Potential α-Glucosidase Inhibitors from the Deep-Sea Sediment-Derived Fungus Aspergillus insulicola
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation of New Compounds 1–3
2.2. In Vitro Evaluation of α-Glucosidase Inhibitory Activity
3. Materials and Methods
3.1. Fungal Material and Fermentation
3.2. Culture Conditions
3.3. General Experimental Procedures
3.4. Extraction and Isolation
3.5. ECD Calculation
3.6. α-Glucosidase Inhibitory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kashtoh, H.; Baek, K.H. Recent updates on phytoconstituent alpha-glucosidase inhibitors: An approach towards the treatment of type two diabetes. Plants 2022, 11, 2722. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Ardalani, H.; Anam, S.; McNair, L.M.; Kromphardt, K.J.K.; Frandsen, R.J.N.; Franzyk, H.; Staerk, D.; Kongstad, K.T. Antidiabetic xanthones with α-glucosidase inhibitory activities from an endophytic Penicillium canescens. Fitoterapia 2020, 142, 104522. [Google Scholar] [CrossRef]
- Du, X.P.; Wang, X.; Yan, X.; Yang, Y.F.; Li, Z.P.; Jiang, Z.D.; Ni, H. Hypoglycaemic effect of all-trans astaxanthin through inhibiting α-glucosidase. J. Funct. Foods 2020, 74, 104168. [Google Scholar] [CrossRef]
- Jiang, L.L.; Wang, Z.; Wang, X.Y.; Wang, S.J.; Cao, J.; Liu, Y. Exploring the inhibitory mechanism of piceatannol on α-glucosidase relevant to diabetes mellitus. RSC Adv. 2020, 10, 4529–4537. [Google Scholar] [CrossRef] [PubMed]
- Attjioui, M.; Ryan, S.; Ristic, A.K.; Higgins, T.; Goni, O.; Gibney, E.; Tierney, J.; O’Connell, S. Kinetics and mechanism of α-glucosidase inhibition by edible brown algae in the management of type 2 diabetes. P. Nutr. Soc. 2020, 79, E633. [Google Scholar] [CrossRef]
- Fallah, Z.; Tajbakhsh, M.; Alikhani, M.; Larijani, B.; Faramarzi, M.A.; Hamedifar, H.; Mohammadi-Khanaposhtani, M.; Mahdavi, M. A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. J. Mol. Struct. 2022, 1255, 132469. [Google Scholar] [CrossRef]
- Shah, M.; Bashir, S.; Jaan, S.; Nawaz, H.; Nishan, U.; Abbasi, S.W.; Jamal, S.B.; Khan, A.; Afridi, S.G.; Iqbal, A. Computational analysis of plant-derived terpenes as α-glucosidase inhibitors for the discovery of therapeutic agents against type 2 diabetes mellitus. S. Afr. J. Bot. 2021, 143, 462–473. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ali, A.; Ranadheera, C.S.; Fang, Z.X.; Dunshea, F.R.; Ajlouni, S. In vitro bioaccessibility of phenolic compounds and alpha-glucosidase inhibition activity in yoghurts enriched with mango peel powder. Food Biosci. 2022, 50, 102011. [Google Scholar] [CrossRef]
- Abdelli, I.; Benariba, N.; Adjdir, S.; Fekhikher, Z.; Daoud, I.; Terki, M.; Benramdane, H.; Ghalem, S. In silico evaluation of phenolic compounds as inhibitors of A-amylase and A-glucosidase. J. Biomol. Struct. Dyn. 2020, 39, 816–822. [Google Scholar] [CrossRef]
- Machida, S.; Mukai, S.; Kono, R.; Funato, M.; Saito, H.; Uchiyama, T. Synthesis and comparative structure–activity study of carbohydrate-based phenolic compounds as α-glucosidase inhibitors and antioxidants. Molecules 2019, 24, 4340. [Google Scholar] [CrossRef] [Green Version]
- Catarino, M.D.; Silva, A.M.S.; Mateus, N.; Cardoso, S.M. Optimization of phlorotannins extraction from fucus vesiculosus and evaluation of their potential to prevent metabolic disorders. Mar. Drugs 2019, 17, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateos, R.; Pérez-Correa, J.R.; Domínguez, H. Bioactive properties of marine phenolics. Mar. Drugs 2020, 18, 501. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Chen, W.Q.; Kong, L.; Zhou, B.X.; Hua, Y.; Han, Y.; Li, J.J.; Ji, J.; Fu, M.; Liu, W.W.; et al. Optimum conditions of ultrasound-assisted extraction and pharmacological activity study for phenolic compounds of the alga Chondrus ocellatus. J. Food Process. Preserv. 2022, 46, E16400. [Google Scholar] [CrossRef]
- Naveen, J.; Baskaran, R.; Baskarana, V. Profiling of bioactives and in vitro evaluation of antioxidant and antidiabetic property of polyphenols of marine algae Padina tetrastromatica. Algal Res. 2021, 55, 102250. [Google Scholar] [CrossRef]
- Rengasamy, K.R.R.; Sadeer, N.B.; Zengin, G.; Mahomoodally, M.F.; Cziáky, Z.; Jekőd, J.; Diuzheva, A.; Abdallah, H.H.; Kim, D.H. Biopharmaceutical potential, chemical profile and in silico study of the seagrass–Syringodium isoetifolium (Asch.) Dandy. S. Afr. J. Bot. 2019, 127, 167–175. [Google Scholar] [CrossRef]
- Sun, C.X.; Zhang, Z.P.; Ren, Z.L.; Yu, L.; Zhou, H.; Han, Y.X.; Shah, M.; Che, Q.; Zhang, G.J.; Li, D.H.; et al. Antibacterial cyclic tripeptides from Antarctica-sponge-derived fungus Aspergillus insulicola HDN151418. Mar. Drugs 2020, 18, 532. [Google Scholar] [CrossRef]
- Wu, Q.X.; Jin, X.J.; Draskovic, M.; Crews, M.S.; Tenney, K.; Valeriote, F.A.; Yao, X.J.; Crews, P. Unraveling the numerous biosynthetic products of the marine sediment-derived fungus, Aspergillus insulicola. Phytochem. Lett. 2012, 5, 114–117. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.X.; Crews, M.S.; Draskovic, M.; Sohn, J.; Johnson, T.A.; Tenney, K.; Valerick, F.A.; Yao, X.J.; Bjeldanes, L.F.; Crerws, P. Azonazine, a novel dipeptide from a Hawaiian marine sediment-derived fungus, Aspergillus insulicola. Org. Lett. 2010, 12, 4458–4461. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.X.; Liu, X.Y.; Sun, N.; Zhang, X.M.; Shah, M.; Zhang, G.J.; Che, Q.; Zhu, T.J.; Li, J.; Li, D.H. Cytotoxic nitrobenzoyl sesquiterpenoids from an Antarctica sponge-derived Aspergillus insulicola. J. Nat. Prod. 2022, 85, 987–996. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Anbuchezhian, R.; Sun, W.; Shao, C.L.; Zhang, F.L.; Yin, Y.; Yu, Z.S.; Li, Z.Y.; Wang, C.Y. Cytotoxic nitrobenzoyloxy-substituted sesquiterpenes from sponge-derived endozoic fungus Aspergillus insulicola MD10-2. Curr. Pharm. Biotechno. 2016, 17, 271–274. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, Y.B.; Yin, J.J.; Chang, W.J.; Zhao, X.L.; Mao, Y. Two new azaphilones from the marine-derived fungus Penicillium sclerotiorum E23Y-1A. Phytochem. Lett. 2022, 47, 76–80. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, Y.B.; Zhao, W.B.; Dai, F.H.; Chang, W.J.; Lv, F. Structures and biological activities of brominated azaphilones produced by Penicillium sclerotiorum E23Y-1A. Phytochem. Lett. 2022, 52, 138–142. [Google Scholar] [CrossRef]
- Zeng, Y.B.; Wang, Z.; Chang, W.J.; Zhao, W.B.; Wang, H.; Chen, H.Q.; Dai, F.H.; Lv, F. New azaphilones from the marine-derived fungus Penicillium sclerotiorum E23Y-1A with their anti-inflammatory and antitumor activities. Mar. Drugs 2023, 21, 75. [Google Scholar] [CrossRef]
- El Amrani, M.; Lai, D.; Debbab, A.; Aly, A.H.; Siems, K.; Seidel, C.; Schnekenburger, M.; Gaigneaux, A.; Diederich, M.; Feger, D.; et al. Protein Kinase and HDAC Inhibitors from the Endophytic Fungus Epicoccum nigrum. J. Nat. Prod. 2014, 77, 49–56. [Google Scholar] [CrossRef]
- Laszlo, V.; Michael, K.; Astrid, M.E.; Luigi, T. 2-Phenyl-benzofuran derivatives, method for the production thereof and their use. D.E. Patent 10,351,315, 2005. [Google Scholar]
- Talontsi, F.M.; Dittrich, B.; Schüffler, A.; Sun, H.; Laatsch, H. Epicoccolides: Antimicrobial and antifungal polyketides from an endophytic fungus Epicoccum sp. associated with Theobroma cacao. Eur. J. Org. Chem. 2013, 2013, 3174–3180. [Google Scholar] [CrossRef]
- Luan, Y.P.; Wei, H.J.; Zhang, Z.P.; Che, Q.; Liu, Y.K.; Zhu, T.J.; Mándi, A.; Kurtán, T.; Gu, Q.Q.; Li, D.H. Eleganketal A, a highly oxygenated dibenzospiroketal from the marine-derived fungus Spicaria elegans KLA03. J. Nat. Prod. 2014, 77, 1718–1723. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.H.; Gloer, J.B.; Wicklow, D.T. Isolation of chromanone and isobenzofuran derivatives from a fungicolous isolate of Epicoccum purpurascens. Bull. Korean Chem. Soc. 2007, 28, 877–879. [Google Scholar] [CrossRef]
- Nishihara, Y.; Takase, S.; Tsujii, E.; Hatanaka, H.; Hashimot, S. New anti-influenza agents, FR198248 and its derivatives. II. Characterization of FR198248, its related compounds and some derivatives. J. Antibiot. 2001, 24, 297–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Yang, Y.L.; Dong, W.H.; Li, W.; Wang, P.; Cao, X.; Yuan, J.Z.; Chen, H.Q.; Mei, W.L.; Dai, H.F. Sesquiterpenoids and 2-(2-phenylethyl) chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. J. Enzym. Inhib. Med. CH. 2019, 34, 853–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.Y.; Huang, C.Y.; Guo, H.X.; Zheng, S.Y.; He, J.R.; Lin, J.; Long, Y.H. Isobenzofuranone monomer and dimer derivatives from the mangrove endophytic fungus Epicoccum nigrum SCNU-F0002 possess α-glucosidase inhibitory and antioxidant activity. Bioorg. Chem. 2020, 94, 103407. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Vandermeersch, T.; Flynn, C.J.; Maguire, A.R.; Hutchison, G.R. Confab-systematic generation of diverse low-energy conformers. J. Cheminform. 2011, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannwarth, C.; Ehlert, S.; Grimme, S.J. GFN2-xTB an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision, C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Bruhn, T.; Schaumloffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef] [PubMed]
Position | 1 a | 2 a | 3 b |
---|---|---|---|
1 | 4.54 (d, 15.0) | ||
4.65 (d, 15.0) | |||
2 | 6.83, s | 6.76, s | |
3 | 4.30, s | ||
10 | 6.38, s | 5.65, s | 4.30, s |
12 | 4.54 (d, 15.0) | ||
4.65 (d, 15.0) | |||
17 | 2.31, s | 2.09, s | |
18 | 10.34, s | 4.81 (d, 12.1) | |
4.32 (d, 12.1) | |||
19 | 2.26, s | 2.18, s | 1.88, s |
20 | 1.88, s | ||
6-OCH3 | 3.70, s | 3.57, s | 3.64, s |
14-OCH3 | 3.64, s | ||
15-OCH3 | 3.69, s | ||
5-OH | 8.55, s | ||
7-OH | 11.33, s | 11.46, s | 8.68, s |
14-OH | 8.92, s | ||
15-OH | 8.68, s | ||
17-OH | 8.55, s |
Position | 1 | 2 | 3 |
---|---|---|---|
1 | 65.8, CH2 | ||
2 | 89.8, CH | 89.9, CH | |
3 | 130.8, C | 131.0, C | 66.1, CH |
4 | 115.8, C | 115.8, C | 112.2, C |
5 | 156.9, C | 158.9, C | 147.0, C |
6 | 134.7, C | 134.6, C | 134.3, C |
7 | 153.6, C | 153.6, C | 147.8, C |
8 | 104.5, C | 103.4, C | 109.7, C |
9 | 196.9, C | 196.8, C | 129.7, C |
10 | 68.6, CH | 70.3, CH | 66.1, CH |
11 | 112.6, C | 108.3, C | |
12 | 121.7, C | 132.1, C | 65.8, CH2 |
13 | 121.9, C | 118.1, C | 129.7, C |
14 | 144.3, C | 148.5, C | 109.7, C |
15 | 138.4, C | 134.6, C | 147.8, C |
16 | 135.8, C | 140.3, C | 134.3, C |
17 | 11.8, CH3 | 11.0, CH3 | 147.0, C |
18 | 191.2, CH | 55.8, CH2 | 112.2, C |
19 | 10.2, CH3 | 10.3, CH3 | 9.5, CH3 |
20 | 9.5, CH3 | ||
6-OCH3 | 60.2, CH3 | 60.3, CH3 | 60.2, CH3 |
14-OCH3 | 60.2, CH3 | ||
15-OCH3 | 60.0, CH3 |
Compounds | IC50 ± SD (μM) a |
---|---|
1 | 292.47 ± 5.87 |
2 | – |
3 | – |
4 | 25.69 ± 0.30 |
5 | 40.07 ± 4.64 |
6 | 17.04 ± 0.28 |
7 | 49.53 ± 2.45 |
8 | – |
9 | 130.63 ± 2.87 |
Acarbose b | 822.97 ± 7.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Zeng, Y.; Chang, W.; Chen, H.; Wang, H.; Dai, H.; Lv, F. Potential α-Glucosidase Inhibitors from the Deep-Sea Sediment-Derived Fungus Aspergillus insulicola. Mar. Drugs 2023, 21, 157. https://doi.org/10.3390/md21030157
Zhao W, Zeng Y, Chang W, Chen H, Wang H, Dai H, Lv F. Potential α-Glucosidase Inhibitors from the Deep-Sea Sediment-Derived Fungus Aspergillus insulicola. Marine Drugs. 2023; 21(3):157. https://doi.org/10.3390/md21030157
Chicago/Turabian StyleZhao, Weibo, Yanbo Zeng, Wenjun Chang, Huiqin Chen, Hao Wang, Haofu Dai, and Fang Lv. 2023. "Potential α-Glucosidase Inhibitors from the Deep-Sea Sediment-Derived Fungus Aspergillus insulicola" Marine Drugs 21, no. 3: 157. https://doi.org/10.3390/md21030157
APA StyleZhao, W., Zeng, Y., Chang, W., Chen, H., Wang, H., Dai, H., & Lv, F. (2023). Potential α-Glucosidase Inhibitors from the Deep-Sea Sediment-Derived Fungus Aspergillus insulicola. Marine Drugs, 21(3), 157. https://doi.org/10.3390/md21030157