assuming

GM(t) = G∞ + G1 e−t/tM1 + G2 e−t/tM2 EF(t) = E∞ + E1 e−t/tM2 (7)

we aim to calculate G∞, G1, G2, E∞, and E1, and we take tM1 and tM2 from the experimental
values in [8].

We calculate the parameters G∞, G1, G2, E∞, and E1 in Equation (7) through a least
squares minimization of the difference between the stresses and strains from the finite
element model and the experimental values.

In all the calculations, we assumed a tissue specimen length of LT = 10 mm, a fibril
length of LF = 100µm, a fibril aspect ratio of ρF = 1000, and an applied tissue strain of
εT = 50%. We used N = 100 fibril elements and a final simulation time of 500 s with a time
step of ∆t = 1 s.

We have two sets of experimental values for matching the model: tissue stress and the
fibril strain. Because the tissue stress depends only on the matrix shear modulus, we can
proceed in two stages. In the first one, we minimize the difference between the tissue stress
values, obtaining, in this way, G∞, G1, and G2. With these parameters at hand, we move on
to a second curve, fitting the fibril strains, where we get E∞ and E1.

Figure 2. Chemoelastic relaxation for tissue stress; the continuous lines are the numerical results,
the dots are the mean of the experimental measures, and the error bar plots are the corresponding
standard deviations.
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Figure 3. Chemoelastic relaxation for the fibril strain; the continuous lines are the numerical results,
the dots are the mean of the experimental measures, and the error bar plots are the corresponding
standard deviations.

3. Results

Figures 2 and 3 display the numerical results of such minimizations for the three
seawater conditions, namely the Artificial (ASW, taken as reference solution), the potassium-
enriched (KASW), and the calcium ions-deprived seawater (CaFASW).

Table 1 summarizes the calculated chemoelastic parameters for the interfibrillar matrix
(G∞, G1, G2) and for the fibrils (E∞, E1, tK1). Figures 4 and 5 show the corresponding time
histories as in Equation (7). Figure 4 shows the softening in CaFASW and stiffening in
KASW compared to ASW, which is of about an order of magnitude for the interfibrillar
matrix. For the fibrils, as in Figure 5, in the KASW solution, the fibril relaxes chemoelas-
tically, with a time constant equal to the longest tissue relaxation time. It is also about
two times stiffer than the fibril in ASW and CaFASW. In contrast, the ASW and CaFASW
solutions display no fibril chemical relaxation, with the fibrils in ASW slightly stiffer than
in CaFASW.

Table 1. chemoelastical parameters for the interfibrillar matrix shear modulus and fibril Young
modulus for the three seawater solutions.

Seawater G∞ (MPa) G1 (MPa) G2 (MPa) E∞ (MPa) E1 (MPa) tM1 (s) [8] tM2 (s) [8]

ASW 6.6974·10−8 6.1561·10−8 9.8484·10−8 27.59 0.1314 13.35 216
KASW 3.8535·10−7 2.2968·10−7 2.7412·10−7 34.6294 19.5533 20.37 229.4
CaFASW 3.6746·10−9 3.4478·10−8 1.1543·10−8 26.2296 0.0839 11.71 171.7
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Figure 4. Chemoelastic relaxation parameters for the interfibrillar matrix.

Figure 5. chemoelastic relaxation parameters for the fibrils.

4. Chemoelastic Parameters in Terms of Kinetic Reactions

We now attempt to explain these findings through kinetic reactions involving the
scission and recombination of links [20,27].
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For the fibrils, we consider the following reversible reaction, where the chain scission
occurs in equilibrium with chain recombination (Figure 6):

A
kS


kR

B (8)

where A represents the macro-chains before scission, B represents the chains after scission,
kS is the scission rate, and kR is the recombination rate. We assume that fibrils can only carry
elastic loads if intact; therefore, the elastically active chains will depend on the concentration
[A] of species A.

EF(t) = 3 [A] k T (9)

where k is the Boltzmann constant, T is the absolute temperature, and the prefactor 3
appears because we assumed the fibril was incompressible.

Collagen Fibril

Collagen Molecules

kS

kR

A B
Chain Scission

Chain Recombination

Figure 6. Elastic fibrils made by collagen macromolecules: hypothesized reversible reaction of chain
scission and recombination; A are macro-chains before scission and B are those after scission.

For the interfibrillar matrix, we assume that two concurrent breakage mechanisms
occur: the breaking of the intramolecular bond, namely chain scission, and the splitting of
the crosslinks connecting different macro-chains (crosslink splitting). Additionally, we allow
the possibility of simultaneous chain and crosslink recombination after these two splitting
mechanisms (Figure 7). This picture is idealized, but it is a necessary simplification that
introduces the least number of parameters (three reaction rates and three initial conditions)
to fit the experimental data without too much indetermination.

A
k1−→ B

B
k2−→ C

C
k3−→ A

(10)

where A represents the crosslinked macro-molecular chains, B represents the macro-chains
after chain scission (broken bond inside the chain) that are still crosslinked, C represents
the macro-chains after chain scission and crosslink splitting, k1 = 1/t1 is the chain scission
reaction rate (t1 is a characteristic time), k2 = 1/t2 is the crosslink splitting reaction rate
and k3 = 1/t3 is the recombination rate.

We assume the matrix loses elasticity if it is in configuration C. Therefore, the elastically
active chains are those in configurations A and B; even if the chains are scissored, the matrix
can still carry loads because the chains are crosslinked.

Gm(t) =
(
[A](t) + [B](t)

)
k T (11)
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where k is the Boltzmann constant, and T is the absolute temperature.

k1 k2

k3

A

B

C

Chain Scission Cross-Link Splitting

Recombination

Figure 7. Interfibrillar matrix composed of crosslinked macro-chains (species A); the hypothesized
reactions of chain scission, crosslink splitting, and recombination. Species B represents chains after
chain scission and C is chains after chain scission and cross-link splitting.

4.1. Fibril Chemoelasticity

Solution (A28) of the kinetic equation indicates that the sum of the scission rate and
recombination rate is equal to the inverse of the time constant tK1 , which, in all three
chemical conditions, is close to the largest tissue stress relaxation time constant = tM2

(Table 1). The higher the initial percentage of undamaged collagen chains a0, the higher the
proportion of the recombination rate (A32). Additionally, the balance of the recombination
rate depends on the ratio EF∞ /(EF∞ + E1). Table 1 and Figure 5 show that EF(t) is constant
for ASW and CaFASW. This finding means that fibrils do not show chemoelasticity and are
only elastic, which is compatible with the previous results [8,17]. Interestingly, in KASW, a
chemoelastic relaxation is possible: the ratio EF1 /(EF∞ + EF1) is equal to 0.36. This means
that for KASW

κR = 0.36 a0 κS = 1− 0.36 a0 (12)

where κS and κR are the scission and recombination rates’ percentages. We are not able
to infer a0 from the experimental values. However, from Equation (12), we see that the
recombination rate is always less than the scission rate, meaning that chain scission would
occur much faster than chain recombination. The same applies to the interfibrillar matrix,
as seen in the next subsection.

4.2. Matrix Chemoelasticity

After solving the kinetic reaction Equation (A36) and comparing the solutions’ time
constants with the tissue stress relaxation’s time constants, we obtain three possibilities for
the reaction rates, as shown in Figure 8: (i) fast recombination, slow crosslink splitting, and
slow chain scission; (ii) fast crosslink splitting, slow chain scission, and slow recombination;
(iii) fast chain scission, slow crosslink splitting, and slow recombination.

However, considering the coefficients of the Prony series of the matrix shear modulus
in Table 1, we found that only one of the three possibilities is feasible. Indeed, from the
coefficients in Equation (7), we can calculate the percentages (Equation (A65)) of the initial
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reagents in Figure 7. It turns out that the only reaction rates giving physically relevant
percentages (from 0 to 100) are slow recombination, fast crosslink splitting, and slow
chain scission.

Figure 8. The surfaces in Equation (A47). The intersection of the surfaces (red lines) is all the possible
reaction rates.

Figure 9 shows the corresponding reaction times, i.e., the inverse of the reaction rates
from the thick red line on the right of Figure 8. We see that the recombination times are
slow or extremely slow in the order of hours or days, whereas crosslink splitting is, at most,
20 s, and the chain scission times are, at most, 500 s (8 min). When comparing these reaction
times with the matrix shear modulus time constants in Table 1, we see that the crosslink
splitting times are similar to the smallest time constants, tM1 , and the chain scission times
are comparable to the largest time constants, tM2 , for all three chemical environments.
Additionally, we see that crosslink splitting and chain scission in CaFASW (softening
solution) are faster than those in KASW (stiffening solution) and ASW (standard solution).

It is impossible to infer from the model and the experimental values in our posses-
sion the exact initial conditions of the reagents. However, we can compute the possible
percentages a0 and b0 (A65). Figure 10 shows percentages a0 (crosslinked macro-chains,
x-axis) and b0 (scissored chains, y-axis) for the given reaction rates: k1 (chain scission), k2
(crosslink splitting), and k3 (recombination).

We notice that for ASW and KASW, the initial conditions are such that the intact
chains percentage, a0, is always larger than the ones, b0, with internal damage, in a ratio of
0/b0 = 2.33. This finding could lead to speculation that the crosslinking between chains
increases in going from a standard to a stiff state.

A completely opposite trend is seen for CaFASW. The initial conditions are such that
a0 is low, less than 10%, meaning that, initially, most chains are damaged: either scissored
(b0) or with their crosslinks removed (c0 = 1− b0 − a0). This result confirms the intuition
that the chains undergo significant scission in going from a standard state to a soft one.
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Figure 9. Interfibrillar matrix reaction times for ASW, KASW, and CaFASW: in all three conditions,
the fastest times are due to chain recombination, with crosslink splitting being around 10 times slower
and chain scission being extremely slow.

Figure 10. Initial conditions of the chemical species for all the permissible reaction times.

5. Conclusions

We have hypothesized a relaxation mechanism for the mutable connective tissue of a
sea cucumber. Our explanation is alternative to the commonly believed assumption that
visco-elasticity is the only mechanism at play. Indeed, in our previous modeling work,
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we found some discrepancies when we framed the visco-elastic parameters in a polymer
theory, such as the Doi-Edwards model.

We then turned to a completely different point of view. We used a chemoelastic
framework, where the stiffness varies because of a change in the concentration of polymer
macro-chains participating in the elastic response. Such change is described by first-order
kinetic reactions.

These reactions involve cracking mechanisms. For the fibrils, the hypothesized mecha-
nism is the scission of collagenous chains. For the matrix, we hypothesized two competing
mechanisms: the chain scission and splitting of crosslinks. In both cases, we incorporated
the possibility of chain and crosslink recombination.

Our mathematical model revealed that in standard chemical environments, such as
ASW, and in softening conditions (CaFASW), fibrils are only elastic, with no stiffness
change over time. Only in a stiffening seawater solution (KASW) did we find chemoelastic
behavior. If the hypothesized mechanism is correct, such fibril stress relaxation occurs so
that scission is always faster than recombination.

Finally, our model indicated that in all three chemical environments, the interfibrillar
matrix relaxes primarily through crosslink splitting, where reaction times are in the order
of 10 s, similar to the shortest tissue stress relaxation times measured in the experiments [8].
Chain scission participates more slowly, in the order of 5–10 min. Even slower is recom-
bination, which can take place over hours for barely damaged macro-chains or days for
highly damaged macro-chains.

A final finding led us to speculate on the transitions from standard to soft and standard
to stiff. For instance, after computing the initial conditions compatible with the experiments,
it could happen that the standard-to-stiff form occurs by increasing the crosslinks in the
interfibrillar matrix and the recombination of collagen chains in the fibril; in contrast,
the standard-to-soft form might occur only through chain scission. This is speculative
because our model and experimental measures refer to stress relaxation in fixed rather than
changing chemical environments, although it seems intuitive.

We would like to remark that we have proposed hypothetical mechanisms, albeit
backed by mathematical modeling. Further experimental tests, for example, measuring
stress while the water solution changes from standard to soft or standard to stiff, would
provide additional insights for a more advanced mathematical model.

Such a sophisticated model could be, for example, a coupled multi-physics three-
dimensional finite element model, where the ultra-structure is represented more accurately
and more complex reaction kinetics are considered.
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Abbreviations
The following abbreviations are used in this manuscript:

MCT Mutable collagenous tissue
ECM Extracellular matrix
JLC Juxtaligamental cell
ASW Artificial seawater
KASW Potassium-enriched artificial seawater
CaFASW Calcium ions-deprived artificial seawater

Appendix A. Stiffness Matrices for Fibrillar MCT Matrix with Visco−
and Chemoelasticity

Appendix A.1. Finite Element Model

To derive the stiffness matrix of the fibrillar MCT matrix, we construct the following
model composed of one-dimensional, staggered finite elements.

With reference to Figure 1, in such a finite element model, the displacements u are
known only at the extremities of the fibrils (the nodes). The nodes are numbered from 1 to
n (Figure 1b), and the displacements are grouped in a vector

u =


u1
u2
. . .
un

 (A1)

Furthermore, our finite element model assumes that displacements vary linearly along
the fibril; therefore, the strain inside each fibril is uniform.

In a finite element model, the unknown displacements u are obtained from the alge-
braic system of equations

K u = F (A2)

where K is the stiffness matrix, and F is the external forces vector. Matrix K comes from the
internal forces derived from the material reaction to the external forces.

We apply opposite displacements εT LT at nodes 1 and n, with, εT , the applied tissue
strain, and, LT , the length of the tissue sample:

v =

(
u1
un

)
=

1
2

εT LT

(
−1
1

)
(A3)

Equation (A2) can be rearranged as(
Kvv Kvx

Kvx
T Kxx

)(
v
x

)
=

(
R
P

)
(A4)

with R being the reaction force and x the unknown fibril displacements. Equation (A4) can
be solved

x = Kxx
−1
(

P−Kvx
T v
)

(A5)

and the reaction forces computed from the known macroscopic εT are

R = Kvv v + Kvx x (A6)

Vector R has two components, and R1 = −R2.
The tissue stress σT can be computed as

σT =
ρ2

F
L2

F
R2 (A7)
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where LF is the fibril length, and ρF is the fibril aspect ratio, i.e., ρF = LF/rF, where rF is
the radius of the fibril’s cross-section, which is assumed to be cylindrical.

The fibril strain εF can be computed from the displacements u, for example, for the
first fibril with nodes 1 and 2:

εF(t) =
u2(t)− u1(t)

LF
(A8)

Appendix A.2. Staggered Shear-Lag Model

Because of the symmetry, we will focus only on two rows of such elements (Figure 1a).
The horizontal rows represent fibrils, which, for simplicity, we assume to be a cylindrical
shape, with a stiffness of k = π EF rF

2/LF, with EF being the fibril Young modulus. The
rows are connected transversely by shear elements (Figure 1b). For example, two shear
stresses act on node 3 of elements 3− 4, namely τ13 and −τ35, whereas on node 4, the shear
stresses are τ24 and −τ46 (Figure 1c), with

τij = Gm
uj − ui

h
(A9)

where (uj − ui)/h is the approximated shear strain when h � LF, ui the horizontal dis-
placement of node i, Gm is the interfibrillar matrix shear modulus, h the separation between
the two rows. According to this scheme, the resulting equations of equilibrium of forces on
elements 3− 4 are(

k −k
−k k

)(
u3
u4

)
+

(
m (u3 − u1)
m (u4 − u2)

)
−
(

m (u5 − u3)
m (u6 − u4)

)
=

(
0
0

)
(A10)

with m = 2 π rF LF
Gm

h
.

We can rewrite Equation (A10) as a matrix-vector product:

k
(

0 0 1 −1 0 0
0 0 −1 1 0 0

)


u1
u2
u3
u4
u5
u6

+ m
(
−1 0 2 0 −1 0
0 −1 0 2 0 −1

)


u1
u2
u3
u4
u5
u6

 =

(
0
0

)
(A11)

Let us consider a finite element model with n nodes, with n being an even number; the
number of elements is then n/2. A staggered shear-lag model’s global stiffness matrix K
follows the pattern in Equation (A11). When taking into account all the fibrils, the K ends
up being the sum of two contributions

K(t) = k(t)AE + m(t)AS (A12)

with AE being the assembly matrix for the elastic elements and AS the assembly matrix for
the shear elements. The matrix AE is a block diagonal matrix:

AE =


A

A
A

. . .
A

 A =

(
1 −1
−1 1

)
(A13)
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The matrix AS is a tridiagonal block matrix:

AS =


I −I 0
−I 2 I −I

. . . . . . . . .
0 −I I

 (A14)

with I being a 2× 2 identity matrix.

Appendix B. Approximate Analytical Solution for the Case Chemoelastic Matrix and
Chemoelastic Fibril

Equation (A5) can be solved analytically for a system with relatively few elements. The
number of elements we choose is 9 because, with more elements, the analytical inversion of
the stiffness matrix becomes impractical and, therefore, must be solved numerically.

A close inspection of the strains revealed a characteristic feature of the solution for the
shear-lag model: the fibrils experiencing the largest strain are the ones where the load is
applied. Then, the strains decay rapidly from the application point. The ones in the middle
are, therefore, approximately rigid.

The maximum fibril strain is

εF(t) LF
εT LT

=
(8 m) k4 +

(
32 m2) k3 +

(
40 m3) k2 +

(
16 m4) k + m5

64 k5 + (296 m) k4 + (464 m2) k3 + (280 m3) k2 + (52 m4) k + m5 (A15)

and the tissue stress is

σT(t) = εT LT
ρ2

F
π L2

F

(16 m) k5 +
(
72 m2) k4 +

(
108 m3) k3 +

(
60 m4) k2 +

(
9 m5) k

64 k5 + (296 m) k4 + (464 m2) k3 + (280 m3) k2 + (52 m4) k + m5 (A16)

and, since m/K � 1, their approximations are

εF(t) LF
εT LT

≈ 1
8

m(t)
k(t)

(A17)

σT(t) ≈
1
4

εT LT
ρ2

F
π L2

F
m(t) (A18)

Finally, by substituting for expressions m(t) and k(t) and considering that, approxi-
mately, LT/LF ≈ N is the number of fibrils in the sample, we obtain

εF(t) ≈ N ρ2
F
√

φ/π
Gm(t)
EF(t)

εT (A19)

and
σT(t) ≈

1
2

N ρ2
F
√

φ/π Gm(t) εT ≈ EF(t) εF(t) (A20)

where ρF is the fibril aspect ratio, and φ is the fibril volume fraction.

Appendix C. Elastically Active Chains after Chain Scission and Recombination

Assuming that the collagen fibril behaves like an incompressible linear elastic solid
under an applied strain, εF, the stress in the fibril is

σF(0) = EF(0) εF = 3 GF(0) εF (A21)

where GF is the fibril shear modulus. According to the kinetic theory of rubber elasticity [21],
the shear modulus is given by

GF = [A] k T (A22)
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where [A] is the number density of elastically active chains (chains supporting the tensile
stress per unit volume), k is the Boltzmann constant, and T is the absolute temperature.

According to [20], chemical stress relaxation occurs because of a change in [A]:

σF(t) = 3 [A](t) k T εF (A23)

Therefore, using εF from Equation (A21), we obtain

σF(t)
σF(0)

=
EF(t)
EF(0)

=
[A](t)
[A](0)

(A24)

The kinetic equation associated with Reaction (8) is

d[A]

dt
= −kS[A] + kR [B] (A25)

For the mass balance

[A](0) + [B](0) = [A](t) + [B](t) (A26)

By substituting Equation (A26) into Equation (A25) and introducing the dimensionless
variable a = [A]/([A](0) + [B](0)), we obtain

da
dt

= −(kR + kS) b + kR (A27)

The solution to Equation (A27) with initial condition a0 is

a(t) = (a0 − a∞) e−(kS+kR) t + a∞ (A28)

with a∞ being the asymptotic dimensionless number density

a∞ =
kR

kS + kR
(A29)

The time constant kS + kR is the inverse of the time constant tK1 in Equation (6):

kS + kR = kK1 =
1

tK1

(A30)

Hence, recalling Equation (A24),

EF∞

EF(0)
=

[A]∞
A(0)

=
a∞

a0
=

1
a0

kR
kS + kR

(A31)

Let us normalize the reaction rates as κS = kS/kK1 and κR = kR/kK1 . Finally,

κR =
EF∞

EF∞ + E1
a0 κS = 1− EF∞

EF∞ + E1
a0 (A32)

Appendix D. Elastically Active Chains after Chain Scission, Cross-Links Splitting, and
Chain Recombination

Assuming that the interfibrillar matrix can withstand only shear stresses and behaves
like an incompressible Neo-Hookean solid, then, under a shear strain γ, the shear stress τ is

τ(0) = Gm(0) γ (A33)



Mar. Drugs 2023, 21, 610 17 of 20

For the rubber theory of elasticity [21],

Gm(t) = ([A](t) + [B](t)) k T (A34)

where [A](t) + [B](t) is the number density of elastically active chains (chains supporting
the stress per unit volume), k is the Boltzmann constant, and T is the absolute temperature.
Similarly to Appendix C, then

Gm(t)
Gm(0)

=
[A](t) + [B](t)(t)
[A](0) + [B](0)

(A35)

The kinetic equations for Reaction (10) are

d[A]

dt
= k3 [C]− k1 [A]

d[B]
dt

= k1 [A]− k2 [B]

d[C]
dt

= k2 [B]− k3 [C]

(A36)

where [·] is the number density of the reacting species. Equation (A36) is not independent:
summing the equations leads to the conservation of chemical species

d[A]

dt
+

d[B]
dt

+
d[C]
dt

= 0 (A37)

However, we can write

[C] = [A]0 + [B]0 + [C]0 − [A]− [B] (A38)

with [·]0 being the initial concentrations. By substituting Equation (A38) into Equation (A36),
and rewriting in matrix form, we obtain

Ẏ = K Y + B

Y(0) = Y0
(A39)

with

K =

(
−(k1 + k3) −k3

k1 −k2

)
B = k3 ([A]0 + [B]0 + [C]0)

(
1
0

)
Y(t) =

( [
A(t)

][
B(t)

] ) Y0 =

( [
A
]

0[
B
]

0

)
(A40)

We can introduce a dimensionless form:

y =
1

[A]0 + [B]0 + [C]0
Y y =

(
a(t)
b(t)

)
b = k3

(
1
0

)
(A41)

The first-order system of ODEs (A39) has the following solution:

y(t) = eK t (y0 − yb) + yb yb = −K−1 b (A42)

and
eK t = U eD t U−1 (A43)

where D is a diagonal matrix with the eigenvalues of K, and U is the matrix for which the
columns are the eigenvectors of K.

D = −1
2

(
k1 + k2 + k3 + σ 0

0 k1 + k2 + k3 − σ

)
U =

 − k1 + k2 − k3 + σ

2 k2
− k1 + k2 − k3 − σ

2 k2
1 1

 (A44)
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and
σ =

√
k1

2 + k2
2 + k3

2 − 2 (k1 k2 + k2 k3 + k1 k3) (A45)

The eigenvalues of K are the inverse of the two time constants:

1
2

(
k1 + k2 + k3 −

√
k1

2 + k2
2 + k3

2 − 2 (k1 k2 + k2 k3 + k1 k3)

)
= kM2 =

1
tM2

1
2

(
k1 + k2 + k3 +

√
k1

2 + k2
2 + k3

2 − 2 (k1 k2 + k2 k3 + k1 k3)

)
= kM1 =

1
tM1

(A46)

Manipulating Equation (A46) leads to the following:

k1 + k2 + k3 = kM1 + kM2

k1 k3 + k2 k3 + k1 k2 = kM1 kM2

(A47)

The intersection of the two surfaces in Equation (A47) represents the possible reaction
rates (Figure 8).

We can normalize the reaction rates ki i = 1, 2, 3

κi =
ki

kM1 + kM2

i = 1, 2, 3 (A48)

and combine Equation (A47) to get

κ1 + κ2 − (κ1
2 + κ2

2) =
kM1 kM2(

kM1 + kM2

)2 κ1 + κ2 ≤ 1 (A49)

Equation (A49) can be solved numerically, leading to all possible solutions κ1 and κ2.
One way of solving it is to plot Equation (A49) as an implicit curve in the plane (κ1, κ2) and
then extract its co-ordinates. Not all these rates are physical solutions; only those leading
to a0 (unbroken chains), b0 (chains after internal scission), and c0 = 1− a0 − b0 (chains
after scission and crosslink splitting) between 0 and 1 are acceptable solutions. With these
values (κ1, κ2) at hand, and with κ3 = 1− κ1 − κ2, we can deduce the initial percentages as
follows.

Let us examine the solutions a(t) and b(t).

a(t) = a∞ + a(1) e−t/tM1 + a(2) e−t/tM2 (A50)

with

a∞ = κ2 κ3

(
kM1 + kM2

)2

kM1 kM2

(A51)

α =
kM1 + kM2

kM1 − kM2

(A52)

a(1) =
1
2

(
α (1− 2 κ2) + 1

)
a0 +

1
4 α κ1

(
α2 (1− 2 κ2)

2 − 1
)

b0+ (A53)

−a∞

(
1
2

(
α (1− 2 κ2) + 1

)
+

1
4 α κ2

(
α2 (1− 2 κ2)

2 − 1
) )

= A11 a0 + A12 b0 + A13 a∞

a(2) =
1
2

(
1− α (1− 2 κ2)

)
a0 +

1
4 α κ1

(
1− α2 (1− 2 κ2)

2
)

b0+ (A54)
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+a∞

(
1
2

(
− 1 + α (1− 2 κ2)

)
+

1
4 α κ2

(
α2 (1− 2 κ2)− 1

) )
= A21 a0 − A12 b0 + A23 a∞

It can be verified that

a(0) = a(1) + a(2) + a∞ = a0 (A55)

Moreover,
b(t) = b∞ + b(1) e−t/tM1 + b(2) e−t/tM2 (A56)

b∞ = κ1 κ3

(
kM1 + kM2

)2

kM1 kM2

(A57)

b(1) = −α κ1 a0 +
1
2

(
1− α (1− 2 κ2)

)
b0 +

1
2
(α− 1) b∞ = B11 a0 + B12 b0 + B13 b∞ (A58)

b(2) = α κ1 a0 +
1
2

(
1 + α (1− 2 κ2)

)
b0 −

1
2
(α + 1) b∞ = −B11 a0 + B21 b0 + B23 b∞ (A59)

it can be verified that
b(0) = b(1) + b(2) + b∞ = b0 (A60)

To compute a0 and b0, we set the Prony series coefficients for (a(t) + b(t))/(a0 + b0)
to be equal to those of GM(t)/GM(0).

GM(t)/GM(0) = g∞ + g1 e
− t

tM1 + g2 e
− t

tM2 (A61)

with

g∞ =
G∞

G∞ + G1 + G2
g1 =

G1

G∞ + G1 + G2
g2 =

G2

G∞ + G1 + G2
(A62)

From Solution (A42), we obtain

a(t) + b(t) = (a∞ + b∞) +
(

a(1) + b(1)
)

e
− t

tM1 +
(

a(2) + b(2)
)

e
− t

tM2 (A63)

Since g∞ = 1− g1 − g2, we only need to set two conditions on the coefficients. There-
fore, we pose(

a(1) + b(1)
)
− (a0 + b0) g1 = 0

(
a(2) + b(2)

)
− (a0 + b0) g2 = 0 (A64)

Substituting Equations (A53), (A54), (A58), and (A59) into Equation (A64) results in
the linear system of equations:

C
(

a0
b0

)
= d (A65)

with

C =

(
A11 + B11 − g1 A12 + B12 − g1
A21 − B11 − g2 −A12 + B21 − g2

)
(A66)

d = −
(

A13 a∞ + B13 b∞
A23 a∞ + B23 b∞

)
(A67)

Therefore, (
a0
b0

)
= C−1 d (A68)
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We select only κ1, κ2, κ3, a0, b0, and c0 = 1− a0 − b0 such that 0 ≤ a0 ≤ 1, 0 ≤ b0 ≤ 1,
and 0 ≤ c0 ≤ 1.
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