SPR Sensor-Based Analysis of the Inhibition of Marine Sulfated Glycans on Interactions between Monkeypox Virus Proteins and Glycosaminoglycans
Abstract
:1. Introduction
2. Results and Discussion
2.1. Binding Affinity and Kinetics Measurement of Heparin–MPXV Protein Interactions
2.2. SPR Solution Competition between Surface-Immobilized Heparin and Marine Sulfated Glycans
2.3. SPR Solution Competition between Surface-Immobilized Heparin and Holothuria-floridana-Sourced Sulfated Glycans HfSF and HfFucCS
2.4. SPR Solution Competition between Surface-Immobilized Heparin and two Marine-Soured Sulfated Glycans LvSF and PpFucCS
3. Materials and Methods
3.1. Materials
3.2. Preparation of Heparin Biochips
3.3. Binding Kinetics and Affinity Studies of the Interaction between Heparin and the MPXV A35 Protein
3.4. Inhibition Activity of the Marine Sulfated Glycans on Heparin–MPXV Protein Interactions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Magnus, P.V.; Andersen, E.K.; Petersen, K.B.; Birch-Andersen, A. A pox-like disease in cynomolgus monkeys. Acta Pathol. Microbiolog. Scand. 1959, 46, 156–176. [Google Scholar] [CrossRef]
- Arita, I.; Henderson, D. Smallpox and monkeypox in non-human primates. Bull. World Health Organ. 1968, 39, 277. [Google Scholar] [PubMed]
- Ladnyj, I.; Ziegler, P.; Kima, E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Health Organ. 1972, 46, 593. [Google Scholar]
- Cunha, B.E. Monkeypox in the United States: An occupational health look at the first cases. AAOHN J. 2004, 52, 164–168. [Google Scholar] [CrossRef]
- 2022 Monkeypox Outbreak Global Map. Available online: https://www.cdc.gov/poxvirus/monkeypox/response/2022/worldmap.html (accessed on 8 March 2023).
- Kugelman, J.; Johnston, S.; Mulembakani, P.; Kisalu, N.; Lee, M.; Koroleva, G.; McCarthy, S.; Gestole, M.; Wolfe, N.; Fair, J.; et al. Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo. Emerg. Infect. Disease J. 2014, 20, 232. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.; Zhang, F.; Linhardt, R.J. Implications of glycosaminoglycans on viral zoonotic diseases. Diseases 2021, 9, 85. [Google Scholar] [CrossRef]
- Isidro, J.; Borges, V.; Pinto, M.; Sobral, D.; Santos, J.D.; Nunes, A.; Mixão, V.; Ferreira, R.; Santos, D.; Duarte, S.; et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 2022, 28, 1569–1572. [Google Scholar] [CrossRef]
- Mahase, E. Monkeypox: Single dose of smallpox vaccine offers 78% protection, UKHSA reports. BMJ 2022, 379, o2829. [Google Scholar] [CrossRef]
- Freyn, A.W.; Atyeo, C.; Earl, P.L.; Americo, J.L.; Chuang, G.-Y.; Natarajan, H.; Frey, T.; Gall, J.; Moliva, J.I.; Hunegnaw, R.; et al. A monkeypox mRNA-lipid nanoparticle vaccine targeting virus binding, entry, and transmission drives protection against lethal orthopoxviral challenge. BioRxiv 2022. BioRxiv:2022.12.17.520886. [Google Scholar]
- Shi, D.; He, P.; Song, Y.; Cheng, S.; Linhardt, R.J.; Dordick, J.S.; Chi, L.; Zhang, F. Kinetic and structural aspects of glycosaminoglycan-monkeypox virus protein A29 interactions using surface plasmon resonance. Molecules 2022, 27, 5898. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; He, P.; Rodrigues, A.L.; Datta, P.; Tandon, R.; Bates, J.T.; Bierdeman, M.A.; Chen, C.; Dordick, J.; Zhang, F.; et al. Anti-SARS-CoV-2 Activity of Rhamnan Sulfate from Monostroma nitidum. Mar. Drugs 2021, 19, 685. [Google Scholar] [CrossRef]
- Dwivedi, R.; Sharma, P.; Farrag, M.; Kim, S.B.; Fassero, L.A.; Tandon, R.; Pomin, V.H. Inhibition of SARS-CoV-2 wild-type (Wuhan-Hu-1) and Delta (B.1.617.2) strains by marine sulfated glycans. Glycobiology 2022, 32, 849–854. [Google Scholar] [CrossRef]
- Kim, S.B.; Zoepfl, M.; Samanta, P.; Zhang, F.; Xia, K.; Thara, R.; Linhardt, R.J.; Doerksen, R.J.; McVoy, M.A.; Pomin, V.H. Fractionation of sulfated galactan from the red alga Botryocladia occidentalis separates its anticoagulant and anti-SARS-CoV-2 properties. J Biol Chem. 2022, 298, 101856. [Google Scholar] [CrossRef]
- Dwivedi, R.; Samanta, P.; Sharma, P.; Zhang, F.; Mishra, S.K.; Kucheryavy, P.; Kim, S.B.; Aderibigbe, A.O.; Linhardt, R.J.; Tandon, R.; et al. Structural and kinetic analyses of holothurian sulfated glycans suggest potential treatment for SARS-CoV-2 infection. J Biol Chem. 2021, 297, 1012207. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mohapatra, R.K.; Chandran, D.; Alagawany, M.; Sv, P.; Islam, M.A.; Chakraborty, C.; Dhama, K. Monkeypox vaccines and vaccination strategies: Current knowledge and advances. An update—Correspondence. Int. J. Surg. 2022, 105, 106869. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.F.; Sohail, M.S.; Quadeer, A.A.; McKay, M.R. Vaccinia-virus-based vaccines are expected to elicit highly cross-reactive immunity to the 2022 monkeypox virus. Viruses 2022, 14, 1960. [Google Scholar] [CrossRef]
- Kamhi, E.; Joo, E.J.; Dordick, J.S.; Linhardt, R.J. Glycosaminoglycans in infectious disease. Biol. Rev. 2013, 88, 928–943. [Google Scholar] [CrossRef]
- Wang, P.; Chi, L.; Zhang, Z.; Zhao, H.; Zhang, F.; Linhardt, R.J. Heparin: An old drug for new clinical applications. Carbohydr. Polym. 2022, 295, 119818. [Google Scholar] [CrossRef]
- Hoffmann, M.; Snyder, N.L.; Hartmann, L. Polymers inspired by heparin and heparan sulfate for viral targeting. Macromolecules. 2022, 55, 7957–7973. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hu, Y.; Ye, X.; Li, G.; Yu, G.; Xue, C.; Chai, W. Sequence determination and anticoagulant and antithrombotic activities of a novel sulfated fucan isolated from the sea cucumber Isostichopus badionotus. Biochim. Biophys. Acta (BBA) Gen. Subj. 2012, 1820, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xue, C.; Yin, L.a.; Tang, Q.; Yu, G.; Chai, W. Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different sea cucumbers. Carbohydr. Polym. 2011, 83, 688–696. [Google Scholar] [CrossRef]
- Castro, M.O.; Pomin, V.H.; Santos, L.L.; Vilela-Silva, A.-C.E.S.; Hirohashi, N.; Pol-Fachin, L.; Verli, H.; Mourão, P.A.S. A Unique 2-Sulfated β-Galactan from the Egg Jelly of the Sea Urchin Glyptocidaris crenularis: Conformation Flexibility Versus Induction of the Sperm Acrosome Reaction*. J Biol Chem. 2009, 284, 18790–18800. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Qi, J.; Zhang, H.; Yang, H.; Yang, Y.; Zhao, X. Comparison of hydrothermal depolymerization and oligosaccharide profile of fucoidan and fucosylated chondroitin sulfate from Holothuria floridana. Int. J. Biol. Macromol. 2019, 132, 738–747. [Google Scholar] [CrossRef] [PubMed]
k (M−1S−1) | Kd (S−1) | KD (M) | |
---|---|---|---|
A29 protein | 2.0 × 104 (±190) * | 5.1 × 10−3 (±4.1 × 10−5) * | 2.5 × 10−7 |
A35 protein | 1.8 × 103 (±14) * | 4.0 × 10−4 (±1.6 × 10−6) * | 2.2 × 10−7 |
Control b | Heparin | IbSF | desIbSF | IbFucCS | desIbFucCS | HfSF | HfFucCS | PpFucCS | LvSF | |
---|---|---|---|---|---|---|---|---|---|---|
Normalized A29 protein binding (%) | 100 | 43.3 * | 5.0 ** | 75.4 * | 7.6 * | 66.8 * | 8.5 ** | 13.9 * | 13.0 * | 23.6 * |
Normalized A35 protein binding (%) | 100 | 27.7 * | 24.3 * | 60.4 * | 20.1 * | 63.9 * | 23.9 * | 23.0 * | 19.0 * | 16.9 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.; Shi, D.; Li, Y.; Xia, K.; Kim, S.B.; Dwivedi, R.; Farrag, M.; Pomin, V.H.; Linhardt, R.J.; Dordick, J.S.; et al. SPR Sensor-Based Analysis of the Inhibition of Marine Sulfated Glycans on Interactions between Monkeypox Virus Proteins and Glycosaminoglycans. Mar. Drugs 2023, 21, 264. https://doi.org/10.3390/md21050264
He P, Shi D, Li Y, Xia K, Kim SB, Dwivedi R, Farrag M, Pomin VH, Linhardt RJ, Dordick JS, et al. SPR Sensor-Based Analysis of the Inhibition of Marine Sulfated Glycans on Interactions between Monkeypox Virus Proteins and Glycosaminoglycans. Marine Drugs. 2023; 21(5):264. https://doi.org/10.3390/md21050264
Chicago/Turabian StyleHe, Peng, Deling Shi, Yunran Li, Ke Xia, Seon Beom Kim, Rohini Dwivedi, Marwa Farrag, Vitor H. Pomin, Robert J. Linhardt, Jonathan S. Dordick, and et al. 2023. "SPR Sensor-Based Analysis of the Inhibition of Marine Sulfated Glycans on Interactions between Monkeypox Virus Proteins and Glycosaminoglycans" Marine Drugs 21, no. 5: 264. https://doi.org/10.3390/md21050264
APA StyleHe, P., Shi, D., Li, Y., Xia, K., Kim, S. B., Dwivedi, R., Farrag, M., Pomin, V. H., Linhardt, R. J., Dordick, J. S., & Zhang, F. (2023). SPR Sensor-Based Analysis of the Inhibition of Marine Sulfated Glycans on Interactions between Monkeypox Virus Proteins and Glycosaminoglycans. Marine Drugs, 21(5), 264. https://doi.org/10.3390/md21050264