Insights into Common Octopus (Octopus vulgaris) Ink Proteome and Bioactive Peptides Using Proteomic Approaches
Abstract
:1. Introduction
2. Results
2.1. Octopus Ink Samples
2.2. Octopus Ink Proteome
2.3. Label-Free Quantification (LFQ) of O. vulgaris Ink Samples
2.4. Functional Analysis: Gene Ontologies and Pathways Analysis
2.5. Network Analysis
2.6. Putative Bioactive Peptides
3. Discussion
4. Materials and Methods
4.1. Common Octopus Sampling
4.2. Ink Protein Samples
4.3. SDS-Polyacrylamide Gel Electrophoresis
4.4. In-Solution Protein Digestion with Trypsin
4.5. Shotgun LC-MS/MS Analysis
4.6. Processing of the Mass Spectrometry Data
4.7. Functional Gene Ontologies and Pathways Analysis
4.8. Network Analysis
4.9. Bioactive Peptides Prediction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Derby, C. Cephalopod Ink: Production, Chemistry, Functions and Applications. Mar. Drugs 2014, 12, 2700–2730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz-Pires, P.; Seixas, P.; Barbosa, A. Aquaculture Potential of the Common Octopus (Octopus vulgaris Cuvier, 1797): A Review. Aquaculture 2004, 238, 221–238. [Google Scholar] [CrossRef]
- Prado-Álvarez, M.; Dios, S.; García-Fernández, P.; Tur, R.; Hachero-Cruzado, I.; Domingues, P.; Almansa, E.; Varó, I.; Gestal, C. De Novo Transcriptome Reconstruction in Aquacultured Early Life Stages of the Cephalopod Octopus vulgaris. Sci. Data 2022, 9, 609. [Google Scholar] [CrossRef]
- Hochner, B. Octopuses. Curr. Biol. 2008, 18, R897–R898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tricarico, E.; Borrelli, L.; Gherardi, F.; Fiorito, G. I Know My Neighbour: Individual Recognition in Octopus vulgaris. PLoS ONE 2011, 6, e18710. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, J.; Sánchez, F.J.; Otero, J.J.; Moxica, C. Culture of Octopus (Octopus vulgaris, Cuvier): Present Knowledge, Problems and Perspectives. Cah. Options Méditerranéennes 2000, 47, 313–321. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- SFP. Octopus: 2021 Sector Sustainability Update; Sustainable Fisheries Partnership (SFP): Honolulu, HI, USA, May 2022; 16p. [Google Scholar]
- Pierce, G.J.; Allcock, L.; Bruno, I.; Bustamante, P.; Gonzalez, A.; Guerra, Á.; Jereb, P.; Lefkaditou, E.; Malham, S.; Pereira, J. Cephalopod Biology and Fisheries in Europe; ICES Cooperative Research Report; ICES: Copenhagen, Denmark, 2010; Volume 303, p. 181. [Google Scholar] [CrossRef]
- Koueta, N.; Viala, H.; Le Bihan, E. Applications, Uses and By-Products from Cephalopods. In Cephalopod Culture; Iglesias, J., Fuentes, L., Villanueva, R., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 131–147. [Google Scholar] [CrossRef]
- Hernández-Zazueta, M.S.; García-Romo, J.S.; Noguera-Artiaga, L.; Luzardo-Ocampo, I.; Carbonell-Barrachina, Á.A.; Taboada-Antelo, P.; Campos-Vega, R.; Rosas-Burgos, E.C.; Burboa-Zazueta, M.G.; Ezquerra-Brauer, J.M. Octopus vulgaris Ink Extracts Exhibit Antioxidant, Antimutagenic, Cytoprotective, Antiproliferative, and Proapoptotic Effects in Selected Human Cancer Cell Lines. J. Food Sci. 2021, 86, 587–601. [Google Scholar] [CrossRef]
- Hernández-Zazueta, M.S.; Luzardo-Ocampo, I.; García-Romo, J.S.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A.; Taboada-Antelo, P.; Campos-Vega, R.; Rosas-Burgos, E.C.; Burboa-Zazueta, M.G.; Ezquerra-Brauer, J.M.; et al. Bioactive Compounds from Octopus vulgaris Ink Extracts Exerted Anti-Proliferative and Anti-Inflammatory Effects in Vitro. Food Chem. Toxicol. 2021, 151, 112–119. [Google Scholar] [CrossRef]
- Wang, F.R.; Xie, Z.G.; Ye, X.Q.; Deng, S.G.; Hu, Y.Q.; Guo, X.; Chen, S.G. Effectiveness of Treatment of Iron Deficiency Anemia in Rats with Squid Ink Melanin–Fe. Food Funct. 2014, 5, 123–128. [Google Scholar] [CrossRef]
- Gopakumar, K.; Gopakumar, B. Cephalopod Ink. In Health Foods from Ocean Animals; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Prota, G. Melanins, Melanogenesis and Melanocytes: Looking at Their Functional Significance from the Chemist’s Viewpoint. Pigment. Cell Res. 2000, 13, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Takaya, Y.; Uchisawa, H.; Hanamatsu, K.; Narumi, F.; Okuzaki, B.; Matsue, H. Novel Fucose-Rich Glycosaminoglycans from Squid Ink Bearing Repeating Unit of Trisaccharide Structure (-6GalNAcα1-3GlcAβ1-3Fucα1-) n. Biochem. Biophys. Res. Commun. 1994, 198, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, J.; Xue, C.; Dong, P.; Sheng, W.; Yu, G.; Chai, W. Sequence Determination of a Non-Sulfated Glycosaminoglycan-like Polysaccharide from Melanin-Free Ink of the Squid Ommastrephes bartrami by Negative-Ion Electrospray Tandem Mass Spectrometry and NMR Spectroscopy. Glycoconj. J. 2008, 25, 481–492. [Google Scholar] [CrossRef]
- Huang, F.; Yang, Z.; Yu, D.; Wang, J.; Li, R.; Ding, G. Sepia Ink Oligopeptide Induces Apoptosis in Prostate Cancer Cell Lines via Caspase-3 Activation and Elevation of Bax/Bcl-2 Ratio. Mar. Drugs 2012, 10, 2153–2165. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Asghar, W.; Khan, S.; Akhtar, A.; Ayub, H.; Khalid, N.; Alessa, F.M.; Al-Mssallem, M.Q.; Rezk, A.A.-S.; Shehata, W.F. Therapeutic Potential of Marine Bioactive Peptides against Human Immunodeficiency Virus: Recent Evidence, Challenges, and Future Trends. Mar. Drugs 2022, 20, 477. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Gómez, B.; Barba, F.J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F. Bioactive Peptides as Natural Antioxidants in Food Products—A Review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Sánchez, A.; Vázquez, A. Bioactive Peptides: A Review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Pihlanto-Leppälä, A. Bioactive Peptides Derived from Bovine Whey Proteins: Opioid and Ace-Inhibitory Peptides. Trends Food Sci. Technol. 2000, 11, 347–356. [Google Scholar] [CrossRef]
- Mayne, J.; Ning, Z.; Zhang, X.; Starr, A.E.; Chen, R.; Deeke, S.; Chiang, C.-K.; Xu, B.; Wen, M.; Cheng, K.; et al. Bottom-Up Proteomics (2013–2015): Keeping up in the Era of Systems Biology. Anal. Chem. 2016, 88, 95–121. [Google Scholar] [CrossRef] [PubMed]
- Carrera, M.; Pazos, M.; Aubourg, S.P.; Gallardo, J.M. Shotgun Proteomics and Protein-Based Bioinformatics for the Characterization of Food-Derived Bioactive Peptides. In Shotgun Proteomics; Springer: New York, NY, USA, 2021; pp. 215–223. [Google Scholar]
- Madaras, F.; Gerber, J.P.; Peddie, F.; Kokkinn, M.J. The Effect of Sampling Methods on the Apparent Constituents of Ink from the Squid Sepioteuthis australis. J. Chem. Ecol. 2010, 36, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Jackson, I.J. Peroxidase Activity in the Ink Gland of Sepia officinalis and Partial Nucleotide Sequence of a Candidate CDNA Encoding the Enzyme. Biochim. Et Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1995, 1247, 173–178. [Google Scholar] [CrossRef]
- Shibata, T.; Prota, G.; Mishima, Y. Non-Melanosomal Regulatory Factors in Melanogenesis. J. Investig. Dermatol. 1993, 100, S274–S280. [Google Scholar] [CrossRef] [Green Version]
- Gesualdo, I.; Aniello, F.; Branno, M.; Palumbo, A. Molecular Cloning of a Peroxidase MRNA Specifically Expressed in the Ink Gland of Sepia officinalis. Biochim. Et Biophys. Acta (BBA)-Gene Struct. Expr. 1997, 1353, 111–117. [Google Scholar] [CrossRef]
- Decker, H.; Tuczek, F. Tyrosinase/Catecholoxidase Activity of Hemocyanins: Structural Basis and Molecular Mechanism. Trends Biochem. Sci. 2000, 25, 392–397. [Google Scholar] [CrossRef]
- Siddiqui, N.I.; Akosung, R.F.; Gielens, C. Location of Intrinsic and Inducible Phenoloxidase Activity in Molluscan Hemocyanin. Biochem. Biophys. Res. Commun. 2006, 348, 1138–1144. [Google Scholar] [CrossRef]
- Jaenicke, E.; Büchler, K.; Decker, H.; Markl, J.; Schröder, G.F. The Refined Structure of Functional Unit h of Keyhole Limpet Hemocyanin (KLH1-h) Reveals Disulfide Bridges. IUBMB Life 2011, 63, 183–187. [Google Scholar] [CrossRef]
- Wu, S.; Wang, S.; Wang, Y.; Zhang, Z. Phenoloxidase in Mollusca and Crustacean. Chin. J. Zool. 2009, 44, 137–146. [Google Scholar]
- Fan, T.; Li, M.; Wang, J.; Yang, L.; Cong, R. Purification and Characterization of Phenoloxidase from Octopus ocellatus. Acta Biochim. Biophys. Sin. 2009, 41, 865–872. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Sutherland, D.R.; Horsfall, W.; Totty, N.; Yeo, E.; Nayar, R.; Wu, X.-F.; Schuh, A.C. Cell Surface Antigen CD109 Is a Novel Member of the A2 Macroglobulin/C3, C4, C5 Family of Thioester-Containing Proteins. Blood 2002, 99, 1683–1691. [Google Scholar] [CrossRef]
- Zhang, H.; Song, L.; Li, C.; Zhao, J.; Wang, H.; Gao, Q.; Xu, W. Molecular Cloning and Characterization of a Thioester-Containing Protein from Zhikong Scallop Chlamys farreri. Mol. Immunol. 2007, 44, 3492–3500. [Google Scholar] [CrossRef] [PubMed]
- Yazzie, N.; Salazar, K.A.; Castillo, M.G. Identification, Molecular Characterization, and Gene Expression Analysis of a CD109 Molecule in the Hawaiian Bobtail Squid Euprymna scolopes. Fish Shellfish Immunol. 2015, 44, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Muto, A.; Kotera, M.; Tokimatsu, T.; Nakagawa, Z.; Goto, S.; Kanehisa, M. Modular Architecture of Metabolic Pathways Revealed by Conserved Sequences of Reactions. J. Chem. Inf. Model. 2013, 53, 613–622. [Google Scholar] [CrossRef] [PubMed]
- García-Fernández, P.; Prado-Álvarez, M.; Nande, M.; Perales-Raya, C.; Almansa, E.; Varó, I.; Gestal, C. Global Impact of Diet and Temperature over Aquaculture of Octopus vulgaris Paralarvae from a Transcriptomic Approach. Sci. Rep. 2019, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Varó, I.; Prado-Álvarez, M.; Ortea, I.; Morales, A.E.; García-Fernández, P.; Domingues, P.; Tur, R.; Dios, S.; Gestal, C. Proteogenomic Study of the Effect of an Improved Mixed Diet of Live Preys on the Aquaculture of Octopus vulgaris Paralarvae. Front. Mar. Sci. 2022, 8. [Google Scholar] [CrossRef]
- Salazar, K.A.; Joffe, N.R.; Dinguirard, N.; Houde, P.; Castillo, M.G. Transcriptome Analysis of the White Body of the Squid Euprymna tasmanica with Emphasis on Immune and Hematopoietic Gene Discovery. PLoS ONE 2015, 10, e0119949. [Google Scholar] [CrossRef] [Green Version]
- Sandamalika, W.G.; Kwon, H.; Lim, C.; Yang, H.; Lee, J. The Possible Role of Catalase in Innate Immunity and Diminution of Cellular Oxidative Stress: Insights into Its Molecular Characteristics, Antioxidant Activity, DNA Protection, and Transcriptional Regulation in Response to Immune Stimuli in Yellowtail Clownfish (Amphiprion clarkii). Fish Shellfish Immunol. 2021, 113, 106–117. [Google Scholar] [CrossRef]
- Orlowski, R.Z. The Role of the Ubiquitin-Proteasome Pathway in Apoptosis. Cell Death Differ. 1999, 6, 303–313. [Google Scholar] [CrossRef]
- Livingstone, D.R. Organic Xenobiotic Metabolism in Marine Invertebrates. Adv. Comp. Environ. Physiol. 1991, 7, 45–185. [Google Scholar] [CrossRef]
- Castillo, M.G.; Salazar, K.A.; Joffe, N.R. The Immune Response of Cephalopods from Head to Foot. Fish Shellfish Immunol. 2015, 46, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Gestal, C.; Castellanos-Martínez, S. Understanding the Cephalopod Immune System Based on Functional and Molecular Evidence. Fish Shellfish Immunol. 2015, 46, 120–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marikovsky, M.; Ziv, V.; Nevo, N.; Harris-Cerruti, C.; Mahler, O. Cu/Zn Superoxide Dismutase Plays Important Role in Immune Response. J. Immunol. 2003, 170, 2993–3001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fridovich, I. Superoxide Radical and Superoxide Dismutases. Annu. Rev. Biochem. 1995, 64, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Gelebart, P.; Opas, M.; Michalak, M. Calreticulin, a Ca2+-Binding Chaperone of the Endoplasmic Reticulum. Int. J. Biochem. Cell Biol. 2005, 37, 260–266. [Google Scholar] [CrossRef]
- Huang, Y.; Hui, K.; Jin, M.; Yin, S.; Wang, W.; Ren, Q. Two Endoplasmic Reticulum Proteins (Calnexin and Calreticulin) Are Involved in Innate Immunity in Chinese Mitten Crab (Eriocheir sinensis). Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benham, A.M. The Protein Disulfide Isomerase Family: Key Players in Health and Disease. Antioxid. Redox Signal. 2012, 16, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Wu, L.; Ni, D.; Chang, Y.; Xu, W.; Xing, K. The CDNA Cloning and MRNA Expression of Heat Shock Protein 70 Gene in the Haemocytes of Bay Scallop (Argopecten irradians, Lamarck 1819) Responding to Bacteria Challenge and Naphthalin Stress. Fish Shellfish Immunol. 2006, 21, 335–345. [Google Scholar] [CrossRef]
- Raksakulthai, R.; Haard, N.F. Purification and Characterization of a Carboxypeptidase from Squid Hepatopancreas (Illex illecebrosus). J. Agric. Food Chem. 2001, 49, 5019–5030. [Google Scholar] [CrossRef]
- Barrett, A.J.; Woessner, J.F.; Rawlings, N.D. Handbook of Proteolytic Enzymes; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1, ISBN 0-08-098415-0. [Google Scholar]
- Korhonen, H.; Pihlanto, A. Bioactive Peptides: Production and Functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Carrera, M.; Ezquerra-Brauer, J.M.; Aubourg, S.P. Characterization of the Jumbo Squid (Dosidicus gigas) Skin By-Product by Shotgun Proteomics and Protein-Based Bioinformatics. Mar. Drugs 2019, 18, 31. [Google Scholar] [CrossRef] [Green Version]
- Besednova, N.N.; Zaporozhets, T.S.; Kovalev, N.N.; Makarenkova, I.D.; Yakovlev, Y.M. Cephalopods: The Potential for Their Use in Medicine. Russ. J. Mar. Biol. 2017, 43, 101–110. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Li, Y.; Feng, Y.; Zhou, S.; Wang, F. Structural Characterisation and Antimutagenic Activity of a Novel Polysaccharide Isolated from Sepiella maindroni Ink. Food Chem. 2008, 110, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Keil, B. Essential Substrate Residues for Action of Endopeptidases. In Specif. Proteolysis; Springer: Berlin/Heidelberg, Germany, 1992; pp. 43–228. [Google Scholar] [CrossRef]
- Guillén, G.; López Caballero, M.E.; Alemán, A.; Lacey, A.L.D.; Giménez, B.; Montero García, P. Antioxidant and Antimicrobial Peptide Fractions from Squid and Tuna Skin Gelatin. In Sea By-Products As a Real Material: New Ways of Application; Transworld Research Network: Kerala, India, 2010; pp. 89–115. [Google Scholar]
- Mooney, C.; Haslam, N.J.; Pollastri, G.; Shields, D.C. Towards the Improved Discovery and Design of Functional Peptides: Common Features of Diverse Classes Permit Generalized Prediction of Bioactivity. PLoS ONE 2012, 7, e45012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, C.J.; Nairn, J. Diverse Immune Functions of Hemocyanins. Dev. Comp. Immunol. 2014, 45, 43–55. [Google Scholar] [CrossRef]
- Destoumieux-Garzón, D.; Saulnier, D.; Garnier, J.; Jouffrey, C.; Bulet, P.; Bachère, E. Crustacean Immunity: Antifungal Peptides Are Generated from the C Terminus of Shrimp Hemocyanin in Response to Microbial Challenge. J. Biol. Chem. 2001, 276, 47070–47077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolashka-Angelova, P.; Stefanova, T.; Livaniou, E.; Velkova, L.; Klimentzou, P.; Stevanovic, S.; Salvato, B.; Neychev, H.; Voelter, W. Immunological Potential of Helix vulgaris and Rapana venosa Hemocyanins. Immunol. Investig. 2008, 37, 822–840. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Aweya, J.J.; Zheng, L.; Wang, F.; Zheng, Z.; Zhong, M.; Lun, J.; Zhang, Y. A Litopenaeus vannamei Hemocyanin-Derived Antimicrobial Peptide (Peptide B11) Attenuates Cancer Cells’ Proliferation. Molecules 2018, 23, 3202. [Google Scholar] [CrossRef] [Green Version]
- McFadden, D.W.; Riggs, D.R.; Jackson, B.J.; Vona-Davis, L. Keyhole Limpet Hemocyanin, a Novel Immune Stimulant with Promising Anticancer Activity in Barrett’s Esophageal Adenocarcinoma. Am. J. Surg. 2003, 186, 552–555. [Google Scholar] [CrossRef]
- Mora Román, J.J.; Del Campo, M.; Villar, J.; Paolini, F.; Curzio, G.; Venuti, A.; Jara, L.; Ferreira, J.; Murgas, P.; Lladser, A.; et al. Immunotherapeutic Potential of Mollusk Hemocyanins in Combination with Human Vaccine Adjuvants in Murine Models of Oral Cancer. J. Immunol. Res. 2019, 2019, e7076942. [Google Scholar] [CrossRef]
- Weigmann, A.; Corbeil, D.; Hellwig, A.; Huttner, W.B. Prominin, a Novel Microvilli-Specific Polytopic Membrane Protein of the Apical Surface of Epithelial Cells, Is Targeted to Plasmalemmal Protrusions of Non-Epithelial Cells. Proc. Natl. Acad. Sci. USA 1997, 94, 12425–12430. [Google Scholar] [CrossRef] [Green Version]
- Jászai, J.; Fargeas, C.A.; Florek, M.; Huttner, W.B.; Corbeil, D. Focus on Molecules: Prominin-1 (CD133). Exp. Eye Res. 2007, 85, 585–586. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.; Zelhof, A.; Mishra, M.; Nie, J. 800 Facets of Retinal Degeneration. Prog. Mol. Biol. Transl. Sci. 2011, 100, 331–368. [Google Scholar] [CrossRef] [PubMed]
- Corbeil, D.; Karbanová, J.; Fargeas, C.A.; Jászai, J. Prominin-1 (CD133): Molecular and Cellular Features across Species. In Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell Biology; Springer: New York, NY, USA, 2013; pp. 3–24. [Google Scholar]
- Fargeas, C.A. Prominin-2 and Other Relatives of CD133. In Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell Biology; Springer: New York, NY, USA, 2013; pp. 25–40. [Google Scholar]
- Lamb, A.L.; Newcomer, M.E. The Structure of Retinal Dehydrogenase Type II at 2.7 Å Resolution: Implications for Retinal Specificity. Biochemistry 1999, 38, 6003–6011. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, R. Aldehyde Dehydrogenases and Their Role in Carcinogenesis. Crit. Rev. Biochem. Mol. Biol. 1992, 27, 283–335. [Google Scholar] [CrossRef] [PubMed]
- Obeid, L.M.; Linardic, C.M.; Karolak, L.A.; Hannun, Y.A. Programmed Cell Death Induced by Ceramide. Science 1993, 259, 1769–1771. [Google Scholar] [CrossRef]
- Govindarajah, N.; Clifford, R.; Bowden, D.; Sutton, P.A.; Parsons, J.L.; Vimalachandran, D. Sphingolipids and Acid Ceramidase as Therapeutic Targets in Cancer Therapy. Crit. Rev. Oncol./Hematol. 2019, 138, 104–111. [Google Scholar] [CrossRef]
- Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A Database on Sequences, Structures and Signatures of Antimicrobial Peptides. Nucleic Acids Res. 2016, 44, D1094–D1097. [Google Scholar] [CrossRef] [Green Version]
- Hurtado, J.L.; Borderías, J.; Montero, P.; An, H. Characterization of Proteolytic Activity in Octopus (Octopus vulgaris) Arm Muscle. J. Food Biochem. 1999, 23, 469–483. [Google Scholar] [CrossRef]
- McGuckin, M.A.; Lindén, S.K.; Sutton, P.; Florin, T.H. Mucin Dynamics and Enteric Pathogens. Nat. Rev. Microbiol. 2011, 9, 265–278. [Google Scholar] [CrossRef]
- Ehre, C.; Worthington, E.N.; Liesman, R.M.; Grubb, B.R.; Barbier, D.; O’Neal, W.K.; Sallenave, J.-M.; Pickles, R.J.; Boucher, R.C. Overexpressing Mouse Model Demonstrates the Protective Role of Muc5ac in the Lungs. Proc. Natl. Acad. Sci. USA 2012, 109, 16528–16533. [Google Scholar] [CrossRef] [Green Version]
- Di, G.; Li, Y.; Zhao, X.; Wang, N.; Fu, J.; Li, M.; Huang, M.; You, W.; Kong, X.; Ke, C. Differential Proteomic Profiles and Characterizations between Hyalinocytes and Granulocytes in Ivory Shell Babylonia areolata. Fish Shellfish Immunol. 2019, 92, 405–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Granados, R.R. An Intestinal Mucin Is the Target Substrate for a Baculovirus Enhancin. Proc. Natl. Acad. Sci. USA 1997, 94, 6977–6982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehsenfeld, S.; Kiko, R.; Appelhans, Y.; Towle, D.W.; Zimmer, M.; Melzner, F. Effects of Elevated Seawater p CO2 on Gene Expression Patterns in the Gills of the Green Crab, Carcinus maenas. BMC Genom. 2011, 12, 488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zijlstra, A. Tetraspanins in Cancer. In Cell-Extracellular Matrix Interactions in Cancer; Springer: New York, NY, USA, 2010; pp. 217–243. [Google Scholar] [CrossRef]
- Xu, D.; Sun, L.; Liu, S.; Zhang, L.; Yang, H. Polymorphisms of Heat Shock Protein 90 (Hsp90) in the Sea Cucumber Apostichopus japonicus and Their Association with Heat-Resistance. Fish Shellfish Immunol. 2014, 41, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zhao, J.; Song, L.; Qiu, L.; Yu, Y.; Zhang, H.; Ni, D. Molecular Cloning, Characterization and Expression of Heat Shock Protein 90 Gene in the Haemocytes of Bay Scallop Argopecten irradians. Fish Shellfish Immunol. 2008, 24, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhao, C.; Yan, R.; Li, J.; Song, W.; Peng, R.; Han, Q.; Jiang, X. Continuous Inking Affects the Biological and Biochemical Responses of Cuttlefish Sepia pharaonis. Front. Physiol. 2019, 10, 1429. [Google Scholar] [CrossRef] [Green Version]
- Tejano, L.A.; Peralta, J.P.; Yap, E.E.S.; Panjaitan, F.C.A.; Chang, Y.-W. Prediction of Bioactive Peptides from Chlorella sorokiniana Proteins Using Proteomic Techniques in Combination with Bioinformatics Analyses. Int. J. Mol. Sci. 2019, 20, 1786. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2—A Server for in Silico Prediction of Allergens. J. Mol. Model. 2014, 20, 1–6. [Google Scholar] [CrossRef]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Consortium, O.S.D.D.; Raghava, G.P.S. In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef] [Green Version]
- Islamy, R.A. Antibacterial Activity of Cuttlefish Sepia Sp. (Cephalopoda,) Ink Extract Against Aeromonas hydrophila. Maj. Obat Tradis. 2019, 24, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Nadarajah, S.K.; Vijayaraj, R.; Mani, J. Therapeutic Significance of Loligo vulgaris (Lamarck, 1798) Ink Extract: A Biomedical Approach. Pharmacogn. Res. 2017, 9, S105. [Google Scholar] [CrossRef] [PubMed]
- Fiorito, G.; Affuso, A.; Basil, J.; Cole, A.; de Girolamo, P.; D’angelo, L.; Dickel, L.; Gestal, C.; Grasso, F.; Kuba, M. Guidelines for the Care and Welfare of Cephalopods in Research—A Consensus Based on an Initiative by CephRes, FELASA and the Boyd Group. Lab. Anim. 2015, 49, 1–90. [Google Scholar] [CrossRef] [PubMed]
- Wessel, D.; Flügge, U.I. A Method for the Quantitative Recovery of Protein in Dilute Solution in the Presence of Detergents and Lipids. Anal. Biochem. 1984, 138, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Käll, L.; Canterbury, J.D.; Weston, J.; Noble, W.S.; MacCoss, M.J. Semi-Supervised Learning for Peptide Identification from Shotgun Proteomics Datasets. Nat. Methods 2007, 4, 923–925. [Google Scholar] [CrossRef]
- Thomas, P.D.; Campbell, M.J.; Kejariwal, A.; Mi, H.; Karlak, B.; Daverman, R.; Diemer, K.; Muruganujan, A.; Narechania, A. PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. Genome Res. 2003, 13, 2129–2141. [Google Scholar] [CrossRef] [Green Version]
- Mi, H.; Muruganujan, A.; Thomas, P.D. PANTHER in 2013: Modeling the Evolution of Gene Function, and Other Gene Attributes, in the Context of Phylogenetic Trees. Nucleic Acids Res. 2013, 41, D377–D386. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Franceschini, A.; Kuhn, M.; Simonovic, M.; Roth, A.; Minguez, P.; Doerks, T.; Stark, M.; Muller, J.; Bork, P.; et al. The STRING Database in 2011: Functional Interaction Networks of Proteins, Globally Integrated and Scored. Nucleic Acids Res. 2011, 39, D561–D568. [Google Scholar] [CrossRef] [Green Version]
Samples | Initial Concentration (µg/µL) | Final Concentration (µg/µL) | Collection Method | Required Protein Purification |
---|---|---|---|---|
OVI1 | 0.538 | 0.1698 | Syringe | Once |
OVI2 | 0.431 | 0.431 | Milking | No Purification |
OVI3 | 1.381 | 0.413 | Milking | Twice |
Protein | Peptide Sequence | PR Value | Peptide Length | CAMP | AMP Probability | Allergenicity | Toxicity |
---|---|---|---|---|---|---|---|
Protein-glutamine gamma-glutamyltransferase K OS = Octopus vulgaris | FGQCWVFSGVLTTGIYCCGPCPVK | 0.999637 | 24 | AMP | 0.961 | Allergen | Toxin |
Prominin-1-A isoform X4 OS = Octopus vulgaris | IVLYFIGYSICVAIGILFIILIPLIGCCLCCCR | 0.999478 | 33 | NAMP | 0.132 | Non-Allergen | Toxin |
PREDICTED: Mucin-3A-like OS = Aplysia californica | FISSIAGGIGAAVVLIFLIIIVALCCK | 0.999199 | 27 | NAMP | 0.401 | Non-Allergen | Toxin |
Tetraspanin OS = Octopus vulgaris | YLMFAFNFIFWLLGCAILGVGIWIR | 0.99917 | 25 | NAMP | 0.016 | Non-Allergen | Non-Toxin |
Prosaposin isoform X1 OS = Octopus vulgaris | MSFNSLFLVWLGILGCAFGSTTR | 0.999078 | 23 | NAMP | 0.068 | Non-Allergen | Non-Toxin |
Neutral protease isoform X1 OS = Octopus vulgaris | MHLSVLLYCWYLLFGSLLLIK | 0.998754 | 21 | NAMP | 0.042 | Non-Allergen | Non-Toxin |
Tetraspanin OS = Octopus vulgaris | SQCLLASFFICLFIIFAILLGAGIFAIISK | 0.998242 | 30 | NAMP | 0.21 | Non-Allergen | Non-Toxin |
S-(hydroxymethyl)glutathione dehydrogenase OS = Octopus vulgaris | GSNCAVWGLGAVGLAVAMGCK | 0.998195 | 21 | AMP | 0.911 | Non-Allergen | Non-Toxin |
Prolyl endopeptidase OS = Octopus bimaculoides | TPLDYLNCIVFIFLCHLQPTCR | 0.997642 | 22 | NAMP | 0.25 | Non-Allergen | Non-Toxin |
Protein-glucosylgalactosylhydroxylysine glucosidase isoform X2 OS = Octopus vulgaris | MLLVVCLLLLTCLTGQVSATSDSYSSTR | 0.99758 | 28 | NAMP | 0.021 | Non-Allergen | Non-Toxin |
Neuroglian isoform X1 OS = Octopus vulgaris | WIALIVALVLFFIIFILLLCILFNR | 0.995036 | 25 | NAMP | 0 | Non-Allergen | Non-Toxin |
Insulin-like growth factor-binding protein complex acid labile subunit isoform X7 OS = Octopus vulgaris | LTFALILSMSFCLESNAASDICSTCSCR | 0.994916 | 28 | AMP | 0.588 | Allergen | Non-Toxin |
Hemocyanin 1-like OS = Octopus vulgaris | IPCLFAIVFAFWLCGYIAEGNLIR | 0.994658 | 24 | NAMP | 0.212 | Non-Allergen | Non-Toxin |
Uncharacterized protein isoform X1 OS = Octopus vulgaris | MSFGIVLLFVTVVSSLVTAAPLNK | 0.993617 | 24 | NAMP | 0.274 | Allergen | Non-Toxin |
Hemocyanin G-type, units Oda to Odg OS = Octopus vulgaris | IPCLFAIVFAFWLCGHIAEGNLIR | 0.993578 | 24 | AMP | 0.59 | Non-Allergen | Non-Toxin |
Calumenin-like isoform X2 OS = Aplysia californica | YYSFFLTIFLFATTLCSTIPKPK | 0.993298 | 23 | NAMP | 0.06 | Non-Allergen | Non-Toxin |
Hypothetical protein LOTGIDRAFT_233221 OS = Lottia gigantea | QSCIGLILGTGCNVCYIENVK | 0.992983 | 21 | AMP | 0.699 | Allergen | Toxin |
Retinal dehydrogenase 2 OS = Octopus vulgaris | IMTFTNAIQAGTVWVNTYCCVACQAPFGGFK | 0.992039 | 31 | NAMP | 0.439 | Non-Allergen | Non-Toxin |
Transketolase OS = Octopus vulgaris | FIECYIAEQNLVGVGIGCACR | 0.991698 | 21 | AMP | 0.929 | Allergen | Toxin |
Acid ceramidase-like OS = Octopus vulgaris | CPDPCWPW | 0.991404 | 8 | NAMP | 0.41 | Non-Allergen | Toxin |
Prominin-1-A isoform X4 OS = Octopus vulgaris | TYVTCLVILNTIILFAVVCTFITNELYK | 0.990938 | 28 | NAMP | 0.179 | Non-Allergen | Non-Toxin |
Peroxidase-like protein, partial OS = Euprymna scolopes | TTMIRPSLILLLAILPCIVLCLTPLQDK | 0.990735 | 28 | NAMP | 0.018 | Non-Allergen | Non-Toxin |
Hemocyanin G-type, units Oda to Odg-like OS = Octopus vulgaris | SPWLLGATILCIISIFVPVITNGK | 0.989103 | 24 | AMP | 0.813 | Non-Allergen | Non-Toxin |
Thyroglobulin isoform X2 OS = Octopus vulgaris | YIFFIALSVVAAGAHICSPNACK | 0.988906 | 23 | AMP | 0.917 | Non-Allergen | Non-Toxin |
Dipeptidyl peptidase 2 isoform X1 OS = Octopus vulgaris | ITGLIWVSLLLILSNGPIGSSADGNNGHNVR | 0.988758 | 31 | AMP | 0.882 | Non-Allergen | Non-Toxin |
Hephaestin-like protein OS = Acropora millepora | NMSHSLWTSFFLCMLGIVSQVK | 0.987807 | 22 | NAMP | 0.139 | Allergen | Non-Toxin |
Uncharacterized protein OS = Octopus bimaculoides | LALVLLVLLPLALSASLGESESETAK | 0.987554 | 26 | AMP | 0.558 | Non-Allergen | Non-Toxin |
Alpha-mannosidase OS = Octopus vulgaris | VFCIFLSFLLVVGNQAYPFHSQSCGYESCNPVK | 0.987311 | 33 | NAMP | 0.108 | Non-Allergen | Non-Toxin |
Tetraspanin OS = Octopus vulgaris | IAAAGLALAFIQVIGIVFACCLAQAIR | 0.984503 | 27 | AMP | 0.744 | Non-Allergen | Non-Toxin |
Peroxidase-like protein (Fragment) OS = Euprymna scolopes | LFLVVLPCLVSCLTPITDDLCQK | 0.984059 | 23 | AMP | 0.519 | Non-Allergen | Non-Toxin |
Xaa-Pro dipeptidase-like OS = Aplysia californica | LNDGDACLLDMGTEYCCYASDITCSYPVNGK | 0.982857 | 31 | NAMP | 0.144 | Allergen | Toxin |
AIFM3 OS = Sepia pharaonis | SVPFFWSMMFGK | 0.980626 | 12 | NAMP | 0.017 | Allergen | Non-Toxin |
Short-chain collagen C4-like OS = Octopus vulgaris | DDGGAVLYFVQSVCGSLPCPPYVK | 0.978133 | 24 | NAMP | 0.429 | Allergen | Non-Toxin |
Hemocyanin G-type (Fragment) OS = Enteroctopus dofleini | ILCLFAFVFAFWLSGQSAEGNLIR | 0.977782 | 24 | AMP | 0.551 | Non-Allergen | Non-Toxin |
Thyroglobulin isoform X2 OS = Octopus vulgaris | CETDGTFSAVQCHGSVCYCAHTDGTR | 0.976203 | 26 | NAMP | 0.149 | Allergen | Toxin |
Mucin-5AC-like isoform X1 OS = Octopus vulgaris | SSFDGGSFGGGIAAGIAIAILLLALIYLFYR | 0.976129 | 31 | AMP | 0.88 | Non-Allergen | Non-Toxin |
26S proteasome non-ATPase regulatory subunit 2 OS = Octopus vulgaris | SLMSPVAVAGLLSVLISCLDVK | 0.975381 | 22 | NAMP | 0.054 | Allergen | Non-Toxin |
Mucin-3A-like OS = Aplysia californica | FEFPFR | 0.973591 | 6 | NAMP | 0.02 | Non-Allergen | Non-Toxin |
MYH OS = Sepia pharaonis | NWQWWR | 0.973264 | 6 | AMP | 0.959 | Non-Allergen | Non-Toxin |
DNAH OS = Sepia pharaonis | CYLCLMGALQLDLGGAPAGPAGTGK | 0.971438 | 25 | AMP | 0.693 | Non-Allergen | Non-Toxin |
Tetraspanin OS = Octopus vulgaris | EHNVCTMVFAVLLALIFILQLAGGIAAFVMR | 0.969205 | 31 | NAMP | 0.082 | Non-Allergen | Non-Toxin |
Microtubule-associated protein futsch isoform X4 OS = Octopus vulgaris | ACFWDFTR | 0.968121 | 8 | NAMP | 0.003 | Allergen | Non-Toxin |
Apoptosis-inducing factor 3 isoform X1 OS = Octopus vulgaris | SVPCFWTMMFGK | 0.967302 | 12 | NAMP | 0.01 | Non-Allergen | Non-Toxin |
Probable methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial OS = Octopus vulgaris | GLQVVETCCSLSATCLGETLTGIAK | 0.967224 | 25 | AMP | 0.937 | Non-Allergen | Toxin |
H(+)-transporting two-sector ATPase OS = Octopus vulgaris | FCPFYK | 0.966449 | 6 | NAMP | 0.328 | Allergen | Non-Toxin |
Dehydrogenase/reductase SDR family member 4 isoform X1 OS = Octopus vulgaris | APFLFCK | 0.965743 | 7 | AMP | 0.642 | Allergen | Non-Toxin |
Carboxypeptidase OS = Octopus vulgaris | LYANLLSSCCGSNTTVCYISK | 0.965007 | 21 | AMP | 0.617 | Non-Allergen | Toxin |
Hemocyanin subunit 1 OS = Euprymna scolopes | VFVGFLLHGFGSSAYATFDICNDAGECR | 0.96087 | 28 | NAMP | 0.087 | Non-Allergen | Non-Toxin |
Ferritin OS = Octopus vulgaris | GFFEFFK | 0.959334 | 7 | NAMP | 0.065 | Non-Allergen | Non-Toxin |
Dystrophin isoform X4 OS = Octopus vulgaris | CIIMYIMCLFQVLQNSSNNSSNETNTK | 0.95929 | 27 | NAMP | 0.052 | Non-Allergen | Toxin |
Glutathione S-transferase A-like OS = Crassostrea gigas | SWPPHWK | 0.957413 | 7 | AMP | 0.691 | Allergen | Non-Toxin |
Xylose isomerase-like OS = Crassostrea gigas | FSVCFWHTFR | 0.955452 | 10 | NAMP | 0.012 | Non-Allergen | Non-Toxin |
Malate dehydrogenase OS = Octopus vulgaris | DDLFNTNASIVGNLADACAQFCPK | 0.953131 | 24 | NAMP | 0.461 | Non-Allergen | Non-Toxin |
Uncharacterized protein OS = Octopus vulgaris | MGWYMR | 0.952753 | 6 | NAMP | 0.002 | Non-Allergen | Non-Toxin |
H(+)-transporting two-sector ATPase OS = Octopus vulgaris | VLDALFPCVQGGTTAIPGAFGCGK | 0.952067 | 24 | AMP | 0.958 | Non-Allergen | Non-Toxin |
Myosin heavy chain, striated muscle OS = Octopus vulgaris | NWEWWR | 0.951523 | 6 | NAMP | 0.478 | Non-Allergen | Non-Toxin |
Rab GDP dissociation inhibitor OS = Sepia pharaonis | DDFSFFFFSFSFPR | 0.94971 | 14 | NAMP | 0.065 | Allergen | Non-Toxin |
Uncharacterized protein OS = Octopus vulgaris | FSEQEWLFFCMK | 0.949352 | 12 | NAMP | 0.004 | Allergen | Non-Toxin |
Zinc finger ZZ-type and EF-hand domain-containing protein 1 OS = Octopus vulgaris | LFPSLPFR | 0.949115 | 8 | NAMP | 0.258 | Non-Allergen | Non-Toxin |
Uncharacterized protein OS = Octopus vulgaris | DWFYMTGFK | 0.949111 | 9 | NAMP | 0.001 | Allergen | Non-Toxin |
Filamin-A isoform X1 OS = Octopus vulgaris | AIGALVDACGPGLCPDWADWAPK | 0.948884 | 23 | AMP | 0.869 | Non-Allergen | Non-Toxin |
Uncharacterized protein (Fragment) OS = Octopus bimaculoides | YASNFLWPFK | 0.947804 | 10 | NAMP | 0.019 | Allergen | Non-Toxin |
Glyoxalase I OS = Octopus vulgaris | FDFPPLK | 0.946351 | 7 | NAMP | 0.029 | Allergen | Non-Toxin |
Hypothetical protein CAPTEDRAFT_117881, partial OS = Capitella teleta | NENGALLYFVQAVCGSLPCPPYVNGR | 0.945612 | 26 | AMP | 0.509 | Non-Allergen | Non-Toxin |
Thioredoxin isoform X2 OS = Octopus vulgaris | LIIIDFFATWCGPCK | 0.944114 | 15 | NAMP | 0.467 | Allergen | Non-Toxin |
Glyoxylate reductase/hydroxypyruvate reductase OS = Octopus vulgaris | NGNWGLWKPMWILGSSFANR | 0.942087 | 20 | AMP | 0.645 | Non-Allergen | Non-Toxin |
Zinc finger ZZ-type and EF-hand domain-containing protein 1 OS = Octopus vulgaris | CLQCSALDFCASCITGGCFK | 0.941639 | 20 | AMP | 0.997 | Allergen | Toxin |
Prominin-1-A isoform X4 OS = Octopus vulgaris | SVAVPCSVLLLWILIAFSLVDHSFAQNSSQQHR | 0.941512 | 33 | NAMP | 0.081 | Non-Allergen | Non-Toxin |
Chorion peroxidase-like OS = Octopus vulgaris | QWCGLSFPR | 0.940111 | 9 | NAMP | 0.018 | Allergen | Non-Toxin |
Hypothetical protein ACA1_115170 OS = Acanthamoeba castellanii str. Neff | CHFVFLALAPFMPK | 0.939609 | 14 | NAMP | 0.134 | Allergen | Non-Toxin |
MYH OS = Sepia pharaonis | YYSGLIYTYSGLFCVVVNPYK | 0.939159 | 21 | NAMP | 0.061 | Allergen | Non-Toxin |
Hypothetical protein BRAFLDRAFT_127655 OS = Branchiostoma floridae | FAIVLCLASVAYGCCAPEYFTAHTLIR | 0.939147 | 27 | AMP | 0.615 | Non-Allergen | Toxin |
1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase OS = Octopus vulgaris | FPNFDNMMK | 0.934874 | 9 | NAMP | 0.099 | Non-Allergen | Non-Toxin |
Polyol dehydrogenase OS = Octopus vulgaris | AGVGINSTVLISGAGPIGLCCFLTAK | 0.934366 | 26 | AMP | 0.995 | Allergen | Toxin |
Spectrin alpha chain isoform X2 OS = Octopus vulgaris | EFSMMFR | 0.931708 | 7 | NAMP | 0.001 | Non-Allergen | Non-Toxin |
Puromycin-sensitive aminopeptidase-like OS = Crassostrea gigas | DHWQFFCER | 0.93076 | 9 | NAMP | 0 | Allergen | Non-Toxin |
Tetratricopeptide repeat protein 38 OS = Octopus bimaculoides | DWSVCGMLACHNYWHWALYHIEK | 0.930471 | 23 | NAMP | 0.04 | Allergen | Non-Toxin |
Glucose-6-phosphate 1-dehydrogenase OS = Octopus vulgaris | IYPTLWCLFR | 0.930391 | 10 | NAMP | 0.052 | Allergen | Non-Toxin |
Cilia- and flagella-associated protein 65 OS = Sepia pharaonis | IDLFHLFCL | 0.927866 | 9 | NAMP | 0.458 | Non-Allergen | Non-Toxin |
Hemocyanin subunit 1 OS = Euprymna scolopes | LNHLPLLCLAVILTLWMSGSNTVNGNLVR | 0.926117 | 29 | NAMP | 0.316 | Non-Allergen | Non-Toxin |
Uncharacterized protein OS = Octopus vulgaris | LWFDKPPHFR | 0.925721 | 10 | NAMP | 0.009 | Allergen | Non-Toxin |
Trans-1,2-dihydrobenzene-1,2-diol dehydrogenase isoform X1 OS = Octopus vulgaris | SGLIDIGVYLIWLANFIFK | 0.925485 | 19 | NAMP | 0.493 | Non-Allergen | Non-Toxin |
Thyroglobulin isoform X2 OS = Octopus vulgaris | GFCGCCDICIK | 0.925073 | 11 | AMP | 0.901 | Non-Allergen | Toxin |
Protein-glucosylgalactosylhydroxylysine glucosidase isoform X2 OS = Octopus vulgaris | QADVILLGFPLMMNMPK | 0.922173 | 17 | NAMP | 0.03 | Non-Allergen | Non-Toxin |
Prostaglandin reductase 1-like OS = Crassostrea gigas | SGETVLVNAAAGAVGSIVGQIAK | 0.922086 | 23 | AMP | 0.962 | Non-Allergen | Non-Toxin |
Pacifastin domain-containing protein OS = Octopus bimaculoides | DDCNLCFCGANGAVSCTK | 0.921918 | 18 | AMP | 0.984 | Allergen | Non-Toxin |
TGc domain-containing protein OS = Octopus bimaculoides | ESFILLFNPWCK | 0.9189 | 12 | NAMP | 0.029 | Non-Allergen | Non-Toxin |
Dystrophin isoform X4 OS = Octopus vulgaris | CFNFDVCQNCFFSGR | 0.918754 | 15 | AMP | 0.614 | Allergen | Non-Toxin |
Inter-alpha-trypsin inhibitor heavy chain H3-like OS = Crassostrea gigas | LLFVMLGAVFYLGMTANGEPR | 0.918111 | 21 | NAMP | 0.026 | Non-Allergen | Non-Toxin |
Xylose isomerase-like OS = Crassostrea gigas | FCCLYIFNK | 0.916888 | 9 | AMP | 0.761 | Non-Allergen | Toxin |
UPF0462 protein C4orf33 homolog OS = Saccoglossus kowalevskii | GQFDFPDFHR | 0.916554 | 10 | NAMP | 0.015 | Allergen | Non-Toxin |
Xylose isomerase-like OS = Crassostrea gigas | LGAENFVFWGGR | 0.916397 | 12 | NAMP | 0.01 | Allergen | Non-Toxin |
PREDICTED: Puromycin-sensitive aminopeptidase-like OS = Crassostrea gigas | AFPCWDEPSFK | 0.91609 | 11 | NAMP | 0.003 | Non-Allergen | Non-Toxin |
Uncharacterized protein isoform X1 OS = Octopus vulgaris | FSGPWYTIWK | 0.915775 | 10 | NAMP | 0.341 | Allergen | Non-Toxin |
Leukotriene A-4 hydrolase-like OS = Octopus vulgaris | MEFFFK | 0.915244 | 6 | NAMP | 0.065 | Non-Allergen | Non-Toxin |
Zinc finger ZZ-type and EF-hand domain-containing protein 1 OS = Octopus vulgaris | MLPPQPLFNPMK | 0.915243 | 12 | NAMP | 0.157 | Non-Allergen | Non-Toxin |
S-formylglutathione hydrolase OS = Octopus bimaculoides | SVSAFAPICNPVNCNWGK | 0.915182 | 18 | AMP | 0.775 | Non-Allergen | Non-Toxin |
DNAH OS = Sepia pharaonis | IPVFANFWK | 0.913394 | 9 | NAMP | 0.277 | Allergen | Non-Toxin |
Aconitate hydratase, mitochondrial OS = Octopus vulgaris | LTETLEAIDGCVLANACGPCIGQWDR | 0.910547 | 26 | AMP | 0.583 | Non-Allergen | Non-Toxin |
Inter-alpha-trypsin inhibitor heavy chain H3-like OS = Crassostrea gigas | DTLPNIPGIFIKPFSCSNNLCLR | 0.910355 | 23 | AMP | 0.782 | Non-Allergen | Non-Toxin |
Hemocyanin subunit 2 (Fragment) OS = Sepia officinalis | VFGGFWLHGIK | 0.907156 | 11 | AMP | 0.739 | Non-Allergen | Non-Toxin |
Uncharacterized protein OS = Octopus bimaculoides | SSLCFLQWTHFR | 0.907105 | 12 | NAMP | 0.002 | Non-Allergen | Non-Toxin |
Glutathione S-transferase omega OS = Octopus vulgaris | FLSAWYCPFAQR | 0.906935 | 12 | NAMP | 0.015 | Allergen | Non-Toxin |
GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase OS = Octopus vulgaris | YNLDFFR | 0.906435 | 7 | NAMP | 0.002 | Non-Allergen | Non-Toxin |
Hemocyanin subunit 3 OS = Sepia officinalis | TSFLFLAFVATSWFVYAVTASK | 0.905214 | 22 | NAMP | 0.414 | Non-Allergen | Non-Toxin |
Peroxidase-like protein (Fragment) OS = Euprymna scolopes | TCLTPATGACSCDGVPAETQIGQCNVFGPAA | 0.904898 | 31 | AMP | 0.617 | Allergen | Non-Toxin |
Cathepsin L1 OS = Octopus vulgaris | NSWGGSWGMK | 0.904726 | 10 | NAMP | 0.095 | Non-Allergen | Non-Toxin |
Hemocyanin subunit 1 OS = Euprymna scolopes | VFAGFLFMGIK | 0.904542 | 11 | AMP | 0.865 | Non-Allergen | Non-Toxin |
Hemocyanin G-type, units Oda to Odg-like OS = Octopus vulgaris | MFAGFLLK | 0.902865 | 8 | AMP | 0.512 | Non-Allergen | Non-Toxin |
Hemocyanin G-type, units Oda to Odg OS = Octopus vulgaris | YACCLHGMPVFPHWHR | 0.90265 | 16 | NAMP | 0.012 | Non-Allergen | Toxin |
Zinc finger ZZ-type and EF-hand domain-containing protein 1 OS = Octopus vulgaris | MINFLLHQGACNVEYGNTQQACTIACMIQR | 0.900661 | 30 | NAMP | 0.052 | Non-Allergen | Non-Toxin |
Protein | Sequence | PR Value | Peptide Length | CAMP | AMP Probability | Allergenicity | Toxicity |
---|---|---|---|---|---|---|---|
Prominin-1-A isoform X4 OS = Octopus vulgaris | CCCRCCNRCGGRHMKY | 0.970522 | 16 | AMP | 0.988 | Allergen | Toxin |
Adenylyl cyclase-associated protein 1 isoform X4 OS = Octopus vulgaris | PPPPPPPPPPPPA | 0.966356 | 13 | AMP | 0.898 | Non-Allergen | Non-Toxin |
Uncharacterized protein isoform X1 OS = Octopus vulgaris | PPPPPPPPPSKPNHPPPVGL | 0.96064 | 20 | AMP | 0.768 | Non-Allergen | Toxin |
Retinal dehydrogenase 2 OS = Octopus vulgaris | CMGQCCF | 0.95616 | 7 | AMP | 0.858 | Allergen | Toxin |
Ganglioside GM2 activator OS = Octopus vulgaris | PQCPQPF | 0.947135 | 7 | AMP | 0.517 | Allergen | Non-Toxin |
Acid ceramidase-like OS = Octopus vulgaris | QKCPDPCW | 0.944659 | 8 | NAMP | 0.01 | Non-Allergen | Toxin |
Hemocyanin subunit 2 (Fragment) OS = Sepia officinalis | SDPMRPF | 0.938433 | 7 | AMP | 0.879 | Allergen | Non-Toxin |
Hypothetical protein ACA1_115170 OS = Acanthamoeba castellanii str. Neff | CGVCPKCHF | 0.933815 | 9 | AMP | 0.978 | Non-Allergen | Non-Toxin |
Hemocyanin subunit 2 (Fragment) OS = Sepia officinalis | KKPMMPF | 0.932566 | 8 | AMP | 0.978 | Allergen | Non-Toxin |
NADH-cytochrome b5 reductase OS = Octopus vulgaris | MCGPPPMI | 0.930352 | 8 | NAMP | 0.002 | Allergen | Toxin |
Heat shock cognate 71 kDa protein OS = Octopus vulgaris | GGMPGGMPGGMPGGMPNF | 0.92432 | 18 | AMP | 0.504 | Allergen | Non-Toxin |
Ras GTPase-activating protein-binding protein 2 OS = Octopus vulgaris | GQPMRRF | 0.920825 | 7 | NAMP | 0.486 | Non-Allergen | Non-Toxin |
AAA domain-containing protein OS = Octopus bimaculoides | GPPGCGKTML | 0.909643 | 10 | NAMP | 0.192 | Non-Allergen | Non-Toxin |
Ecdysteroid-regulated 16 kDa protein OS = Danaus plexippus | CRNDCGCVSCVCL | 0.907811 | 13 | AMP | 0.813 | Allergen | Toxin |
N-acyl-L-amino-acid amidohydrolase OS = Octopus bimaculoides | KCPGNPGHGSRF | 0.901021 | 12 | NAMP | 0.135 | Allergen | Non-Toxin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, M.A.S.; Carrera, M.; Pérez-Polo, S.; Pérez, J.; Barros, L.; Dios, S.; Gestal, C. Insights into Common Octopus (Octopus vulgaris) Ink Proteome and Bioactive Peptides Using Proteomic Approaches. Mar. Drugs 2023, 21, 206. https://doi.org/10.3390/md21040206
Imran MAS, Carrera M, Pérez-Polo S, Pérez J, Barros L, Dios S, Gestal C. Insights into Common Octopus (Octopus vulgaris) Ink Proteome and Bioactive Peptides Using Proteomic Approaches. Marine Drugs. 2023; 21(4):206. https://doi.org/10.3390/md21040206
Chicago/Turabian StyleImran, Md Abdus Shukur, Mónica Carrera, Sara Pérez-Polo, Jaime Pérez, Lorena Barros, Sonia Dios, and Camino Gestal. 2023. "Insights into Common Octopus (Octopus vulgaris) Ink Proteome and Bioactive Peptides Using Proteomic Approaches" Marine Drugs 21, no. 4: 206. https://doi.org/10.3390/md21040206
APA StyleImran, M. A. S., Carrera, M., Pérez-Polo, S., Pérez, J., Barros, L., Dios, S., & Gestal, C. (2023). Insights into Common Octopus (Octopus vulgaris) Ink Proteome and Bioactive Peptides Using Proteomic Approaches. Marine Drugs, 21(4), 206. https://doi.org/10.3390/md21040206