Challenging Structure Elucidation of Lumnitzeralactone, an Ellagic Acid Derivative from the Mangrove Lumnitzera racemosa
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Identification of Compound 1
2.2. Structure Elucidation
2.3. Computer-Assisted Structure Elucidation (CASE)
2.4. Density Functional Theory (DFT) Calculations
2.5. Synthesis
2.6. Biosynthetic Considerations
2.7. Biological Activity
3. Material and Methods
3.1. General Experimental Procedures and Reagents
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Synthesis
3.4.1. Photoreaction
3.4.2. Decarboxylation
3.5. NMR
3.6. UHPLC-ESI-QqTOF-MS and MS/MS
3.7. DFT-Calculations
3.8. ACD-SE Calculations
3.9. Anti-Bacterial Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandaranayake, W.M. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl. Ecol. Manag. 2002, 10, 421–452. [Google Scholar] [CrossRef]
- Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, Q.; Xu, J.; Li, M.-Y.; Pan, J.-Y.; Yang, M. Natural products from true mangrove flora: Source, chemistry and bioactivities. Nat. Prod. Rep. 2008, 25, 955–981. [Google Scholar] [CrossRef]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: London, UK, 2010; ISBN 9781136530951. [Google Scholar]
- Wang, L.; Mu, M.; Li, X.; Lin, P.; Wang, W. Differentiation between true mangroves and mangrove associates based on leaf traits and salt contents. J. Plant Ecol. 2011, 4, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Manohar, S.M. A review of the botany, phytochemistry and pharmacology of mangrove Lumnitzera racemosa Willd. Phcog. Rev. 2021, 15, 107–116. [Google Scholar] [CrossRef]
- Patra, J.K.; Thatoi, H.N. Metabolic diversity and bioactivity screening of mangrove plants: A review. Acta Physiol. Plant 2011, 33, 1051–1061. [Google Scholar] [CrossRef]
- Manurung, J.; Kappen, J.; Schnitzler, J.; Frolov, A.; Wessjohann, L.A.; Agusta, A.; Muellner-Riehl, A.N.; Franke, K. Analysis of unusual sulfated constituents and anti-infective properties of two Indonesian mangroves, Lumnitzera littorea and Lumnitzera racemosa (Combretaceae). Separations 2021, 8, 82. [Google Scholar] [CrossRef]
- Pattanaik, C.; Reddy, C.S.; Dhal, N.K.; Das, R. Utilisation of mangrove forests in Bhitarkanika Wildlife sanctuary, Orissa. Indian J. Tradit. Knowl. 2008, 7, 598–603. [Google Scholar]
- Yvana Glasenapp, I.; Korth, X.; Nguyen, J. Papenbrock. Sustainable use of mangroves as sources of valuable medicinal compounds: Species identification, propagation and secondary metabolite composition. S. Afr. J. Bot. 2019, 121, 317–328. [Google Scholar] [CrossRef]
- Neamsuvan, O. A survey of medicinal plants in mangrove and beach forests from Sating Phra Peninsula, Songkhla Province, Thailand. J. Med. Plants Res. 2012, 6, 2421–2437. [Google Scholar] [CrossRef] [Green Version]
- Ray, T. Customary use of mangrove tree as a folk medicine among the Sundarban resource collectors. Int. J. Res. Humanit. Arts Lit. 2014, 2, 43–48. [Google Scholar]
- Bandaranayake, W.M. Traditional and medicinal uses of mangroves. Mangr. Salt Mar. 1998, 2, 133–148. [Google Scholar] [CrossRef]
- Souza, L.D.; Wahidulla, S.; Devi, P. Antibacterial phenolics from the mangrove Lumnitzera racemosa. Indian J. Geo-Mar. Sci. 2010, 39, 294–298. [Google Scholar]
- Abeysinghe, P.D. Antibacterial activity of aqueous and ethanol extracts of mangrove species collected from southern Sri Lanka. Asian J. Pharm. Biol Res. 2012, 2, 79–83. [Google Scholar]
- Abeysinghe, P.D. Antibacterial activity of some medicinal mangroves against antibiotic resistant pathogenic bacteria. Indian J. Pharm. Sci. 2010, 72, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Paul, T.; Ramasubbu, S. The antioxidant, anticancer and anticoagulant activities of Acanthus ilicifolius L. roots and Lumnitzera racemosa Willd. leaves, from southeast coast of India. J. App. Pharm. Sci. 2017, 7, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.-Y.; Wang, S.-W.; Hwang, T.-L.; Wei, B.-L.; Su, C.-J.; Chang, F.-R.; Cheng, Y.-B. Components from the leaves and twigs of mangrove Lumnitzera racemosa with anti-angiogenic and anti-inflammatory effects. Mar. Drugs 2018, 16, 404. [Google Scholar] [CrossRef] [Green Version]
- Eswaraiah, G.; Peele, K.A.; Krupanidhi, S.; Indira, M.; Kumar, R.B.; Venkateswarulu, T.C. GC–MS analysis for compound identification in leaf extract of Lumnitzera racemosa and evaluation of its in vitro anticancer effect against MCF7 and HeLa cell lines. J. King. Saud. Univ. Sci. 2020, 32, 780–783. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Bui, T.T.L.; Chau, N.D.; Bui, H.T.; Kim, E.J.; Kang, H.K.; Lee, S.H.; Jang, H.D.; Nguyen, T.C.; van Nguyen, T.; et al. In vitro evaluation of the antioxidant and cytotoxic activities of constituents of the mangrove Lumnitzera racemosa Willd. Arch. Pharm. Res. 2015, 38, 446–455. [Google Scholar] [CrossRef]
- Ravikumar, S.; Gnanadesigan, M. Hepatoprotective and antioxidant activity of a mangrove plant Lumnitzera racemosa. Asian Pac. J. Trop. Biomed. 2011, 1, 348–352. [Google Scholar] [CrossRef] [Green Version]
- Darwish, A.G.G.; Samy, M.N.; Sugimoto, S.; Otsuka, H.; Abdel-Salam, H.; Matsunami, K. Effects of hepatoprotective compounds from the leaves of Lumnitzera racemosa on acetaminophen-induced liver damage in vitro. Chem. Pharm. Bull. 2016, 64, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-C.; Hsu, F.-L.; Cheng, J.-T. Antihypertensive activity of corilagin and chebulinic acid, tannins from Lumnitzera racemosa. J. Nat. Prod. 1993, 56, 629–632. [Google Scholar] [CrossRef]
- Tiwari, P. Search for antihyperglycemic activity in few marine flora and fauna. Indian J. Sci. Technol. 2008, 1, 1–5. [Google Scholar] [CrossRef]
- Vadlapudi, V.; Naidu, K. Bioefficiency of mangrove plants Lumintzera racemosa and Bruguiera gymnorhiza. J. Pharm. Res. 2009, 2, 1591–1592. [Google Scholar]
- Bamroongrugsa, N. Bioactive Substances from the Mangrove Resource; Prince of Songkla University: Hat Yai, Thailand, 1999. [Google Scholar]
- Chandrasekaran, M.; Kannathasan, K.; Venkatesalu, V.; Prabhakar, K. Antibacterial activity of some salt marsh halophytes and mangrove plants against methicillin resistant Staphylococcus aureus. World J. Microbiol. Biotechnol. 2009, 25, 155–160. [Google Scholar] [CrossRef]
- Anokwuru, C.P.; Chen, W.; van Vuuren, S.; Combrinck, S.; Viljoen, A.M. Bioautography-guided HPTLC-MS as a rapid hyphenated technique for the identification of antimicrobial compounds from selected South African Combretaceae species. Phytochem. Anal. 2022. [Google Scholar] [CrossRef]
- Wu, M.-J.; Xu, B.; Guo, Y.-W. Unusual secondary metabolites from the mangrove ecosystems: Structures, bioactivities, chemical, and bio-syntheses. Mar. Drugs 2022, 20, 535. [Google Scholar] [CrossRef]
- Chen, S.; Cai, R.; Liu, Z.; Cui, H.; She, Z. Secondary metabolites from mangrove-associated fungi: Source, chemistry and bioactivities. Nat. Prod. Rep. 2022, 39, 560–595. [Google Scholar] [CrossRef]
- Debbab, A.; Aly, A.H.; Proksch, P. Mangrove derived fungal endophytes—A chemical and biological perception. Fungal Divers. 2013, 61, 1–27. [Google Scholar] [CrossRef]
- Chaeprasert, S.; Piapukiew, J.; Whalley, A.J.; Sihanonth, P. Endophytic fungi from mangrove plant species of Thailand: Their antimicrobial and anticancer potentials. Bot. Mar. 2010, 53, 555–564. [Google Scholar] [CrossRef]
- Arnold, A.E. Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biol. Rev. 2007, 21, 51–66. [Google Scholar] [CrossRef]
- Manurung, J. Evolutionary Ecology and Discovery of New Bioactive Compounds from Lumnitzera Mangroves across the Indonesian Archipelago. Ph.D. Thesis, Universität Leipzig, Leipzig, Germany, 2022. [Google Scholar]
- Wang, Y.; Shang, X.-Y.; Wang, S.-J.; Mo, S.-Y.; Li, S.; Yang, Y.-C.; Ye, F.; Shi, J.-G.; He, L. Structures, biogenesis, and biological activities of pyrano4,3-cisochromen-4-one derivatives from the fungus Phellinus igniarius. J. Nat. Prod. 2007, 70, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J. Negative ion electrospray high-resolution tandem mass spectrometry of polyphenols. J. Mass. Spectrom. 2016, 51, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Dulo, B.; Phan, K.; Githaiga, J.; Raes, K.; de Meester, S. Natural quinone dyes: A review on structure, extraction techniques, analysis and application potential. Waste Biomass Valorization 2021, 12, 6339–6374. [Google Scholar] [CrossRef]
- Ma, Q.; Wei, R.; Liu, W.; Sang, Z.; Guo, X. Cytotoxic anthraquinones from the aerial parts of Acalypha australis. Chem. Nat. Compd. 2017, 53, 949–952. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Lin, S.-T. Studies on chromium trioxide-based oxidative coupling reagents and synthesis of lignan-cagayanone. Chem. Pharm. Bull. 1993, 41, 1507–1512. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Wang, B.; Sun, J.; Wang, X.; Sun, J. Synthesis and hydroxyl radical scavenging activity of 4-aryl-3,4-dihydrocoumarins. Chem. Nat. Compd. 2017, 53, 860–865. [Google Scholar] [CrossRef]
- Al-Majmaie, S.; Nahar, L.; Sharples, G.P.; Wadi, K.; Sarker, S.D. Isolation and antimicrobial activity of rutin and its derivatives from Ruta chalepensis (Rutaceae) growing in Iraq. Rec. Nat. Prod. 2018, 13, 64–70. [Google Scholar] [CrossRef]
- Dao, N.T.; Jang, Y.; Kim, M.; Nguyen, H.H.; Pham, D.Q.; Le Dang, Q.; van Nguyen, M.; Yun, B.-S.; Pham, Q.M.; Kim, J.-C.; et al. Chemical constituents and anti-influenza viral activity of the leaves of Vietnamese plant Elaeocarpus tonkinensis. Rec. Nat. Prod. 2018, 13, 71–80. [Google Scholar] [CrossRef]
- Tokutomi, H.; Takeda, T.; Hoshino, N.; Akutagawa, T. Molecular structure of the photo-oxidation product of ellagic acid in solution. ACS Omega 2018, 3, 11179–11183. [Google Scholar] [CrossRef]
- Kono, H.; Anai, H.; Hashimoto, H.; Shimizu, Y. 13C-detection two-dimensional NMR approaches for cellulose derivatives. Cellulose 2015, 22, 2927–2942. [Google Scholar] [CrossRef]
- Köck, M.; Reif, B.; Fenical, W.; Griesinger, C. Differentiation of HMBC two- and three-bond correlations: A method to simplify the structure determination of natural products. Tetrahedron Lett. 1996, 37, 363–366. [Google Scholar] [CrossRef]
- Köck, M.; Reif, B.; Gerlach, M.; Reggelin, M. Application of the 1,n-ADEQUATE experiment in the assignment of highly substituted aromatic compounds. Molecules 1996, 1, 41–45. [Google Scholar] [CrossRef]
- Martin, G.E. Chapter 5—Using 1,1- and 1,n-ADEQUATE 2D NMR data in structure elucidation protocols. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 215–291. ISBN 0066-4103. [Google Scholar]
- Martin, G.E.; Williamson, R.T.; Dormer, P.G.; Bermel, W. Inversion of 1JCC correlations in 1,n-ADEQUATE spectra. Magn. Reson. Chem. 2012, 50, 563–568. [Google Scholar] [CrossRef]
- Reif, B.; Köck, M.; Kerssebaum, R.; Schleucher, J.; Griesinger, C. Determination of 1J, 2J, and 3J carbon-carbon coupling constants at natural abundance. J. Magn. Reson. Ser. B 1996, 112, 295–301. [Google Scholar] [CrossRef]
- Reibarkh, M.; Williamson, R.T.; Martin, G.E.; Bermel, W. Broadband inversion of 1J(CC) responses in 1,n-ADEQUATE spectra. J. Magn. Reson. 2013, 236, 126–133. [Google Scholar] [CrossRef]
- Vemulapalli, S.P.B.; Fuentes-Monteverde, J.C.; Karschin, N.; Oji, T.; Griesinger, C.; Wolkenstein, K. Structure and absolute configuration of phenanthro-perylene quinone pigments from the deep-sea crinoid Hypalocrinus naresianus. Mar. Drugs 2021, 19, 445. [Google Scholar] [CrossRef]
- Blinov, K.A.; Carlson, D.; Elyashberg, M.E.; Martin, G.E.; Martirosian, E.R.; Molodtsov, S.; Williams, A.J. Computer-assisted structure elucidation of natural products with limited 2D NMR data: Application of the struc.eluc. system. Magn. Reson. Chem. 2003, 41, 359–372. [Google Scholar] [CrossRef]
- Elyashberg, M.; Williams, A. ACD/Structure elucidator: 20 years in the history of development. Molecules 2021, 26, 6623. [Google Scholar] [CrossRef]
- Kummerlöwe, G.; Crone, B.; Kretschmer, M.; Kirsch, S.F.; Luy, B. Residual dipolar couplings as a powerful tool for constitutional analysis: The unexpected formation of tricyclic compounds. Angew. Chem. Int. Ed. 2011, 50, 2643–2645. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Snyder, S.A. Chasing molecules that were never there: Misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew. Chem. Int. Ed. 2005, 44, 1012–1044. [Google Scholar] [CrossRef] [PubMed]
- Eschenmoser, A.; Wintner, C.E. Natural product synthesis and vitamin b12. Science 1977, 196, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Goossen, L.J.; Manjolinho, F.; Khan, B.A.; Rodríguez, N. Microwave-assisted Cu-catalyzed protodecarboxylation of aromatic carboxylic acids. J. Org. Chem. 2009, 74, 2620–2623. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Sanchez, C.; Cornella, J.; Larrosa, I. Silver-catalyzed protodecarboxylation of heteroaromatic carboxylic acids. Org. Lett. 2009, 11, 5710–5713. [Google Scholar] [CrossRef] [PubMed]
- Manurung, J.; Rojas Andrés, B.M.; Barratt, C.D.; Schnitzler, J.; Jönsson, B.F.; Susanti, R.; Durka, W.; Muellner-Riehl, A.N. Deep phylogeographic splits and limited mixing by sea surface currents govern genetic population structure in the mangrove genus Lumnitzera (Combretaceae) across the Indonesian archipelago. J. Syst. Evol. 2022, 61, 299–314. [Google Scholar] [CrossRef]
- Aguilar-Zárate, P.; Wong-Paz, J.E.; Rodríguez-Duran, L.V.; Buenrostro-Figueroa, J.; Michel, M.; Saucedo-Castañeda, G.; Favela-Torres, E.; Ascacio-Valdés, J.A.; Contreras-Esquivel, J.C.; Aguilar, C.N. Online monitoring of Aspergillus niger GH1 growth in a bioprocess for the production of ellagic acid and ellagitannase by solid-state fermentation. Bioresour. Technol. 2018, 247, 412–418. [Google Scholar] [CrossRef]
- Martínez, A.T.; Ruiz-Dueñas, F.J.; Camarero, S.; Serrano, A.; Linde, D.; Lund, H.; Vind, J.; Tovborg, M.; Herold-Majumdar, O.M.; Hofrichter, M.; et al. Oxidoreductases on their way to industrial biotransformations. Biotechnol. Adv. 2017, 35, 815–831. [Google Scholar] [CrossRef] [Green Version]
- Gasparetti, C.; Nordlund, E.; Jänis, J.; Buchert, J.; Kruus, K. Extracellular tyrosinase from the fungus Trichoderma reesei shows product inhibition and different inhibition mechanism from the intracellular tyrosinase from Agaricus bisporus. Biochim. Biophys. Acta 2012, 1824, 598–607. [Google Scholar] [CrossRef]
- Wu, Y.; Teng, Y.; Li, Z.; Liao, X.; Luo, Y. Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol. Biochem. 2008, 40, 789–796. [Google Scholar] [CrossRef]
- Shanmugapriya, S.; Manivannan, G.; Selvakumar, G.; Sivakumar, N. Extracellular fungal peroxidases and laccases for waste treatment: Recent improvement. In Recent Advancement in White Biotechnology through Fungi: Vol. 3: Perspective for Sustainable Environments, 1st ed.; Yadav, A.N., Singh, S., Mishra, S., Gupta, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 153–187. ISBN 978-3-030-25505-3. [Google Scholar]
- Strittmatter, E.; Serrer, K.; Liers, C.; Ullrich, R.; Hofrichter, M.; Piontek, K.; Schleicher, E.; Plattner, D.A. The toolbox of Auricularia auricula-judae dye-decolorizing peroxidase—Identification of three new potential substrate-interaction sites. Arch. Biochem. Biophys. 2015, 574, 75–85. [Google Scholar] [CrossRef]
- Sáez-Jiménez, V.; Acebes, S.; Guallar, V.; Martínez, A.T.; Ruiz-Dueñas, F.J. Improving the oxidative stability of a high redox potential fungal peroxidase by rational design. PLoS ONE 2015, 10, e0124750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascacio-Valdés, J.A.; Aguilera-Carbó, A.F.; Buenrostro, J.J.; Prado-Barragán, A.; Rodríguez-Herrera, R.; Aguilar, C.N. The complete biodegradation pathway of ellagitannins by Aspergillus niger in solid-state fermentation. J. Basic Microbiol. 2016, 56, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Tang, J.; Yuan, Q.; Liu, H.; Huang, J.; Hsiang, T.; Bao, C.; Zheng, L. Ornithine decarboxylase of the fungal pathogen Colletotrichum higginsianum plays an important role in regulating global metabolic pathways and virulence. Environ. Microbiol. 2022, 24, 1093–1116. [Google Scholar] [CrossRef] [PubMed]
- Kourist, R.; Guterl, J.-K.; Miyamoto, K.; Sieber, V. Enzymatic decarboxylation—An emerging reaction for chemicals production from renewable resources. ChemCatChem 2014, 6, 689–701. [Google Scholar] [CrossRef]
- Li, M.; Kai, Y.; Qiang, H.; Dongying, J. Biodegradation of gallotannins and ellagitannins. J. Basic Microbiol. 2006, 46, 68–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-K.; Xu, J.-K.; Zhang, X.-Q.; Yao, X.-S.; Ye, W.-C. Chemical constituents with antibacterial activity from Euphorbia sororia. Nat. Prod. Res. 2008, 22, 353–359. [Google Scholar] [CrossRef]
- Reif, B.; Köck, M.; Kerssebaum, R.; Kang, H.; Fenical, W.; Griesinger, C. ADEQUATE, a new set of experiments to determine the constitution of small molecules at natural abundance. J. Magn. Reson. 1996, 118, 282–285. [Google Scholar] [CrossRef]
- Köck, M.; Kerssebaum, R.; Bermel, W. A broadband ADEQUATE pulse sequence using chirp pulses. Magn. Reson. Chem. 2003, 41, 65–69. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck molecular force field. I. basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Hehre, W.J.; Lathan, W.A. Self-consistent molecular orbital methods. XIV. an extended Gaussian-type basis for molecular orbital studies of organic molecules. Inclusion of second row elements. J. Chem. Phys. 1972, 56, 5255–5257. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B Condens. Matter 1992, 46, 6671–6687. [Google Scholar] [CrossRef] [PubMed]
- Ditchfield, R. Self-consistent perturbation theory of diamagnetism. Mol. Phys. 1974, 27, 789–807. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef] [PubMed]
- Lodewyk, M.W.; Siebert, M.R.; Tantillo, D.J. Computational prediction of 1H and 13C chemical shifts: A useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem. Rev. 2012, 112, 1839–1862. [Google Scholar] [CrossRef]
- Rablen, P.R.; Pearlman, S.A.; Finkbiner, J. A comparison of density functional methods for the estimation of proton chemical shifts with chemical accuracy. J. Phys. Chem. 1999, 103, 7357–7363. [Google Scholar] [CrossRef]
- Jain, R.; Bally, T.; Rablen, P.R. Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets. J. Org. Chem. 2009, 74, 4017–4023. [Google Scholar] [CrossRef] [Green Version]
- Bally, T.; Rablen, P.R. Quantum-chemical simulation of 1H NMR spectra. 2. Comparison of DFT-based procedures for computing proton-proton coupling constants in organic molecules. J. Org. Chem. 2011, 76, 4818–4830. [Google Scholar] [CrossRef]
- Smith, S.G.; Goodman, J.M. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: The DP4 probability. J. Am. Chem. Soc. 2010, 132, 12946–12959. [Google Scholar] [CrossRef]
- Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015, 80, 12526–12534. [Google Scholar] [CrossRef]
- Ware, I.; Franke, K.; Hussain, H.; Morgan, I.; Rennert, R.; Wessjohann, L.A. Bioactive phenolic compounds from Peperomia obtusifolia. Molecules 2022, 27, 4363. [Google Scholar] [CrossRef] [PubMed]
Lumnitzeralactone (1) | Synthetic Lumnitzeralactone (1b) | Synthetic Intermediate (5) | ||||
---|---|---|---|---|---|---|
Position | δC, Type DMSO-d6 | δH, m (J in Hz) DMSO-d6 | δC, Type DMSO-d6 | δH, m (J in Hz) DMSO-d6 | δC, Type a THF-d8 | δH, m (J in Hz) a THF-d8 |
1 | 158.2, C | 158.3, C | 158.8, C | |||
3 | 145.8, C | 146.2, C | 147.6, C | |||
4 | 107.3, CH | 7.49, s | 107.2, CH | 7.48, s | 107.4, CH | 7.54, s |
4a | 125.1, C | 125.1, C | 124.9, C | |||
5 | 158.3, C | 158.3, C | 158.4, | |||
6a | 142.8, C | 142.8, C | 144.2, C | |||
7 | 132.7, C | 132.7, C | 135.2, C | |||
8 | 150.8, C | 150.7, C | 149.5, C | |||
9 | 113.2, CH | 6.95, d (9.0) | 113.2, CH | 6.94, d (9.0) | 115.9, CH | 7.21, s |
10 | 117.9, CH | 8.33, d (9.0) | 117.8, CH | 8.33, d (9.0) | 127.4, C | |
10a | 108.1, C | 108.1, C | 107.2, C | |||
10b | 127.9, C | 127.8, C | 130.8, C | |||
11 | 160.0, C | 160.1, C | 160.4, C | |||
12 | 167.8, C | |||||
7-OH | 9.56, brs | 9.56, brs | 9.48, brs | |||
8-OH | 10.62, brs | 10.59, brs | 9.34, brs |
No | tR (min) | m/z [M − H]− Observed | m/z [M − H]− Calculated | Δppm | Elemental Composition | RDB | Fragmentation Patterns |
---|---|---|---|---|---|---|---|
1 | 2.5 | 289.0002 | 288.9990 | 4.2 | C13H6O8 | 11.5 | 65.0033 (C4HO, 8), 117.0346 (C8H5O, 25), 133.0293 (C8H5O2, 14), 145.0297 (C9H5O2, 100), 151.0035 (C7H3O4, 9), 161.0244 (C9H5O3, 49), 173.0247 (C10H5O3, 28), 189.0196 (C10H5O4, 42), 200.0115 (C11H4O4, 11), 217.0145 (C11H5O5, 26) 228.0064 (C12H4O5, 14) 245.0098 (C12H5O6, 21) |
1b | 2.5 | 288.9990 | 288.9990 | 0 | C13H6O8 | 11.5 | 65.0026 (C4HO, 7), 117.0326 (C8H5O, 30), 133.0288 (C8H5O2, 13), 145.0292 (C9H5O2, 100), 151.0032 (C7H3O4, 8), 161.0240 (C9H5O3, 50), 173.0239 (C10H5O3, 26), 189.0191 (C10H5O4, 40), 200.0109 (C11H4O4, 10), 217.0138 (C11H5O5, 29), 228.0025 (C12H4O5, 15), 245.0089 (C12H5O6, 24) |
5 | 1.9 | 332.9887 | 332.8889 | –0.4 | C14H6O10 | 12.5 | 77.0386 (C6H5, 5), 105.0333 (C7H5O, 19), 117.0332 (C8H5O, 9), 133.0284 (C8H5O2, 38), 145.0282 (C9H5O2, 10), 161.0233 (C9H5O3, 100), 189.0186 (C10H5O4, 57), 202.9975 (C10H3O5, 3), 217.0134 (C11H5O5, 12), 233.0086 (C11H5O6, 13), 261.0039 (C12H5O7, 22) |
Sample | Growth Inhibition [%] |
---|---|
1 | 11.9 ± 26.2 |
1b | 21.7 ± 11.4 |
5 | 28.9 ± 10.6 |
3 | 99.9 ± 3.0 |
Fraction containing 1 and 3 | 94.6 ± 7.1 |
Crude extract | 90.1 ± 20.6 |
Pos. control (Chloramphenicol) | 98.9 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kappen, J.; Manurung, J.; Fuchs, T.; Vemulapalli, S.P.B.; Schmitz, L.M.; Frolov, A.; Agusta, A.; Muellner-Riehl, A.N.; Griesinger, C.; Franke, K.; et al. Challenging Structure Elucidation of Lumnitzeralactone, an Ellagic Acid Derivative from the Mangrove Lumnitzera racemosa. Mar. Drugs 2023, 21, 242. https://doi.org/10.3390/md21040242
Kappen J, Manurung J, Fuchs T, Vemulapalli SPB, Schmitz LM, Frolov A, Agusta A, Muellner-Riehl AN, Griesinger C, Franke K, et al. Challenging Structure Elucidation of Lumnitzeralactone, an Ellagic Acid Derivative from the Mangrove Lumnitzera racemosa. Marine Drugs. 2023; 21(4):242. https://doi.org/10.3390/md21040242
Chicago/Turabian StyleKappen, Jonas, Jeprianto Manurung, Tristan Fuchs, Sahithya Phani Babu Vemulapalli, Lea M. Schmitz, Andrej Frolov, Andria Agusta, Alexandra N. Muellner-Riehl, Christian Griesinger, Katrin Franke, and et al. 2023. "Challenging Structure Elucidation of Lumnitzeralactone, an Ellagic Acid Derivative from the Mangrove Lumnitzera racemosa" Marine Drugs 21, no. 4: 242. https://doi.org/10.3390/md21040242
APA StyleKappen, J., Manurung, J., Fuchs, T., Vemulapalli, S. P. B., Schmitz, L. M., Frolov, A., Agusta, A., Muellner-Riehl, A. N., Griesinger, C., Franke, K., & Wessjohann, L. A. (2023). Challenging Structure Elucidation of Lumnitzeralactone, an Ellagic Acid Derivative from the Mangrove Lumnitzera racemosa. Marine Drugs, 21(4), 242. https://doi.org/10.3390/md21040242