Recovery of Fatty Acid and Volatile Flavor Compound Composition in Farmed Tiger Puffer (Takifugu rubripes) with a Fish Oil-Finishing Strategy
Abstract
:1. Introduction
2. Results
2.1. Fatty-Acid Composition in Muscle and Liver
2.2. Volatile Flavor Components in the Muscle
2.3. Determination of Muscle Odor with Electronic Nose
3. Discussion
4. Materials and Methods
4.1. Experimental Diets
4.2. Feeding Procedure and Sampling
4.3. Analysis of Fatty-Acid Composition
4.4. Analysis of Volatile Organic Compounds in the Muscle
4.5. Electronic-Nose Analysis
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; El-Sabrout, K.; Alqaisi, O.; Dawood, M.A.O.; Soomro, H.; Abdelnour, S.A. Nutritional significance and health benefits of omega-3,-6 and-9 fatty acids in animals. Anim. Biotechnol. 2020, 33, 1678–1690. [Google Scholar] [CrossRef] [PubMed]
- Tveteras, S.; Tveteras, R. The Global Competition for Wild Fish Resources between Livestock and Aquaculture. J. Agric. Econ. 2010, 61, 381–397. [Google Scholar] [CrossRef]
- Rosenlund, G.; Obach, A.; Sandberg, M.G.; Standal, H.; Tveit, K. Effect of alternative lipid sources on long-term growth performance and quality of Atlantic salmon (Salmo salar L.). Aquac. Res. 2001, 32, 323–328. [Google Scholar] [CrossRef]
- Liu, K.K.M.; Barrows, F.T.; Hardy, R.W.; Dong, F.M. Body composition, growth performance, and product quality of rainbow trout (Oncorhynchus mykiss) fed diets containing poultry fat, soybean/corn lecithin, or menhaden oil. Aquaculture 2004, 238, 309–328. [Google Scholar] [CrossRef]
- Xue, M.; Luo, L.; Wu, X.; Ren, Z.; Gao, P.; Yu, Y.; Pearl, G. Effects of six alternative lipid sources on growth and tissue fatty acid composition in Japanese sea bass (Lateolabrax japonicus). Aquaculture 2006, 260, 206–214. [Google Scholar] [CrossRef]
- Bowyer, J.N.; Qin, J.; Smullen, R.P.; Stone, D.A.J. Replacement of fish oil by poultry oil and canola oil in yellowtail kingfish (Seriola lalandi) at optimal and suboptimal temperatures. Aquaculture 2012, 356, 211–222. [Google Scholar] [CrossRef]
- Yun, B.; Xue, M.; Wang, J.; Fan, Z.; Wu, X.; Zheng, Y.; Qin, Y. Effects of lipid sources and lipid peroxidation on feed intake, growth, and tissue fatty acid compositions of largemouth bass (Micropterus salmoides). Aquac. Int. 2012, 21, 97–110. [Google Scholar] [CrossRef]
- Ahmad, W.A.R.W.; Stone, D.A.J.; Schuller, K.A. Dietary fish oil replacement with palm or poultry oil increases fillet oxidative stability and decreases liver glutathione peroxidase activity in barramundi (Lates calcarifer). Fish Physiol. Biochem. 2013, 39, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Friesen, E.; Balfry, S.K.; Skura, B.J.; Ikonomou, M.; Higgs, D.A. Evaluation of poultry fat and blends of poultry fat with cold-pressed flaxseed oil as supplemental dietary lipid sources for juvenile sablefish (Anoplopoma fimbria). Aquac. Res. 2013, 44, 300–316. [Google Scholar] [CrossRef]
- Rombenso, A.N.; Trushenski, J.T.; Schwarz, M.H. Fish oil replacement in feeds for juvenile Florida Pompano: Composition of alternative lipid influences degree of tissue fatty acid profile distortion. Aquaculture 2016, 458, 177–186. [Google Scholar] [CrossRef]
- Campos, I.; Matos, E.; Maia, M.R.G.; Marques, A.; Valente, L.M.P. Partial and total replacement of fish oil by poultry fat in diets for European seabass (Dicentrarchus labrax) juveniles: Effects on nutrient utilization, growth performance, tissue composition and lipid metabolism. Aquaculture 2019, 502, 107–120. [Google Scholar] [CrossRef]
- Carvalho, M.; Montero, D.; Rosenlund, G.; Fontanillas, R.; Gines, R.; Izquierdo, M. Effective complete replacement of fish oil by combining poultry and microalgae oils in practical diets for gilthead sea bream (Sparus aurata) fingerlings. Aquaculture 2020, 529, 735696. [Google Scholar] [CrossRef]
- Xu, H.; Turchini, G.M.; Francis, D.S.; Liang, M.; Mock, T.S.; Rombenso, A.; Ai, Q. Are fish what they eat? A fatty acid’s perspective. Prog. Lipid Res. 2020, 80, 101064. [Google Scholar] [CrossRef]
- Trushenski, J.T.; Lewis, H.A.; Kohler, C.C. Fatty acid profile of sunshine bass: I. Profile change is affected by initial composition and differs among tissues. Lipids 2008, 43, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Pares-Sierra, G.; Durazo, E.; Antonio Ponce, M.; Badillo, D.; Correa-Reyes, G.; Teresa Viana, M. Partial to total replacement of fishmeal by poultry by-product meal in diets for juvenile rainbow trout (Oncorhynchus mykiss) and their effect on fatty acids from muscle tissue and the time required to retrieve the effect. Aquac. Res. 2014, 45, 1459–1469. [Google Scholar] [CrossRef]
- Liu, Y.; Jiao, J.; Shuang, G.; Li, J.; Limbu, S.M.; Fang, Q.; Li, Q.; Mei, L.; Zhen, Y. Dietary oils modify lipid molecules and nutritional value of fillet in Nile tilapia: A deep lipidomics analysis. Food Chem. 2019, 277, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Grigorakis, K.; Fountoulaki, E.; Giogios, I.; Alexis, M.N. Volatile compounds and organoleptic qualities of gilthead sea bream (Sparus aurata) fed commercial diets containing different lipid sources. Aquaculture 2009, 290, 116–121. [Google Scholar] [CrossRef]
- Moreira, N.; Soares, S.; Valente, L.M.P.; Castro-Cunha, M.; Cunha, L.M.; Guedes de Pinho, P. Effect of two experimental diets (protein and lipid vegetable oil blends) on the volatile profile of Senegalese sole (Solea senegalensis Kaup, 1858) muscle. Food Chem. 2014, 153, 327–333. [Google Scholar] [CrossRef]
- Serot, T.; Regost, C.; Prost, C.; Robin, J.; Arzel, J. Effect of dietary lipid sources on odour-active compounds in muscle of turbot (Psetta maxima). J. Sci. Food Agric. 2001, 81, 1339–1346. [Google Scholar] [CrossRef]
- Timm-Heinrich, M.; Eymard, S.; Baron, C.P.; Nielsen, H.H.; Jacobsen, C. Oxidative changes during ice storage of rainbow trout (Oncorhynchus mykiss) fed different ratios of marine and vegetable feed ingredients. Food Chem. 2013, 136, 1220–1230. [Google Scholar] [CrossRef]
- Turchini, G.M.; Mentasti, T.; Caprino, F.; Panseri, S.; Moretti, V.M.; Valfrè, F. Effects of dietary lipid sources on flavour volatile compounds of brown trout (Salmo trutta L.) fillet. J. Appl. Ichthyol. 2004, 20, 71–75. [Google Scholar] [CrossRef]
- Turchini, G.M.; Moretti, V.M.; Mentasti, T.; Orban, E.; Valfrè, F. Effects of dietary lipid source on fillet chemical composition, flavour volatile compounds and sensory characteristics in the freshwater fish tench (Tinca tinca L.). Food Chem. 2007, 102, 1144–1155. [Google Scholar] [CrossRef]
- Zhou, L.; Han, D.; Zhu, X.; Yang, Y.; Jin, J.; Xie, S. Effects of total replacement of fish oil by pork lard or rapeseed oil and recovery by a fish oil finishing diet on growth, health and fish quality of gibel carp (Carassius auratus gibelio). Aquac. Res. 2016, 47, 2961–2975. [Google Scholar] [CrossRef]
- Liao, Z.; Sun, Z.; Bi, Q.; Gong, Q.; Sun, B.; Wei, Y.; Liang, M.; Xu, H. Application of the fish oil-finishing strategy in a lean marine teleost, tiger puffer (Takifugu rubripes). Aquaculture 2021, 534, 736306. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.; Meng, X.; Cui, X.; Ma, Q.; Wei, Y.; Liang, M.; Xu, H. Fish oil replacement with poultry oil in the diet of tiger puffer (Takifugu rubripes): Effects on growth performance, body composition, and lipid metabolism. Aquac. Nutr. 2022, 2022, 2337933. [Google Scholar] [CrossRef]
- Montero, D.; Robaina, L.; Caballero, M.J.; Gines, R.; Izquierdo, M.S. Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: A time-course study on the effect of a re-feeding period with a 100% fish oil diet. Aquaculture 2005, 248, 121–134. [Google Scholar] [CrossRef]
- Turchini, G.M.; Francis, D.S.; De Silva, S.S. Modification of tissue fatty acid composition in Murray cod (Maccullochella peelii peelii, Mitchell) resulting from a shift from vegetable oil diets to a fish oil diet. Aquac. Res. 2006, 37, 570–585. [Google Scholar] [CrossRef]
- Fountoulaki, E.; Vasilaki, A.; Hurtado, R.; Grigorakis, K.; Karacostas, I.; Nengas, I.; Rigos, G.; Kotzamanis, Y.; Venou, B.; Alexis, M.N. Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile: Recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures. Aquaculture 2009, 289, 317–326. [Google Scholar] [CrossRef]
- Karanth, S.; Sharma, P.; Pal, A.K.; Venkateshwarlu, G. Effect of different vegetable oils on growth and fatty acid profile of rohu (Labeo rohita, Hamilton); evaluation of a return fish oil diet to restore human cardio-protective fatty acids. Asian-Australas. J. Anim. Sci. 2009, 22, 565–575. [Google Scholar] [CrossRef]
- Ng, W.K.; Chong, C.Y.; Wang, Y.; Romano, N. Effects of dietary fish and vegetable oils on the growth, tissue fatty acid composition, oxidative stability and vitamin E content of red hybrid tilapia and efficacy of using fish oil finishing diets. Aquaculture 2013, 372, 97–110. [Google Scholar] [CrossRef]
- Katikou, P.; Gokbulut, C.; Kosker, A.R.; Campas, M.; Ozogul, F. An updated review of tetrodotoxin and its peculiarities. Mar. Drugs 2022, 20, 47. [Google Scholar] [CrossRef] [PubMed]
- Sargent, J.R.; Tocher, D.R.; Bell, J.G. The lipids. In Fish Nutrition, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Academic Press: Pittsburgh, PA, USA, 2002; Volume 4, pp. 181–257. ISBN 978-0-12-319652-1. [Google Scholar]
- De Quirós, A.R.-B.; López-Hernández, J.; González-Castro, M.; De la Cruz-Garcia, C.; Simal-Lozano, J. Comparison of volatile components in fresh and canned sea urchin (Paracentrotus lividus, Lamarck) gonads by GC-MS using dynamic headspace sampling and microwave desorption. Eur. Food Res. Technol. 2001, 212, 643–647. [Google Scholar] [CrossRef]
- Tao, N.; Wu, R.; Zhou, P.; Gu, S.; Wu, W. Characterization of odor-active compounds in cooked meat of farmed obscure puffer (Takifugu obscurus) using gas chromatography-mass spectrometry-olfactometry. J. Food Drug Anal. 2014, 22, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Wei, Z.; Yi, L.; Liang, H.; Zhao, L.; Zhang, W.; Mai, K. Dietary fishmeal levels affect the volatile compounds in cooked muscle of farmed large yellow croaker Larimichthys Crocea. Aquac. Res. 2017, 48, 5821–5834. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Chen, B.; Pan, N.; Qiao, K.; Wu, G.; Liu, Z. Collaborative analysis combining headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and intelligent (electronic) sensory systems to evaluate differences in the flavour of cultured pufferfish. Flavour Fragr. J. 2020, 36, 182–189. [Google Scholar] [CrossRef]
- Salum, P.; Guclu, G.; Selli, S. Comparative evaluation of key aroma-active compounds in raw and cooked red mullet (Mullus barbatus) by aroma extract dilution analysis. J. Agric. Food Chem. 2017, 65, 8402–8408. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Dong, S.; Sun, Y.; Dong, Y.; Gao, Q. Response of Atlantic salmon (Salmo salar) flavor to environmental salinity while culturing between freshwater and seawater. Aquaculture 2021, 530, 735953. [Google Scholar] [CrossRef]
- Meng, X.; Bi, Q.; Cao, L.; Ma, Q.; Wei, Y.; Duan, M.; Liang, M.; Xu, H. Evaluation of necessity of cholesterol supplementation in diets of two marine teleosts, turbot (Scophthalmus maximus) and tiger puffer (Takifugu rubripes): Effects on growth and lipid metabolism. Aquac. Nutr. 2022, 2022, 4160991. [Google Scholar] [CrossRef]
Fatty Acid | FO | 25PO | 50PO | 75PO | PO |
---|---|---|---|---|---|
14:0 | 0.67 ± 0.05 c | 0.56 ± 0.05 bc | 0.50 ± 0.01 abc | 0.42 ± 0.03 ab | 0.36 ± 0.03 a |
16:0 | 23.22 ± 0.25 | 22.79 ± 0.31 | 22.98 ± 0.06 | 22.54 ± 0.10 | 22.54 ± 0.25 |
18:0 | 12.39 ± 0.15 | 12.51 ± 0.18 | 12.13 ± 0.05 | 12.12 ± 0.28 | 11.92 ± 0.13 |
20:0 | 0.35 ± 0.15 | 0.42 ± 0.00 | 0.32 ± 0.00 | 0.25 ± 0.01 | 0.14 ± 0.03 |
∑SFA | 36.63 ± 0.54 b | 36.28 ± 0.18 ab | 35.92 ± 0.09 ab | 35.33 ± 0.34 ab | 34.96 ± 0.20 a |
16:1n-7 | 1.12 ± 0.13 | 1.02 ± 0.08 | 0.93 ± 0.04 | 0.90 ± 0.05 | 0.86 ± 0.04 |
17:1n-7 | 0.53 ± 0.02 ab | 0.55 ± 0.03 b | 0.47 ± 0.01 ab | 0.45 ± 0.01 ab | 0.44 ± 0.04 a |
18:1n-9 | 11.15 ± 0.18 a | 12.57 ± 0.08 b | 13.94 ± 0.11 c | 15.19 ± 0.11 d | 16.34 ± 0.31 e |
24:1n-9 | 0.23 ± 0.05 | 0.41 ± 0.05 | 0.24 ± 0.08 | 0.72 ± 0.35 | 0.31 ± 0.11 |
∑MUFA | 13.02 ± 0.33 a | 14.54 ± 0.19 b | 15.57 ± 0.17 b | 17.27 ± 0.27 c | 17.95 ± 0.47 c |
18:2n-6 | 10.82 ± 0.22 a | 12.13 ± 0.30 b | 12.86 ± 0.09 b | 14.57 ± 0.20 c | 16.04 ± 0.11 d |
20:2n-6 | 0.68 ± 0.03 a | 0.77 ± 0.01 b | 0.78 ± 0.01 b | 0.83 ± 0.02 bc | 0.88 ± 0.01 c |
20:4n-6 | 2.23 ± 0.08 | 2.12 ± 0.07 | 2.18 ± 0.04 | 2.10 ± 0.02 | 2.02 ± 0.04 |
∑n-6 PUFA | 13.73 ± 0.17 a | 15.01 ± 0.30 b | 15.82 ± 0.08 b | 17.50 ± 0.19 c | 18.94 ± 0.13 d |
18:3n-3 | 0.28 ± 0.05 | 0.24 ± 0.03 | 0.26 ± 0.00 | 0.24 ± 0.02 | 0.20 ± 0.01 |
20:5n-3 | 8.32 ± 0.04 d | 7.67 ± 0.11 c | 7.00 ± 0.02 b | 6.66 ± 0.10 ab | 6.18 ± 0.23 a |
22:5n-3 | 4.89 ± 0.15 | 4.86 ± 0.05 | 4.81 ± 0.07 | 5.11 ± 0.13 | 5.22 ± 0.09 |
22:6n-3 | 21.32 ± 0.73 b | 20.01 ± 0.59 b | 19.22 ± 0.14 b | 16.63 ± 0.44 a | 15.06 ± 0.23 a |
∑n-3 PUFA | 34.81 ± 0.81 c | 32.79 ± 0.53 bc | 31.3 ± 0.06 b | 28.64 ± 0.20 a | 26.65 ± 0.54 a |
∑n-3/∑n-6 | 2.54 ± 0.08 c | 2.19 ± 0.07 b | 1.98 ± 0.01 b | 1.64 ± 0.03 a | 1.41 ± 0.02 a |
Fatty Acid | FO | 25PO | 50PO | 75PO | PO |
---|---|---|---|---|---|
14:0 | 0.75 ± 0.02 | 0.80 ± 0.09 | 0.67 ± 0.02 | 0.62 ± 0.03 | 0.65 ± 0.01 |
16:0 | 23.39 ± 0.20 b | 22.47 ± 0.39 ab | 22.3 ± 0.30 ab | 22.38 ± 0.14 ab | 22.04 ± 0.19 a |
18:0 | 12.61 ± 0.30 | 12.52 ± 0.44 | 12.80 ± 0.45 | 12.46 ± 0.13 | 12.73 ± 0.35 |
20:0 | 0.53 ± 0.01 | 0.54 ± 0.03 | 0.52 ± 0.06 | 0.44 ± 0.01 | 0.44 ± 0.02 |
∑SFA | 37.28 ± 0.47 | 36.33 ± 0.74 | 36.28 ± 0.76 | 35.89 ± 0.10 | 35.86 ± 0.38 |
16:1n-7 | 1.11 ± 0.02 | 1.23 ± 0.12 | 1.05 ± 0.03 | 0.97 ± 0.06 | 0.99 ± 0.03 |
17:1n-7 | 0.63 ± 0.06 | 0.59 ± 0.03 | 0.63 ± 0.04 | 0.54 ± 0.00 | 0.55 ± 0.04 |
18:1n-9 | 10.69 ± 0.15 a | 11.43 ± 0.26 ab | 11.51 ± 0.25 abc | 11.64 ± 0.08 bc | 12.35 ± 0.11 c |
24:1n-9 | 0.29 ± 0.03 | 0.34 ± 0.03 | 0.40 ± 0.02 | 0.37 ± 0.03 | 0.50 ± 0.09 |
∑MUFA | 12.72 ± 0.19 a | 13.59 ± 0.38 ab | 13.59 ± 0.26 ab | 13.52 ± 0.06 ab | 14.39 ± 0.16 b |
18:2n-6 | 10.81 ± 0.23 a | 11.37 ± 0.09 a | 11.54 ± 0.13 ab | 12.19 ± 0.24 bc | 12.79 ± 0.10 c |
20:2n-6 | 0.70 ± 0.04 a | 0.87 ± 0.04 b | 0.85 ± 0.01 b | 0.90 ± 0.03 b | 0.92 ± 0.03 b |
20:4n-6 | 2.23 ± 0.02 | 2.13 ± 0.10 | 2.19 ± 0.08 | 2.32 ± 0.06 | 2.12 ± 0.04 |
∑n-6 PUFA | 13.74 ± 0.24 a | 14.37 ± 0.02 ab | 14.57 ± 0.07 b | 15.41 ± 0.21 c | 15.83 ± 0.16 c |
18:3n-3 | 0.11 ± 0.11 | 0.29 ± 0.07 | 0.16 ± 0.08 | 0.21 ± 0.05 | 0.15 ± 0.08 |
20:5n-3 | 8.02 ± 0.29 | 7.78 ± 0.28 | 7.46 ± 0.24 | 7.99 ± 0.05 | 7.52 ± 0.17 |
22:5n-3 | 5.26 ± 0.10 a | 5.63 ± 0.18 ab | 5.71 ± 0.06 ab | 5.63 ± 0.16 ab | 6.02 ± 0.10 b |
22:6n-3 | 20.69 ± 0.32 b | 19.68 ± 0.42 b | 20.19 ± 0.71 b | 19.38 ± 0.20 ab | 17.65 ± 0.23 a |
∑n-3 PUFA | 34.08 ± 0.43 b | 33.38 ± 0.49 ab | 33.52 ± 0.93 ab | 33.22 ± 0.09 ab | 31.33 ± 0.54 a |
∑n-3/∑n-6 | 2.48 ± 0.04 c | 2.32 ± 0.03 bc | 2.30 ± 0.06 bc | 2.16 ± 0.04 ab | 1.98 ± 0.02 a |
Fatty Acid | FO | 25PO | 50PO | 75PO | PO |
---|---|---|---|---|---|
14:0 | 3.49 ± 0.09 c | 3.20 ± 0.08 c | 2.55 ± 0.02 b | 2.29 ± 0.05 b | 1.84 ± 0.02 a |
16:0 | 19.51 ± 0.63 | 20.65 ± 0.24 | 19.15 ± 0.26 | 19.93 ± 0.38 | 19.58 ± 0.13 |
18:0 | 8.63 ± 0.76 | 9.47 ± 0.48 | 7.91 ± 0.19 | 9.14 ± 0.75 | 8.68 ± 0.63 |
20:0 | 0.52 ± 0.03 c | 0.48 ± 0.01 c | 0.35 ± 0.02 b | 0.31 ± 0.01 ab | 0.24 ± 0.01 a |
∑SFA | 32.15 ± 1.32 | 33.80 ± 0.66 | 29.96 ± 0.25 | 31.66 ± 1.03 | 30.34 ± 0.60 |
16:1n-7 | 8.53 ± 0.21 b | 8.31 ± 0.23 ab | 8.41 ± 0.12 ab | 7.15 ± 0.40 a | 7.32 ± 0.35 ab |
18:1n-9 | 23.90 ± 0.18 a | 26.54 ± 0.46 b | 30.83 ± 0.47 c | 34.43 ± 0.26 d | 37.25 ± 0.57 e |
20:1n-9 | 2.22 ± 0.22 | 2.03 ± 0.22 | 2.39 ± 0.04 | 1.98 ± 0.17 | 2.01 ± 0.08 |
22:1n-9 | 0.25 ± 0.00 d | 0.24 ± 0.01 cd | 0.21 ± 0.01 bc | 0.18 ± 0.00 ab | 0.17 ± 0.01 a |
∑MUFA | 34.90 ± 0.31 a | 37.12 ± 0.63 b | 41.85 ± 0.30 c | 43.74 ± 0.51 c | 46.74 ± 0.37 d |
18:2n-6 | 12.26 ± 0.28 | 12.27 ± 0.12 | 12.84 ± 0.19 | 12.58 ± 0.35 | 12.74 ± 0.25 |
18:3n-6 | 0.19 ± 0.01 d | 0.17 ± 0.00 cd | 0.15 ± 0.00 bc | 0.13 ± 0.01 ab | 0.13 ± 0.01 a |
20:2n-6 | 0.79 ± 0.03 | 0.83 ± 0.03 | 0.84 ± 0.03 | 0.76 ± 0.02 | 0.78 ± 0.05 |
20:4n-6 | 0.12 ± 0.00 b | 0.11 ± 0.00 b | 0.09 ± 0.01 a | 0.08 ± 0.01 a | 0.07 ± 0.01 a |
∑n-6 PUFA | 13.35 ± 0.31 | 13.37 ± 0.14 | 13.91 ± 0.23 | 13.54 ± 0.37 | 13.72 ± 0.31 |
20:3n-3 | 0.58 ± 0.03 b | 0.58 ± 0.05 b | 0.51 ± 0.01 ab | 0.46 ± 0.03 ab | 0.42 ± 0.01 a |
20:5n-3 | 5.96 ± 0.25 c | 4.82 ± 0.11 b | 4.29 ± 0.14 b | 3.35 ± 0.23 a | 2.74 ± 0.07 a |
22:5n-3 | 4.14 ± 0.13 c | 3.48 ± 0.08 b | 3.42 ± 0.14 b | 2.85 ± 0.02 a | 2.45 ± 0.03 a |
22:6n-3 | 7.12 ± 0.31 c | 5.65 ± 0.04 b | 4.95 ± 0.23 b | 3.51 ± 0.04 a | 2.73 ± 0.06 a |
∑n-3 PUFA | 17.78 ± 0.69 d | 14.52 ± 0.25 c | 13.17 ± 0.33 c | 10.17 ± 0.23 b | 8.34 ± 0.12 a |
∑n-3/∑n-6 | 1.33 ± 0.02 e | 1.09 ± 0.01 d | 0.95 ± 0.03 c | 0.75 ± 0.01 b | 0.61 ± 0.01 a |
Fatty Acid | FO | 25PO | 50PO | 75PO | PO |
---|---|---|---|---|---|
14:0 | 3.49 ± 0.11 b | 3.28 ± 0.03 b | 3.14 ± 0.12 ab | 2.79 ± 0.10 a | 2.84 ± 0.07 a |
16:0 | 20.06 ± 0.20 | 19.44 ± 0.14 | 20.12 ± 0.30 | 20.10 ± 0.11 | 19.53 ± 0.21 |
18:0 | 9.52 ± 0.39 | 9.55 ± 0.16 | 9.72 ± 0.20 | 10.35 ± 0.37 | 9.35 ± 0.64 |
20:0 | 0.55 ± 0.01 c | 0.50 ± 0.01 bc | 0.46 ± 0.01 ab | 0.47 ± 0.02 abc | 0.40 ± 0.03 a |
∑SFA | 33.63 ± 0.47 | 32.76 ± 0.13 | 33.44 ± 0.42 | 33.71 ± 0.53 | 32.13 ± 0.77 |
16:1n-7 | 8.19 ± 0.21 | 8.02 ± 0.09 | 7.73 ± 0.21 | 7.32 ± 0.35 | 7.69 ± 0.11 |
18:1n-9 | 23.86 ± 0.39 a | 25.22 ± 0.37 ab | 27.04 ± 0.23 bc | 28.54 ± 0.76 cd | 29.94 ± 0.64 d |
20:1n-9 | 1.95 ± 0.10 | 2.02 ± 0.04 | 1.74 ± 0.13 | 1.66 ± 0.06 | 1.85 ± 0.05 |
22:1n-9 | 0.24 ± 0.01 b | 0.23 ± 0.00 b | 0.21 ± 0.01 ab | 0.22 ± 0.01 b | 0.19 ± 0.01 a |
∑MUFA | 34.24 ± 0.23 a | 35.49 ± 0.29 ab | 36.73 ± 0.55 bc | 37.74 ± 0.52 cd | 39.67 ± 0.63 d |
18:2n-6 | 11.89 ± 0.18 | 12.16 ± 0.06 | 11.96 ± 0.09 | 11.85 ± 0.11 | 12.22 ± 0.33 |
18:3n-6 | 0.18 ± 0.01 c | 0.18 ± 0.00 bc | 0.16 ± 0.01 ab | 0.15 ± 0.00 a | 0.16 ± 0.00 ab |
20:2n-6 | 0.76 ± 0.02 | 0.81 ± 0.01 | 0.77 ± 0.01 | 0.79 ± 0.03 | 0.76 ± 0.01 |
20:4n-6 | 0.13 ± 0.01 b | 0.12 ± 0.01 ab | 0.10 ± 0.01 ab | 0.10 ± 0.00 ab | 0.09 ± 0.01 a |
∑n-6 PUFA | 12.96 ± 0.19 | 13.27 ± 0.06 | 12.99 ± 0.09 | 12.90 ± 0.14 | 13.23 ± 0.33 |
20:3n-3 | 0.61 ± 0.01 | 0.61 ± 0.03 | 0.55 ± 0.01 | 0.54 ± 0.01 | 0.55 ± 0.03 |
20:5n-3 | 5.75 ± 0.10 c | 5.56 ± 0.07 bc | 5.08 ± 0.21 ab | 4.64 ± 0.05 a | 4.72 ± 0.17 a |
22:5n-3 | 4.23 ± 0.17 b | 4.15 ± 0.07 ab | 3.88 ± 0.20 ab | 3.72 ± 0.09 ab | 3.55 ± 0.09 a |
22:6n-3 | 6.92 ± 0.22 c | 6.60 ± 0.16 c | 5.89 ± 0.06 b | 5.32 ± 0.11 ab | 5.07 ± 0.10 a |
∑n-3 PUFA | 17.51 ± 0.49 c | 16.92 ± 0.14 c | 15.40 ± 0.14 b | 14.22 ± 0.08 ab | 13.88 ± 0.25 a |
∑n-3/∑n-6 | 1.35 ± 0.02 d | 1.28 ± 0.00 c | 1.19 ± 0.01 b | 1.10 ± 0.01 a | 1.05 ± 0.02 a |
Ingredients | FO | 25PO | 50PO | 75PO | PO |
---|---|---|---|---|---|
Fish meal | 42 | 42 | 42 | 42 | 42 |
Corn gluten meal | 8 | 8 | 8 | 8 | 8 |
Soybean meal | 14 | 14 | 14 | 14 | 14 |
Wheat meal | 20.68 | 20.68 | 20.68 | 20.68 | 20.68 |
Brewer’s yeast | 5 | 5 | 5 | 5 | 5 |
Mineral premix 1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Vitamin premix 1 | 1 | 1 | 1 | 1 | 1 |
Monocalcium phosphate | 1 | 1 | 1 | 1 | 1 |
L-ascorbyl-2-polyphosphate | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Choline chloride | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Betaine | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Ethoxyquin | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Mold inhibitor 2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Soya lecithin | 1 | 1 | 1 | 1 | 1 |
Fish oil 3 | 6 | 4.5 | 3 | 1.5 | 0 |
Poultry oil | 0 | 1.5 | 3 | 4.5 | 6 |
Proximate composition | |||||
Crude protein | 45.40 | 45.84 | 45.65 | 46.26 | 46.23 |
Crude lipid | 9.31 | 10.06 | 9.99 | 10.08 | 9.89 |
Ash | 9.41 | 9.47 | 9.56 | 9.56 | 9.47 |
Fatty Acid | Oil | Diet | |||||
---|---|---|---|---|---|---|---|
Fish Oil | Poultry Oil | FO | 25PO | 50PO | 75PO | PO | |
14:0 | 5.33 | 0.58 | 5.55 | 4.76 | 4.06 | 3.35 | 2.69 |
16:0 | 18.60 | 26.61 | 21.24 | 22.32 | 22.99 | 23.64 | 24.99 |
18:0 | 4.58 | 5.60 | 4.58 | 4.76 | 4.79 | 4.76 | 4.94 |
∑SFA | 28.51 | 32.79 | 31.37 | 31.84 | 31.84 | 31.75 | 32.62 |
16:1n-7 | 5.34 | 2.91 | 6.17 | 5.74 | 5.15 | 4.75 | 4.60 |
18:1n-9 | 16.12 | 44.30 | 15.12 | 18.76 | 22.11 | 25.51 | 29.73 |
20:1n-9 | 1.48 | 0.42 | 0.97 | 0.85 | 0.71 | 0.57 | 0.46 |
∑MUFA | 22.94 | 47.63 | 22.25 | 25.35 | 27.97 | 30.84 | 34.80 |
18:2n-6 | 12.28 | 15.11 | 13.25 | 14.20 | 14.41 | 14.63 | 15.11 |
20:2n-6 | 0.22 | 0.12 | 0.22 | 0.22 | 0.19 | 0.18 | 0.17 |
20:4n-6 | 0.55 | 0.21 | 0.68 | 0.69 | 0.60 | 0.58 | 0.52 |
22:2n-6 | 0.38 | ND | 0.33 | 0.28 | 0.24 | 0.17 | 0.12 |
∑n-6 PUFA | 13.43 | 15.44 | 14.48 | 15.38 | 15.45 | 15.56 | 15.92 |
18:3n-3 | 1.69 | 0.69 | 1.52 | 1.38 | 1.28 | 1.12 | 1.03 |
20:5n-3 | 8.15 | 0.06 | 9.66 | 8.38 | 7.24 | 6.07 | 5.11 |
22:5n-3 | 0.82 | 0.03 | 1.17 | 1.05 | 0.98 | 0.85 | 0.77 |
22:6n-3 | 8.97 | 0.02 | 7.36 | 6.17 | 5.24 | 4.02 | 2.95 |
∑n-3 PUFA | 19.63 | 0.80 | 19.70 | 16.98 | 14.74 | 12.06 | 9.87 |
∑n-3/∑n-6 | 1.46 | 0.05 | 1.36 | 1.10 | 0.95 | 0.77 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhang, F.; Meng, X.; Cui, X.; Ma, Q.; Wei, Y.; Liang, M.; Xu, H. Recovery of Fatty Acid and Volatile Flavor Compound Composition in Farmed Tiger Puffer (Takifugu rubripes) with a Fish Oil-Finishing Strategy. Mar. Drugs 2023, 21, 122. https://doi.org/10.3390/md21020122
Li L, Zhang F, Meng X, Cui X, Ma Q, Wei Y, Liang M, Xu H. Recovery of Fatty Acid and Volatile Flavor Compound Composition in Farmed Tiger Puffer (Takifugu rubripes) with a Fish Oil-Finishing Strategy. Marine Drugs. 2023; 21(2):122. https://doi.org/10.3390/md21020122
Chicago/Turabian StyleLi, Lin, Feiran Zhang, Xiaoxue Meng, Xishuai Cui, Qiang Ma, Yuliang Wei, Mengqing Liang, and Houguo Xu. 2023. "Recovery of Fatty Acid and Volatile Flavor Compound Composition in Farmed Tiger Puffer (Takifugu rubripes) with a Fish Oil-Finishing Strategy" Marine Drugs 21, no. 2: 122. https://doi.org/10.3390/md21020122
APA StyleLi, L., Zhang, F., Meng, X., Cui, X., Ma, Q., Wei, Y., Liang, M., & Xu, H. (2023). Recovery of Fatty Acid and Volatile Flavor Compound Composition in Farmed Tiger Puffer (Takifugu rubripes) with a Fish Oil-Finishing Strategy. Marine Drugs, 21(2), 122. https://doi.org/10.3390/md21020122