Chemical and Nutritional Profiling of the Seaweed Dictyota dichotoma and Evaluation of Its Antioxidant, Antimicrobial and Hypoglycemic Potentials
Abstract
:1. Introduction
2. Results
2.1. Proximate Nutrient Composition
2.2. GC-MS Analysis
2.3. FTIR Spectrum Analysis
2.4. Estimation of TPC and TFC
2.5. DPPH Anti-Radicals Assay
2.6. Antimicrobial Activity
2.7. Hypoglycemic Activity
3. Discussion
4. Materials and Methods
4.1. Collection and Extraction
4.2. Proximate Nutrient Composition
4.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
4.4. FourierTransform Infrared Spectroscopy (FTIR)
4.5. Total Phenolic and Flavonoid Content
4.5.1. Solution Preparation
4.5.2. Total Phenolic Content (TPC)
4.5.3. Total Flavonoids Content (TFC)
4.6. Antioxidant Activity
DPPH Anti-Radicals Assay
4.7. Antimicrobial Activity
4.7.1. Culture of the Bacteria
4.7.2. Preparation of Inoculum/Suspension
4.7.3. Diameter of Inhibitory Zone (DIZ)
4.8. Hypoglycemic Activity
4.9. Animals Groups
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Sheekh, M.M.; Gharieb, M.M.; El-Sabbagh, S.M.; Hamza, W.T. Antimicrobial efficacy of some marine macroalgae of Red Sea. Int. J. Microbiol. Immunol. Res. 2014, 3, 21–28. [Google Scholar]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M. Current status of the algae production industry in Europe: An emerging sector of the blue bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M. An overview to the health benefits of seaweeds consumption. Mar. Drugs 2021, 19, 341. [Google Scholar] [CrossRef] [PubMed]
- Güven, K.C.; Coban, B.; Özdemir, O. Pharmacology of marine macroalgae. Encycl. Mar. Biotechnol. 2020, 1, 585–615. [Google Scholar]
- Sultana, P. Dietary Effects of Seaweed (Hypnea musciformis) on Growth Performance and Blood Parameters in Mice. Master’s Thesis, Chattogram Veterinary & Animal Sciences University, Chattogram, Bangladesh, 2019. [Google Scholar]
- Akhoundian, M.; Safaei, N. Ecological status assessment of eastern coastal waters of Qeshm Island (Persian Gulf, Iran) based on macroalgal assemblages. Ecopersia 2022, 10, 203–215. [Google Scholar]
- Achmad, H.; Huldani, H.; Feby Ramadhany, Y. Antimicrobial Activity and Sulfated Polysaccharides Antibiofilms in Marine Algae Against Dental Plaque Bacteria: A Literature Review. Syst. Rev. Pharm. 2020, 11, 459–465. [Google Scholar]
- Umavandhana, R.; Jayanthi, S. Analysis of Phytochemical compounds and DPPH radical scavenging activity of Dictyota dichotoma and Halimeda macroloba. Res. J. Pharm. Technol. 2018, 11, 3440–3444. [Google Scholar] [CrossRef]
- Dixit, D.; Reddy, C.; Trivedi, M.; Gadhavi, D.K. Non-targeted metabolomics approach to assess the brown marine macroalga Dictyota dichotoma as a functional food using liquid chromatography with mass spectrometry. Sep. Sci. Plus 2020, 3, 140–149. [Google Scholar] [CrossRef]
- Rushdi, M.I.; Abdel-Rahman, I.A.; Attia, E.Z.; Saber, H.; Saber, A.A.; Bringmann, G.; Abdelmohsen, U.R. The biodiversity of the genus Dictyota: Phytochemical and pharmacological natural products prospectives. Molecules 2022, 27, 672. [Google Scholar] [CrossRef]
- Shameel, M.; Aisha, K.; Khan, S. A preliminary survey of seaweeds from the coast of Makran, Pakistan. Bot. Mar. 1996, 39, 223–230. [Google Scholar] [CrossRef]
- Manivannan, K.; Thirumaran, G.; Karthikai Devi, G.; Hemalatha, A.; Anantharaman, P. Biochemical composition of seaweeds from Mandapam coastal regions along Southeast Coast of India. Am.-Eurasian J. Bot. 2008, 1, 32–37. [Google Scholar]
- Abdelrheem, D.A.; Rahman, A.A.; Elsayed, K.N.M.; Ahmed, S.A. GC/MS spectroscopic approach, antimicrobial activity and cytotoxicity of some marine macroalgae from Qusier and Marsa Alam Seashore (RedSea), Egypt. Egypt. J. Aquat. Biol. Fish. 2020, 24, 125–144. [Google Scholar] [CrossRef]
- El-Nashar, H.A.S.; Mostafa, N.M.; El-Shazly, M.; Eldahshan, O.A. The Role of Plant-Derived Compounds in Managing Diabetes Mellitus: A Review of Literature from 2014 to 2019. Curr. Med. Chem. 2021, 28, 4694–4730. [Google Scholar] [CrossRef] [PubMed]
- Ślusarczyk, J.; Adamska, E.; Czerwik-Marcinkowska, J. Fungi and algae as sources of medicinal and other biologically active compounds: A review. Nutrients 2021, 13, 3178. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M. Bioactive peptides in preventative healthcare: An overview of bioactivities and suggested methods to assess potential applications. Curr. Pharm. Des. 2021, 27, 1332–1341. [Google Scholar] [CrossRef]
- Manivannan, K.; Thirumaran, G.; Devi, G.K.; Anantharaman, P.; Balasubramanian, T. Proximate composition of different group of seaweeds from Vedalai Coastal waters (Gulf of Mannar): Southeast Coast of India. Middle-East J. Sci. Res. 2009, 4, 72–77. [Google Scholar]
- Zohra, T.; Ovais, M.; Khalil, A.T.; Qasim, M.; Ayaz, M.; Shinwari, Z.K.; Ahmad, S.; Zahoor, M. Bio-guided profiling and HPLC-DAD fingerprinting of Atriplex lasiantha Boiss. BMC Complement. Altern. Med. 2019, 19, 4. [Google Scholar] [CrossRef]
- Anjum, S.; Tahir, H.; Sarwar, S.; Raza, W.; Latif, I.; Rasheed, H.M.F.; Jabeen, Q.; Shahid, W.; Ashraf, M.; Zehra, S.S. LC-ESI-MS analysis, antioxidant, anti-diabetic and molecular docking studies on Corchorus depressus (L.) C.Chr. Nat. Prod. Res. 2022, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, T.; Agarwal, M. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J. Pharmacogn. Phytochem. 2017, 6, 195–206. [Google Scholar]
- Parthiban, C.; Saranya, C.; Girija, K.; Hemalatha, A.; Suresh, M.; Anantharaman, P. Biochemical composition of some selected seaweeds from Tuticorin coast. Adv. Appl. Sci. Res. 2013, 4, 362–366. [Google Scholar]
- El-Shenody, R.A.; Ashour, M.; Ghobara, M.M.E. Evaluating the chemical composition and antioxidant activity of three Egyptian seaweeds: Dictyota dichotoma, Turbinaria decurrens, and Laurencia obtusa. Braz. J. Food Technol. 2019, 22. [Google Scholar] [CrossRef]
- Fraly Erbabley, N.Y.G.; Junianto, J. Chemical characteristics and phytochemicals of the brown alga Sargassum filipendulla from Kelanit waters of southeast Maluku. Egypt. J. Aquat. Biol. Fish. 2020, 24, 535–547. [Google Scholar] [CrossRef]
- Mwalugha, H.M.; Wakibia, J.G.; Kenji, G.M.; Mwasaru, M.A. Chemical composition of common seaweeds from the Kenya Coast. J. Food Res. 2015, 4, 28. [Google Scholar] [CrossRef]
- Gokulakrishnan, S.; Raja, K.; Sattanathan, G.; Subramanian, J. Proximate composition of biopotential seaweeds from Mandapam South East coast of India. Int. Lett. Nat. Sci. 2015, 45, 49–55. [Google Scholar]
- Deyab, M.A.; El-Katony, T.M.; El-Adl, M.F.; Ward, F.M. Temporal variation in chemical composition of Dictyota dichotoma (Hudson) JV Lamouroux (Dictyotales, Phaeophyceae) from Red Sea Coast, Egypt. J. Coast. Life Med. 2017, 5, 149–155. [Google Scholar] [CrossRef]
- Liu, H.-x.; Sun, S.-q.; Lv, G.-h.; Chan, K.K. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 64, 321–326. [Google Scholar] [CrossRef]
- Sumathi, R.; Anuradha, R. FT-IR Spectroscopic Studies on Flowers of Allamanda neriifolia Hook. Int. J. Curr. Microbiolgy Appl. Sci. 2016, 56, 287–291. [Google Scholar] [CrossRef]
- Potapovich, M.V.; Kurchenko, V.P.; Metelitsa, D.I.; Shadyro, O.I. Antioxidant activity of oxygen-containing aromatic compounds. Prikl. Biokhimiia Mikrobiol. 2011, 47, 386–396. [Google Scholar] [CrossRef]
- Abdallah, S.H.; Mostafa, N.M.; Mohamed, M.A.E.H.; Nada, A.S.; Singab, A.N.B. UPLC-ESI-MS/MS profiling and hepatoprotective activities of Stevia leaves extract, butanol fraction and stevioside against radiation-induced toxicity in rats. Nat. Prod. Res. 2022, 36, 5619–5625. [Google Scholar] [CrossRef]
- Mostafa, N.M.; Edmond, M.P.; El-Shazly, M.; Fahmy, H.A.; Sherif, N.H.; Singab, A.N.B. Phytoconstituents and renoprotective effect of Polyalthia longifolia leaves extract on radiation-induced nephritis in rats via TGF-β/smad pathway. Nat. Prod. Res. 2022, 36, 4187–4192. [Google Scholar] [CrossRef]
- Fischer, C.L. Antimicrobial Activity of Host-Derived Lipids. Antibiotics 2020, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Laus, G. Biological activities of natural halogen compounds. In Studies in Natural Products Chemistry; Attaur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 25, pp. 757–809. [Google Scholar]
- Farvin, K.S.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013, 138, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Ullah, F.; Sadiq, A.; Ayaz, M.; Ahmad, S.; Kamal, Z.; Zeb, A. Investigation of total phenolic contents, antibacterial, antifungal and anthelmintic potentials of crude methanolic extract, subsequent fractions and crude saponins of Nonea micrantha Boiss. & Reut. Pharmacologyonline 2014, 3, 26–31. [Google Scholar]
- Rehman, H.; Shah, M.; Shinwari, Z.K.; Ali, W.; Zaman, N.; Khan, M.A.; Bibi, N.S.; Ayaz, M. Total Phenolic-Flavonoid Contents, Anti-Leishmanial, Antimicrobial And Antioxidant Potentials of Pakistani Tea Brands and Tea Plant Camellia sinensis. Pak. J. Bot 2022, 54, 667–673. [Google Scholar] [CrossRef]
- Cadar, E.; Sirbu, R.; Ibram, A.; Ionescu, A.M. Evaluation of total phenolic content in relation to antioxidant activity of brown algae Cystoseira barbata from Black Sea. Rev. Chim. Buchar. Orig. Ed. 2019, 70, 2684–2689. [Google Scholar] [CrossRef]
- Deyab, M.; Elkatony, T.; Ward, F. Qualitative and quantitative analysis of phytochemical studies on brown seaweed, Dictyota dichotoma. Int. J. Eng. Dev. Res. 2016, 4, 674–678. [Google Scholar]
- Ozgun, S.; Turan, F. Biochemical composition of some brown algae from Iskenderun Bay, the northeastern Mediterranean coast of Turkey. J. Black Sea/Mediterr. Environ. 2015, 21, 125–134. [Google Scholar]
- Ktari, L.; Mdallel, C.; Aoun, B.; Chebil Ajjabi, L.; Sadok, S. Fucoxanthin and phenolic contents of six Dictyotales from the Tunisian Coasts with an emphasis for a green extraction using a supercritical CO2 method. Front. Mar. Sci. 2021, 8, 647159. [Google Scholar] [CrossRef]
- Emam, M.; Mansour, H.; Shaaban, A.; Mostafa, N. Biochemical constituents and antioxidant capacity of some seaweeds from red and Mediterranean coasts of Egypt. Egypt. J. Bot. 2014, 54, 333–346. [Google Scholar]
- Kosanić, M.; Ranković, B.; Stanojković, T. Brown macroalgae from the Adriatic Sea as a promising source of bioactive nutrients. J. Food Meas. Charact. 2019, 13, 330–338. [Google Scholar] [CrossRef]
- Ali, S.I.; El-Baz, F.K.; El-Emary, G.A.; Khan, E.A.; Mohamed, A.A. HPLC-analysis of polyphenolic compounds and free radical scavenging activity of pomegranate fruit (Punica granatum L.). Int. J. Pharm. Clin. Res. 2014, 6, 348–355. [Google Scholar]
- Otero, P.; Quintana, S.E.; Reglero, G.; Fornari, T.; García-Risco, M.R. Pressurized Liquid Extraction (PLE) as an innovative green technology for the effective enrichment of galician algae extracts with high quality fatty acids and antimicrobial and antioxidant properties. Mar. Drugs 2018, 16, 156. [Google Scholar] [CrossRef]
- Benfares, R.; Kord, A.; Boudjema, K.; Bouarab, M.; Benrabah, S.; Boudjemaa, K.; Švarc-Gajić, J. Chemical characterization of essential oils and antioxidant activity of Dictyota dichotoma and Dictyopteris membranacea. Acta Period. Technol. 2019, 50, 33–42. [Google Scholar] [CrossRef]
- Zubia, M.; Fabre, M.S.; Kerjean, V.; LeLann, K.; Stiger-Pouvreau, V.; Fauchon, M.; Deslandes, E. Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem. 2009, 116, 693–701. [Google Scholar] [CrossRef]
- Gammone, M.A.; Riccioni, G.; D’Orazio, N. Marine carotenoids against oxidative stress: Effects on human health. Mar. Drugs 2015, 13, 6226–6246. [Google Scholar] [CrossRef]
- Sachindra, N.M.; Sato, E.; Maeda, H.; Hosokawa, M.; Niwano, Y.; Kohno, M.; Miyashita, K. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J. Agric. Food Chem. 2007, 55, 8516–8522. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Sameeh, M.Y.; El-Beltagi, H.S. Preparation of Seaweed Nanopowder Particles Using Planetary Ball Milling and Their Effects on Some Secondary Metabolites in Date Palm (Phoenix dactylifera L.) Seedlings. Life 2022, 13, 39. [Google Scholar] [CrossRef]
- Jebakumar Solomon, R.D.; Satheeja Santhi, V. Purification of bioactive natural product against human microbial pathogens from marine seaweed Dictyota acutiloba J. Ag. World J. Microbiol. Biotechnol. 2008, 24, 1747–1752. [Google Scholar] [CrossRef]
- Demirel, Z.; Yilmaz-Koz, F.F.; Karabay-Yavasoglu, U.N.; Ozdemir, G.; Sukatar, A. Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. J. Serb. Chem. Soc. 2009, 74, 619–628. [Google Scholar] [CrossRef]
- Paz, E.; Lacy, R.; Bakhtian, M. The B-Lactum Antibiotics Penicillin and Cephalosporin in Perspective; Hodder and Stoughton: London, UK, 1995; p. 324. [Google Scholar]
- Mashjoor, S.; Yousefzadi, M.; Esmaeili, M.A.; Rafiee, R. Cytotoxicity and antimicrobial activity of marine macroalgae (Dictyotaceae and Ulvaceae) from the Persian Gulf. Cytotechnology 2016, 68, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- TÜney, İ.; Cadirci, B.H.; Ünal, D.; Sukatar, A. Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turk. J. Biol. 2006, 30, 171–175. [Google Scholar]
- Durairaj, S.B.; Andiyappan, B.R. Screening of Phytochemicals, Antibacterial, Antioxidant and Anti-inflammatory Activity of Dictyota barteyresiana Seaweed Extracts. Asian J. Biol. Life Sci. 2020, 9, 21. [Google Scholar] [CrossRef]
- Susanto, A.; Setyati, W.A.; Pramesti, R.; Pringgenies, D.; Zainuddin, M. Multidrug-Resistant Antibacterial Activity and Active Compound Analysis Several Types of Seaweed from Karimunjawa, Jepara; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012029. [Google Scholar]
- Premathilaka, R.; Silva, M. Bioactive compounds and antioxidant activity of Bunchosia armenica. World J. Pharm. Pharm. Sci. 2016, 5, 1237–1247. [Google Scholar]
- Islam, M.S.; Al-Majid, A.M.; Sholkamy, E.N.; Yousuf, S.; Ayaz, M.; Nawaz, A.; Wadood, A.; Rehman, A.U.; Verma, V.P.; Bari, A. Synthesis, molecular docking and enzyme inhibitory approaches of some new chalcones engrafted pyrazole as potential antialzheimer, antidiabetic and antioxidant agents. J. Mol. Struct. 2022, 1269, 133843. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, C.; Liu, B.; Lin, L.; Sarker, S.D.; Nahar, L.; Yu, H.; Cao, H.; Xiao, J. Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends Food Sci. Technol. 2018, 72, 1–12. [Google Scholar] [CrossRef]
- Barzkar, N.; Jahromi, S.T.; Poorsaheli, H.B.; Vianello, F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Mar. Drugs 2019, 17, 464. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, N.M.; Mostafa, A.M.; Ashour, M.L.; Elhady, S.S. Neuroprotective effects of black pepper cold-pressed oil on scopolamine-induced oxidative stress and memory impairment in rats. Antioxidants 2021, 10, 1993. [Google Scholar] [CrossRef]
- Moussa, A.Y.; Mostafa, N.M.; Singab, A.N.B. Pulchranin A: First report of isolation from an endophytic fungus and its inhibitory activity on cyclin dependent kinases. Nat. Prod. Res. 2020, 34, 2715–2722. [Google Scholar] [CrossRef]
- Edmond, M.P.; Mostafa, N.M.; El-Shazly, M.; Singab, A.N.B. Two clerodane diterpenes isolated from Polyalthia longifolia leaves: Comparative structural features, anti-histaminic and anti-Helicobacter pylori activities. Nat. Prod. Res. 2021, 35, 5282–5286. [Google Scholar] [CrossRef]
- Mopuri, R.; Ganjayi, M.; Meriga, B.; Koorbanally, N.A.; Islam, M.S. The effects of Ficus carica on the activity of enzymes related to metabolic syndrome. J. Food Drug Anal. 2018, 26, 201–210. [Google Scholar] [CrossRef]
- Ayoub, N.; Singab, A.N.; Mostafa, N.; Schultze, W. Volatile constituents of leaves of Ficus carica Linn. Grown in Egypt. J. Essent. Oil-Bear. Plants 2010, 13, 316–321. [Google Scholar] [CrossRef]
- Ahmad, I.; Ahmed, S.; Akkol, E.K.; Rao, H.; Shahzad, M.N.; Shaukat, U.; Basit, A.; Fatima, M. GC–MS profiling, phytochemical and biological investigation of aerial parts of Leucophyllum frutescens (Berl.) IMJohnst (Cenizo). S. Afr. J. Bot. 2022, 148, 200–209. [Google Scholar] [CrossRef]
- Saleem, U.; Akhtar, R.; Anwar, F.; Shah, M.A.; Chaudary, Z.; Ayaz, M.; Ahmad, B. Neuroprotective potential of Malva neglecta is mediated via down-regulation of cholinesterase and modulation of oxidative stress markers. Metab. Brain Dis. 2021, 36, 889–900. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, F.; Ayaz, M.; Ahmad, A.; Sadiq, A.; Mohani, S.N.-U.-H. Nutritional and medicinal aspects of Rumex hastatus D.Don along with in vitro anti-diabetic activity. Int. J. Food Prop. 2019, 22, 1733–1748. [Google Scholar] [CrossRef]
- Onwuka, G.I. Food Analysis and Instrumentation: Theory and Practice; NapthaliPrints: Lagos, Nigeria, 2005. [Google Scholar]
- Mostafa, N.M. β-Amyrin Rich Bombax ceiba Leaf Extract with Potential Neuroprotective Activity against Scopolamine-Induced Memory Impairment in Rats. Rec. Nat. Prod. 2018, 12, 480–492. [Google Scholar] [CrossRef]
- Younis, M.M.; Ayoub, I.M.; Mostafa, N.M.; Al-Rashood, S.T.; Eldahshan, O.A. GC/MS Profiling, anti-collagenase, anti-elastase, anti-hyaluronidase activities of a Stenocarpus sinuatus leaves extract. Plants 2022, 11, 918. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Shahid, M.; Ahmad, W.; Ullah, I.; Ahmad, A.; Syed, N.-i.-H. GC-MS analysis and gastroprotective evaluations of crude extracts, isolated saponins, and essential oil from Polygonum hydropiper L. Front. Chem. 2017, 5, 58. [Google Scholar] [CrossRef] [PubMed]
- Zohra, T.; Ovais, M.; Khalil, A.T.; Qasim, M.; Ayaz, M.; Shinwari, Z.K. Extraction optimization, total phenolic, flavonoid contents, HPLC-DAD analysis and diverse pharmacological evaluations of Dysphania ambrosioides (L.) Mosyakin & Clemants. Nat. Prod. Res. 2019, 33, 136–142. [Google Scholar] [PubMed]
- Odabasoglu, F.; Aslan, A.; Cakir, A.; Suleyman, H.; Karagoz, Y.; Halici, M.; Bayir, Y. Comparison of antioxidant activity and phenolic content of three lichen species. Phytother. Res. 2004, 18, 938–941. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.M.; Ayaz, M.; Khan, A.-U.; Ullah, F.; Farhan; Shah, A.-U.-H.A.; Iqbal, H.; Hussain, S. 1,1-Diphenyl,2-picrylhydrazyl free radical scavenging, bactericidal, fungicidal and leishmanicidal properties of Teucrium stocksianum. Toxicol. Ind. Health 2015, 31, 1037–1043. [Google Scholar] [CrossRef]
- Shah, S.M.; Ullah, F.; Ayaz, M.; Wahab, A.; Shinwari, Z.K. Phytochemical profiling and pharmacological evaluation of Ifloga spicata (forssk.) Sch. Bip. in leishmaniasis, lungs cancer and oxidative stress. Pak. J. Bot. 2019, 51, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Sani, A.; Hassan, D.; Khalil, A.T.; Mughal, A.; El-Mallul, A.; Ayaz, M.; Yessimbekov, Z.; Shinwari, Z.K.; Maaza, M. Floral extracts-mediated green synthesis of NiO nanoparticles and their diverse pharmacological evaluations. J. Biomol. Struct. Dyn. 2021, 39, 4133–4147. [Google Scholar] [CrossRef]
- Ayaz, M.; Subhan, F.; Ahmed, J.; Khan, A.-U.; Ullah, F.; Sadiq, A.; Syed, N.; Ullah, I.; Hussain, S. Citalopram and venlafaxine differentially augments antimicrobial properties of antibiotics. Acta Pol. Pharm. Drug Res. 2015, 72, 1269–1278. [Google Scholar]
- Sadiq, A.; Rashid, U.; Ahmad, S.; Zahoor, M.; AlAjmi, M.F.; Ullah, R.; Noman, O.M.; Ullah, F.; Ayaz, M.; Khan, I. Treating hyperglycemia from Eryngium caeruleum M.Bieb: In-vitro α-glucosidase, antioxidant, in-vivo antidiabetic and molecular docking-based approaches. Front. Chem. 2020, 8, 558641. [Google Scholar] [CrossRef] [PubMed]
S.No | Compound Name | R-Time | Area | Area % | Molecular Weight | Molecular Formula |
---|---|---|---|---|---|---|
1 | Undecane | 5.995 | 879421 | 8.55 | 156.31 | C11H24 |
2 | Tridecane, 4,8-dimethyl- | 8.187 | 499686 | 4.86 | 212.4146 | C15H32 |
3 | 2-propenoic acid, 2-ethylhexyl ester | 8.863 | 232461 | 2.26 | 288.4 | C19H28O2 |
4 | Hexadecane | 10.131 | 50912 | 0.49 | 226.41 | C₁₆H₃₄ |
5 | Tridecane | 10.592 | 64603 | 0.63 | 184.37 | C13H28 |
6 | Benzoic acid, 2-ethylhexyl ester | 20.313 | 134366 | 1.31 | 250.3334 | C15H22O |
7 | Myristic acid | 21.377 | 810080 | 7.87 | 228.37 | C14H28O2 |
8 | α-Limonene diepoxide | 21.514 | 214806 | 2.09 | 168.23584 | C10H16O2 |
9 | Ethyl tridecanoate | 22.074 | 83030 | 0.81 | 242.3975 | C15H30O |
10 | 1-Octadecyne | 23.043 | 230461 | 2.24 | 250.4626 | C18H34 |
11 | 2-Undecanone, 6, 10-dimethyl- | 23.146 | 182825 | 1.78 | 198.3449 | C13H26O |
12 | Pentadecanoic acid | 23.423 | 107508 | 1.04 | 242.3975 | C15H30O2 |
13 | 1-Octadecyne | 23.551 | 53831 | 0.52 | 250.4626 | C18H34 |
14 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 23.915 | 76648 | 0.74 | 296.5310 | C20H40O |
15 | Pentadecanoic acid, 14-methyl-methyl ester | 24.768 | 195344 | 1.90 | 270.4507 | C17H34O2 |
16 | 9-Hexadecenoic acid | 25.071 | 285274 | 2.77 | 254.4082 | C16H30O2 |
17 | Hexadecenoic acid, Z-11- | 25.263 | 1129414 | 10.98 | 254.4082 | C16H30O2 |
18 | Tetradecanoic acid | 25.533 | 3475165 | 33.78 | 228.3709 | C14H28O2 |
19 | E-11-Hexadecenoic acid, ethyl ester | 25.890 | 83539 | 0.81 | 282.4614 | C18H34O2 |
20 | Isoaromadendrene epoxide | 26.235 | 471250 | 4.58 | 220.3505 | C15H24O |
21 | Santalol, E-cis,epi-β | 26.964 | 353654 | 3.44 | 220.3505 | C15H24O |
22 | Epianastrephin | 27.705 | 101313 | 0.98 | 194.27 | C12H18O2 |
23 | 6-Octadecenoic acid, methyl ester, (Z)- | 28.115 | 130768 | 1.27 | 296.4879 | C19H36O2 |
24 | β-Elemene | 28.552 | 66749 | 0.65 | 204.35 | C15H24 |
25 | Methyl eicosa-5,8,11,14,17-pentaenoate | 28.735 | 375837 | 3.65 | 316.4776 | C21H32O2 |
S.No | Name | R-Time | Area | Area % | Mol. Weight | Mol. Formula |
---|---|---|---|---|---|---|
1 | Undecane | 5.998 | 863567 | 14.98 | 156.31 | C11H24 |
2 | Dodecane | 8.1992 | 494148 | 8.57 | 170.33 | C12H26 |
3 | 2-propenoic acid, 2-ethylhexyl ester | 8.866 | 238178 | 4.13 | 270.36 | C15H26O4 |
4 | Lageracetal | 9.508 | 496742 | 8.62 | 202.33 | C12H26O2 |
5 | Decane | 10.599 | 85112 | 1.48 | 142.28 | C₁₀H₂₂ |
6 | Tridecane | 15.478 | 378657 | 6.57 | 184.37 | C13H28 |
7 | Benzoic acid, 2-ethylhexyl ester | 20.317 | 73951 | 1.28 | 250.3334 | C15H22O |
8 | Tetradecanoic acid | 21.341 | 167535 | 2.91 | 228.37 | C14H28O2 |
9 | 1-Octadecyne | 23.042 | 170327 | 2.95 | 250.4626 | C18H34 |
10 | 3,7,11,15-tetramethyle-2-hexadecene-1-ol | 23.913 | 57861 | 1.00 | 296.5310 | C20H40O |
11 | Palmitic acid, methyl ester | 24.770 | 165138 | 2.86 | 270.45 | C17H34O2 |
12 | Hexadecennoic acid, Z-11- | 25.224 | 241443 | 4.19 | 254.4082 | C16H30O2 |
13 | Cetylic acid | 25.463 | 842809 | 14.62 | 256.42 | CH3(CH2)14COOH |
14 | Santalol, E-cis,epi-beta | 26.951 | 197198 | 3.42 | 220.3505 | C15H24O |
15 | Aromadendrene oxide-(2) | 27.263 | 248551 | 4.31 | 220.35 | C15H24O |
16 | 6-Octadecenoic acid, methyl ester, (Z)- | 28.115 | 78923 | 1.37 | 296.4879 | C19H36O |
17 | Phytol | 28.374 | 246720 | 4.28 | 296.53 | C20H40O |
18 | 9-Hexadecenoic acid | 29.404 | 185272 | 3.21 | 254.41 | C16H30O2 |
19 | Hexadecenoic acid, Z-11- | 29.633 | 532477 | 9.24 | 254.4082 | C16H30O |
Wave Number Ethyl Acetate cm−1 | Wave Number of n-Butanol cm−1 | Wave Number of Reference cm−1 | Functional Group | Expected Phytocompound |
---|---|---|---|---|
2922.16 | 2922.16 | 2935–2915 | Asymmetric stretching of -CH(CH2) vibration | Saturated aliphatic comp. Lipids |
1714.72–1705.07 | 1714.72–1705.07 | 1800–1600 | C=O stretches | Carbonyl |
1456.26 | 1456.26 | 1432–1621 | C=C | Aromatic |
1375.25 | 1375.25 | 1419–1310 | O-H bond alcoholic group | Phenol or tertiary alcohol |
1238.30 | 1238.30 | 1329–1210 | C-O stretch, C-N stretch | Acid, amine |
1163.08 | 1163.08 | 1300–1150 | C-N stretch, C-H wag(-CH, k) | Amine, alkyl halides |
1020.34 | 1024.20 | 1100–1000 | PO3 | Phosphate ion |
981.77 | 972.12 | 1000–675 | -C-H bending | Alkene |
972.12 | - | 1000–675 | -C-H bending | Alkene |
736.81 | - | 1000–675 | -C-H bending | Alkene |
721.38 | 721.38 | 730–500 | C-Cl | Halogen compound (chloro-compound) |
667.37 | 667.37–609.51 | 550–690 | C-I | Halogen compound (chloro-compound, iodo-compound), alkyl halide |
TPC and TFC | Antioxidant Activity | ||||
---|---|---|---|---|---|
Compounds | Ethyl Acetate | n-Butanol | Conc. µg/mL | IC50 | |
Ethyl Acetate | n-Butanol | ||||
TPC(mg GAE/g) | 2.56 ± 0.34 | 2.51 ± 0.67 | 25 | 0.68 ± 0.45 | 0.11 ± 0.65 |
50 | 2.19 ± 0.87 | 3.19 ± 1.16 | |||
TFC(mg QE/g) | 2.11 ± 0.89 | 2.25 ± 0.28 | 75 | 5.25 ± 1.02 | 6.27 ± 1.70 |
100 | 8.31 ± 1.32 | 9.35 ± 0.32 |
Treatments | Blood Glucose (mg dL−1) | |||
---|---|---|---|---|
1st Day | 3rd Day | 6 h | 24 h | |
Saline 10 mL | 98.00 ± 10.08 | 99.17 ± 6.68 | 98.50 ± 7.48 | 100.00 ± 8.22 |
Alloxan 150 mg | 106.17 ± 11.81 | 340.50 ± 7.99 | 339.17 ± 9.28 | 288.17 ± 8.59 |
Glibenclamide 5 mg | 111.33 ± 7.28 | 236.83 ± 9.95 | 224.67 ± 8.69 | 107.83 ± 7.78 |
D.D.E 100 mg/kg | 99.67 ± 7.61 * | 305.33 ± 7.74 * | 305.00 ± 7.59 * | 294.00 ± 17.78 * |
D.D.E 200 mg/kg | 107.50 ± 7.48 | 293.00 ± 5.93 * | 291.00 ± 13.54 * | 266.50 ± 7.71 * |
D.D.E 300 mg/kg | 115.67 ± 4.27 | 287.00 ± 3.63 * | 271.33 ± 8.66 * | 235.67 ± 7.00 * |
D.D.B 100 mg/kg | 104.33 ± 8.62 | 310.17 ± 6.08 * | 248.67 ± 5.68 * | 245.83 ± 4.75 * |
D.D.B 200 mg/kg | 99.33 ± 7.15 * | 291.00 ± 2.83 * | 239.67 ± 5.13 * | 233.67 ± 6.80 * |
D.D.B 300 mg/kg | 89.00 ± 6.51 * | 265.17 ± 5.38 * | 229.17 ± 5.34 | 216.67 ± 9.14 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, M.; Iqbal, A.; Badshah, S.L.; Sher, A.A.; Ullah, H.; Ayaz, M.; Mosa, O.F.; Mostafa, N.M.; Daglia, M. Chemical and Nutritional Profiling of the Seaweed Dictyota dichotoma and Evaluation of Its Antioxidant, Antimicrobial and Hypoglycemic Potentials. Mar. Drugs 2023, 21, 273. https://doi.org/10.3390/md21050273
Imran M, Iqbal A, Badshah SL, Sher AA, Ullah H, Ayaz M, Mosa OF, Mostafa NM, Daglia M. Chemical and Nutritional Profiling of the Seaweed Dictyota dichotoma and Evaluation of Its Antioxidant, Antimicrobial and Hypoglycemic Potentials. Marine Drugs. 2023; 21(5):273. https://doi.org/10.3390/md21050273
Chicago/Turabian StyleImran, Muhammad, Arshad Iqbal, Syed Lal Badshah, Ayaz Ali Sher, Hammad Ullah, Muhammad Ayaz, Osama F. Mosa, Nada M. Mostafa, and Maria Daglia. 2023. "Chemical and Nutritional Profiling of the Seaweed Dictyota dichotoma and Evaluation of Its Antioxidant, Antimicrobial and Hypoglycemic Potentials" Marine Drugs 21, no. 5: 273. https://doi.org/10.3390/md21050273
APA StyleImran, M., Iqbal, A., Badshah, S. L., Sher, A. A., Ullah, H., Ayaz, M., Mosa, O. F., Mostafa, N. M., & Daglia, M. (2023). Chemical and Nutritional Profiling of the Seaweed Dictyota dichotoma and Evaluation of Its Antioxidant, Antimicrobial and Hypoglycemic Potentials. Marine Drugs, 21(5), 273. https://doi.org/10.3390/md21050273