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Abstract: Secondary metabolites from marine organisms are diverse in structure and function. Marine
Aspergillus is an important source of bioactive natural products. We reviewed the structures and
antimicrobial activities of compounds isolated from different marine Aspergillus over the past two
years (January 2021–March 2023). Ninety-eight compounds derived from Aspergillus species were
described. The chemical diversity and antimicrobial activities of these metabolites will provide a
large number of promising lead compounds for the development of antimicrobial agents.
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1. Introduction

Compared with terrestrial fungi, marine fungi are more abundant in species. Due to the
complex environment, their metabolites have novel structures and diverse activities [1–4].
As an important member of marine microorganisms, fungi play an important role in the
study of active natural products. Marine fungi can be obtained from marine animals,
plants, sediments and seawater [5–8]. Therefore, marine fungi have a wide range of
sources [6,9–15].

Aspergillus is a genus of fungi widely distributed in marine environments [16–18].
Common species include A. fumigatus, A. niger, A. versicolor, A. flavus, A. ochraceu, A. ticus, A.
terreus, etc. Marine Aspergillus is an important resource in the production of active natural
products, such as steroids, flavonoids, azolones, etc. [7,19–22]. These metabolites are
structurally diverse and exhibit a wide range of biological activities, including anticancer,
antiviral, antibacterial, anti-inflammatory, lipid-lowering and anti-diabetic [22–27].

Due to the wide range of Aspergillus sources, the diverse secondary metabolites and
the wide biological activities, the research on Aspergillus metabolites has attracted much
attention. Therefore, a series of excellent reviews on this subject have been published so
far [28–39]. In 2016, Fouillaud et al. reviewed the knowledge of anthraquinones and their
derivatives derived from filamentous fungi [40]. In 2022, Hafez Ghoran et al. updated this
study and summarized and classified the structures and activities of 296 anthraquinones
and their derivatives [41]. In 2019, Youssef et al. reviewed the chemical and biological
activities of peptides which isolated and identified from marine fungi [22]. 131 peptides
were reported from these 17 genera, and about 53% of the isolated peptides showed
cytotoxic, antibacterial and antiviral activities. In 2020, Jiang et al. reviewed the chemical
structure and bioactive properties of new terpenes from marine derived fungi, as well as the
biodiversity of these fungi from 2015 to 2019 [19]. Penicillium, Aspergillus and Trichoderma
fungi were the main producers of terpenes. In 2021, Rani et al. reviewed the research status
of microbial antibacterial molecules [10]. In 2022, Li et al., reviewed the chemistry and
bioactivity of marine-derived bisabolane sesquiterpenoids [1]. In 2013, Lee et al. reviewed
the bioactive secondary metabolites of Aspergillus derived from marine sources [42]. In
2018, Wang et al. reviewed 232 new bioactive metabolites from Aspergillus of marine origin
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from 2006 to 2016 and classified their bioactivity and chemical structures [43]. In 2020, Xu
et al. reviewed the structural diversity and biological activity of 130 heterocyclic alkaloids
produced by Aspergillus of marine origin from early 2014 to late 2018 [44]. However, there
have been no studies on the antimicrobial compounds from marine Aspergillus in the last
two years despite the fact that over the past two years, reports of antibacterial metabolites
from Aspergillus have increased [45–51]. It is believed that the study of Aspergillus living
in marine environments will facilitate the isolation of new fungal species and lead to
the discovery of new compounds. Therefore, this review updates current compounds
to cover metabolites isolated from marine Aspergillus between January 2021 and March
2023. It also provides structural diversity of compounds, as well as detailed information
on sources and associated antimicrobial activity. We introduced the structural diversity
and antimicrobial activity of 98 compounds isolated from marine-derived Aspergillus. This
study will contribute to a better understanding of the chemical properties and biological
activities of natural products from marine Aspergillus, thus facilitating drug discovery
and development.

2. Aspergillus sp. from Various Marine Sources and Their Antimicrobial Activities
2.1. Aspergillus sp. from Marine Animals and Their Antimicrobial Activities

Trypacidin (1) was isolated from the A. fumigatus HX-1 associated with clams (Figure 1).
The anti-Vibrio harveyi activity of trypacidin was the same as that of streptomycin sulfate,
and the minimum inhibitory concentration (MIC) was 31.25 µg/mL [52].
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Two new dipeptides, asperopiperazines A and B (2 and 3), were obtained from As-
pergillus sp. DY001 (Figure 1). The MICs of asperopiperazines A and B against Escherichia
coli were 8 and 4 µM, and 8 and 8 µM against S. aureus, respectively [53].

In conclusion, only two Aspergillus species producing antimicrobial compounds are
found from marine animals (except sponges and corals). Three compounds from these two
Aspergillus strains have been reviewed for their antimicrobial activities. Notably, asper-
opiperazines A and B from Aspergillus sp. DY001 showed potent antimicrobial activities
against E. coli and S. aureus.

2.2. Aspergillus sp. from Marine Plants and Their Antimicrobial Activities

Six new terpenoids were isolated from a seaward fungus A. alabamensis (Figure 2).
They are asperalacids A-E and 4-hydroxy-5-(6)-dihydroterrecyclic acid A (4). Compound
4 and asperalacids A–D (5–8) showed antimicrobial activities against plant pathogenic
fungi Penicillium italicum, Fusarium graminearum and F. oxysporum, as well as S. aureus and
the Gram-positive bacteria Bacillus subtilis. Both MICs of asperalacids A and D against
F. graminearum were 200 µg/mL. The MIC of asperalacids B and C against F. oxysporum
were 100 and 100 µg/mL, and 200 and 25 µg/mL against F. graminearum, respectively. The
MIC of compound 8 against P. italicum, F. graminearum, F. oxysporum and S. aureus were 200,
50, 100 and 25 µg/mL, respectively [54].
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Eight new benzoic acid-containing alkaloids were isolated and identified from
A. alabamensis. Among these compounds, asperalins A–F (9–14) showed moderate or
strong inhibitory activities against some fish pathogens, Streptococcus parauberis, S. iniae
and Edwardsiella ictalurid (Figure 2). Asperalins C and D showed strong antibacterial activi-
ties against S. aureus, S. parauberis and S. iniae, with MIC values of 10.1, 10.1 and 5.0 µM,
respectively. Asperalin E had the strongest inhibitory effect on S. iniae with an MIC value
of 2.2 µM. Notably, the MICs of asperalin F against four Gram-positive bacteria S. aureus,
B. subtilis, S. parauberis, S. iniae and one Gram-negative bacterium E. ictalurid were 21.8,
87.3, 21.8, 43.6 and 10.9 µM, respectively [55].

In conclusion, Aspergillus species and its active metabolites from marine plant sources
(except mangrove and seagrasses) were summarized. Eleven antimicrobial compounds were
identified in the seagrass-derived fungus A. alabamensis during 2022 and 2023. Compounds
4–8 had a weak inhibitory effect on plant pathogens. However, compounds 11–14 showed
strong antibacterial effects against S. aureus, S. iniae and some Gram-positive bacteria.

2.3. Aspergillus sp. from Mangroves and Their Antimicrobial Activities

Six antibacterial compounds were isolated from the marine fungus A. brunneoviolaceus
MF180246 (Figure 3). These compounds included asperbrunneo acid (15), secalonic acid
H (16), chrysoxanthone C (17), secalonic acid F1 (18), asperdichrome (19) and penicillixan-
thone A (20). They showed antibacterial activity against S. aureus with MIC values of 200,
50, 50, 25, 25 and 6.25 µg/mL [27].

Six polyhydroxy p-terphenyls (asperterphenyllins A–F) were isolated from the en-
dophytic fungus A. candidus LDJ-5 in mangroves. Only asperterphenyllin C (21) showed
antibacterial activity against Proteus sp. with an MIC value of 19 µg/mL [56].

Two new heterodimeric tetrahydroxanthones, aflaxanthones A and B (22 and 23),
were isolated from A. flavus QQYZ. These two compounds showed potential antimicrobial
activity and broad spectrum against several pathogenic fungi such as C. albicans and
F. oxysporum, with MIC values in the range of 3.13–50 µM. They also showed moderate
antibacterial activity against several bacteria such as B. subtilis and methicillin-resistant
S. aureus (MRSA), with MIC values in the range of 12.5–25 µM [57].

In conclusion, Aspergillus and its active metabolites from mangroves were summarized.
Due to the special geographical environment, mangroves had a wide variety of organisms,
which has been thoroughly examined in previous studies of metabolites. Nine antimicrobial
compounds were found in three Aspergillus strains from mangrove sources. Most of
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the compounds showed moderate antimicrobial activities. Among these compounds,
compound 20 showed a strong inhibitory effect on S. aureus.
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2.4. Aspergillus sp. Derived from Algae and Their Antimicrobial Activities

Two C7-alkylated salicylaldehyde derivatives metabolites, namely asperglaucins A
and B (24 and 25), were isolated from the endophytic fungus A. chevalieri SQ-8 (Figure 4).
Asperglaucins A and B showed potent antimicrobial activities against plant pathogens
B. cereus and Pseudomonas syringae pv actinidae (Psa), with an MIC value of 6.25 µM. Further
analysis showed that asperglaucins A and B may change the external structure of B. cereus
and Psa and cause cell membrane rupture or deformation. The results indicated that
asperglaucins A and B may be potential lead compounds of pesticide fungicides [58].

Mar. Drugs 2023, 21, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 4. Compounds of Aspergillus sp. derived from algae. 

2.5. Aspergillus sp. from Corals and Their Antimicrobial Activities 

Three known metabolites, including demethylincisterol A2 (29), asperophiobolin E 

(30) and butyrolactone I (31), were isolated and identified from the soft coral fungus A. 

hiratsukae SCSIO 5Bn1003 (Figure 5). Compounds 29–31 showed potent antibacterial ac-

tivity against B. subtilis, with MIC values of 10.26 ± 0.76, 17.00 ± 1.25 and 5.30 ± 0.29 μM. 

Meanwhile, asperophiobolin E and butyrolactone I showed weak activity against S. au-

reus, with MIC values of 102.86 ± 4.50 and 59.54 ± 0.50 μM, respectively [61]. 

Five new antimicrobial α-pyranone methterpenoids H-L (32–36) and one known 

antimicrobial compound, namely neoechinulin A (37), were isolated from A. hiratsukae 

SCSIO 7S2001, a fungus derived from ophiophora coral. Methterpenoids H-L and neoe-

chinulin A showed varying degrees of antibacterial activity, with MIC values of 6.25–100 

μg/mL. The MIC values of methterpenoid H were 6.25 μg/mL for Micrococcus lutea 01, 

MRSA, and Streptococcus faecalis; that of methterpenoid I was 6.25 μg/mL for MRSA; that 

of methterpenoid G was 12.5 μg/mL for MRSA; that of methterpenoid K was 6.25 μg/mL 

for Klebsiella pneumoniae; that of methterpenoid L was 12.5 μg/mL for M. lutea, S. faecalis 

and MRSA; and that of neoechinulin A was 12.5 μg/mL for S. faecalis. [62]. 

Two butenolides, including versicolactone B (38) and butyrolactone VI (39), were 

isolated from Aspergillus terreus SCSIO41404, a fungus derived from coral. Versicolactone 

B and butyrolactone VI showed weak antibacterial activity against Enterococcus faecalis 

and K. pneumoniae with IC50 values of 25 and 50 μg/mL, respectively [63]. 

Six chlorinated polyketones were isolated from the coral fungus A. unguis GXIMD 

02505 in the Beibu Gulf. These polyketones included aspergillusethers J and F (40 and 41), 

nornidulin (42), aspergillusidones B and C (43 and 44) and 1-(2, 

6-dihydroxy-4-methoxy-3, 5-dimethylphenyl)- 2-methylbutan-1-one (45). Compounds 

40–45 exhibited inhibitory activities against marine biofilm-forming bacteria, Marinobac-

terium jannaschii, MRSA, Microbulbifer variabilis and Vibrio pelagius, with MIC values 

ranging from 2 to 64 μg/mL [64]. 

Five antimicrobial cyclic lipopeptides, namely maribasins C-E (46–48) and mari-

basins A and B (49 and 50), were isolated from the marine fungus Aspergillus sp. SCSIO 

41501. These compounds showed strong antifungal activities against five plant patho-

genic fungi, with MIC values ranging from 3.12 to 50 μg/disc [34]. 

In conclusion, coral-derived Aspergillus and its active metabolites were summarized. 

Twenty-two antimicrobial compounds were found in five fungi strains of coral origin. It 

was a relatively large variety of compounds compared with Aspergillus from other ori-

gins. Most of the compounds had a wide antimicrobial spectrum against different bacte-

ria and fungi. 

Figure 4. Compounds of Aspergillus sp. derived from algae.

Two new diketopiperazines, namely versiamide A (26) and 3, 15-dehydroprotuboxepin
K (27), were isolated from endophytic fungus A. creber EN-602 obtained from the marine
red algae Rhodomela confervoides. Versiamide A and 3, 15-dehydroprotuboxepin K showed
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inhibitory activities against a variety of aquatic bacteria, with MIC values ranging from
8 to 64 µg/mL. Versiamide A showed antibacterial activity against Aeromonas hydrophila,
E. coli, Micrococcus luteus and P. aeruginosa, with MIC values of 64, 16, 64 and 64 µg/mL. 3,
15-dehydroprotuboxepin K showed antibacterial activity against E. tarda, E. coli, M. luteus,
P. aeruginosa and V. harveyi, with MIC values of 64, 8, 16, 32 and 64 µg/mL [59].

An antibacterial terpenoid, namely terretonin F (28), were isolated from the Aspergillus
sp. RR-YLW12, which derived from marine red algae R. confervoide. Terretonin F showed
significant inhibitory activities against Chattonella marina, Heterosigma akashiwo and Proro-
centrum donghaiense, with IC50 values of 3.1, 5.2 and 10.5 µg/mL, respectively [60].

In conclusion, Aspergillus species from marine algae and active metabolites were
summarized. Five antimicrobial compounds were found in three fungi strains of algae
origin. It should be noted that asperglaucins A and B (24 and 25) showed a strong inhibitory
effect on B. cereus. The possible bacteriostatic mechanism of the compounds was also
introduced. At present, the studies on the structure and biological activity of compounds
are abundant, but the studies on the mechanism of biological activity are limited.

2.5. Aspergillus sp. from Corals and Their Antimicrobial Activities

Three known metabolites, including demethylincisterol A2 (29), asperophiobolin E (30)
and butyrolactone I (31), were isolated and identified from the soft coral fungus A. hiratsukae
SCSIO 5Bn1003 (Figure 5). Compounds 29–31 showed potent antibacterial activity against
B. subtilis, with MIC values of 10.26 ± 0.76, 17.00 ± 1.25 and 5.30 ± 0.29 µM. Meanwhile,
asperophiobolin E and butyrolactone I showed weak activity against S. aureus, with MIC
values of 102.86 ± 4.50 and 59.54 ± 0.50 µM, respectively [61].

Five new antimicrobial α-pyranone methterpenoids H-L (32–36) and one known an-
timicrobial compound, namely neoechinulin A (37), were isolated from A. hiratsukae SCSIO
7S2001, a fungus derived from ophiophora coral. Methterpenoids H-L and neoechinulin
A showed varying degrees of antibacterial activity, with MIC values of 6.25–100 µg/mL.
The MIC values of methterpenoid H were 6.25 µg/mL for Micrococcus lutea 01, MRSA, and
Streptococcus faecalis; that of methterpenoid I was 6.25 µg/mL for MRSA; that of methter-
penoid G was 12.5 µg/mL for MRSA; that of methterpenoid K was 6.25 µg/mL for Klebsiella
pneumoniae; that of methterpenoid L was 12.5 µg/mL for M. lutea, S. faecalis and MRSA;
and that of neoechinulin A was 12.5 µg/mL for S. faecalis. [62].

Two butenolides, including versicolactone B (38) and butyrolactone VI (39), were
isolated from Aspergillus terreus SCSIO41404, a fungus derived from coral. Versicolactone B
and butyrolactone VI showed weak antibacterial activity against Enterococcus faecalis and
K. pneumoniae with IC50 values of 25 and 50 µg/mL, respectively [63].

Six chlorinated polyketones were isolated from the coral fungus A. unguis GXIMD
02505 in the Beibu Gulf. These polyketones included aspergillusethers J and F (40 and 41),
nornidulin (42), aspergillusidones B and C (43 and 44) and 1-(2, 6-dihydroxy-4-methoxy-
3, 5-dimethylphenyl)- 2-methylbutan-1-one (45). Compounds 40–45 exhibited inhibitory
activities against marine biofilm-forming bacteria, Marinobacterium jannaschii, MRSA, Mi-
crobulbifer variabilis and Vibrio pelagius, with MIC values ranging from 2 to 64 µg/mL [64].

Five antimicrobial cyclic lipopeptides, namely maribasins C-E (46–48) and maribasins
A and B (49 and 50), were isolated from the marine fungus Aspergillus sp. SCSIO 41501.
These compounds showed strong antifungal activities against five plant pathogenic fungi,
with MIC values ranging from 3.12 to 50 µg/disc [34].

In conclusion, coral-derived Aspergillus and its active metabolites were summarized.
Twenty-two antimicrobial compounds were found in five fungi strains of coral origin. It was
a relatively large variety of compounds compared with Aspergillus from other origins. Most
of the compounds had a wide antimicrobial spectrum against different bacteria and fungi.
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2.6. Aspergillus sp. Derived from Sponges and Their Antimicrobial Activities

One hydroxypyrrolidine alkaloid preussin (51) was isolated and identified from ma-
rine sponge-related fungus A. candius KUFA 0062 (Figure 6). Preussin showed inhibi-
tion against vancomycin-resistant Enterococcus (VRE) and MRSA, as well as E. faecalis
ATCC29212 and S. aureus ATCC 29213 [65].

Four antimicrobial compounds were isolated from the marine sponge-derived fungus
Aspergillu flavus KUFA1152. These compounds were aspulvinones B’, H, R and S (52–55).
Aspulvinones B’, H, R and S showed antibacterial activity against some multidrug-resistant
strains isolated from the environment, and inhibited the biofilm formation of strains.
Aspulvinones B’ and H displayed activity with MIC values of 16 µg/mL for the S. aureus,
and for E. faecalis, MIC values ranged from 16 to 64 µg/mL. Aspulvinones R and S exhibited
the potent activity against all Gram-positive strains tested, with MIC values ranging from
4 to 16 µg/mL for S. aureus and E. faecalis, and from 8 to 16 µg/mL for the VRE and
MRSA [66].
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The endophytic fungus A. niger L14 has been chemically studied, and two dimers,
naphtho-γ-pyrone, fonsecinone A (56) and isoaurasperone A (57), have been isolated.
These compounds had obvious inhibitory effects on human pathogenic bacteria Helicobacter
pylori 159 and G27 with MIC values ≤ 4 µg/mL, comparable to the antibacterial effect of
ampicillin sodium [67].

One antimicrobial compound, namely dizinc hydroxy-neotriamycin (58), was iso-
lated from the sponge-related fungus A. ochraceopetaliformis SCSIO 41018. Dizinchydrox-
yneoaspergillin showed potent inhibition against MRSA, Acinetobacter baumannii, E. fae-
calis, Staphyloccocus aureus and Klebsiella pneumonia, with MIC values ranging from 0.45 to
7.8 µg/mL [68].

Two new chlorinated biphenyls, including aspergetherins A and C (59 and 60), and
two known biphenyl derivatives, including methyl 3, 5-dichloroasterric acid (61) and
methyl chloroasterrate (62), were isolated from a marine sponge symbiotic fungus A. terreus
164018. The antibacterial activity of these compounds against MRSA was evaluated, with
MIC values ranging from 1.0 to 128 µg/mL. Notably, compound 61 had obvious inhibitory
effects on two different MRSA strains, with MIC values of 1 and 16 µg/mL [69].

Chemical studies of the natural compounds of the marine fungus Aspergillus sp. LS57
had resulted in the isolation of aspergilluone A (63). The MIC value of aspergilluone A was
32 µg/mL against Mycobacterium tuberculosis, 64 µg/mL against S. aureus, and 128 µg/mL
against both Gram-positive B. subtilis and Gram-negative E. coli [70].



Mar. Drugs 2023, 21, 277 8 of 17

Two novel tetracyclic skeleton alkaloids were isolated from Aspergillus sp. LS116,
which were perinadines B and C (64 and 65). Perinadines B and C showed moderate
antibacterial activity for B. subtilis with MIC values of 32 and 64 µg/mL [71].

In conclusion, Aspergillus and its active metabolites of sponge were summarized in
this paper. Sponges are the most primitive marine animals with a large number of mi-
croorganisms, which are important sources of active natural products. Fifteen antibacterial
compounds were found in seven fungi strains derived from sponge. Aspergillus derived
from sponge was the source of antimicrobial compounds. Most of the compounds had a
wide antimicrobial spectrum against a variety of bacteria and fungi. Hydroxy-neotriamycin
(58) had a strong bacteriostatic effect on a variety of bacterial pathogens.

2.7. Aspergillus sp. from Seawater and Their Antimicrobial Activities

Nine antimicrobial compounds were isolated from marine fungus A. fumigatus H22.
These compounds included 12,13-dihydroxyfumitremorgin C (66), fumitremorgin B (67), 13-
oxofumitremorgin B (68), fumagillin (69), helvolic acid (70), 6-O-propionyl-16-O-
deacetylhelvolic acid (71), 16-O-propionyl-6-O-deacetylhelvolic acid (72), penibenzophe-
none E (73) and sulochrin (74) (Figure 7). Compounds 66 and 68 showed potent antibacterial
activity, and 69–74 exhibited strong anti-MRSA activity with MIC values between 1.25 and
2.5 µM. Additionally, compound 66 showed moderate inhibitory activity against Mycobac-
terium Bovis, with an MIC value of 25 µM, and compound 67 showed moderate inhibitory
activity against C. albicans, with an MIC value of 50 µM [72].
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Three novel phenolic polyketones, namely unguidepside C (75), aspersidone B (76)
and agonodepside C (77), were isolated from A. unguis. These compounds showed a strong
activity against Gram-positive bacteria, with MIC ranging from 5.3 to 22.1 µM [73].

Five novel dimeric tetrahydroxanthones, including aculeaxanthones A-E, were ex-
tracted from the marine fungus A. aculeatinus WHUF0198. Among them, only aculeax-
anthone A (78) showed activity against B. subtilis 168, S. aureus USA300, H. pylori 159,
H. pylori 129, H. pylori 26695 and H. pylori G27, with MIC values of 1.0, 2.0, 2.0, 2.0, 4.0 and
4.0 µg/mL, respectively [74].

In conclusion, Aspergillus and its active metabolites from seawater were summarized.
Thirteen antimicrobial compounds were found in three fungi strains derived from seawater.
Compounds 69–74 exhibited strong anti-MRSA activity and aculeaxanthone A (78) showed
strong anti-bacterial pathogen activity.
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2.8. Aspergillus sp. from Marine Sediments and Their Antimicrobial Activities

Six known compounds, including cyclopiamide (79), speradine H (80), speradine G
(81), speradine B (82), speradine C (83) and cyclopiazonic acid (CPA) (84), were isolated
from A. flavus SCSIO F025 from deep-sea sediments in the South China Sea (Figure 8).
Compounds 79–84 showed weak antibacterial activity against E. coli, and CPA also exhib-
ited strong antibacterial activity against MRSA, B. subtilis, S. aureus, M. luteus and Bacillus
thuringiensis [75].
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Five novel antibacterial metabolites and one known antibacterial compound were all
isolated from the deep-sea sediment-derived fungus A. fumigatus SD-406. The novel metabo-
lites included secofumitremorgins A and B (85a and 85b), 29-hydroxyfumiquinazoline C
(86), 10R-15-methylpseurotin A (87), 1,4,23-trihydroxy-hopan-22,30-diol (88) and sphin-
gofungin I (89), and one known cyclotryprostatin B (90). Compounds 85–90 exhibited
inhibitory activities against pathogenic bacteria and plant pathogenic fungi, with MIC
values of 4–64 µg/mL [76].

One new metabolite, namely 3, 5-dimethylorsellinic acid-based meroterpenoid (91),
was isolated from the deep-sea fungus Aspergillus sp. CSYZ-1. Compound 91 showed
strong antimicrobial activity against S. aureus and H. pylori, with MIC values of 2–16 and
1–4 µg/mL, respectively [77].

Two novel antibacterial metabolites, including aspergiloxathene A (92) and ∆2′ -1′-
dehydropenicillide (93) and one known antibacterial compound, namely dehydropeni-
cillide (94), were isolated from Aspergillus sp. IMCASMF180035. Aspergiloxathene A
exhibited significant inhibition against MRSA and S. aureus, with MIC values of 22.40 and
5.60 µM. Dehydropenicillide and ∆2′ -1′-dehydropenicillide showed potent antibacterial
activities against H. pylori, with MIC values of 21.61 and 21.73 µM, respectively [30].

One alkaloid asperthrin A (95) had been isolated from the marine endophytic fungus
Aspergillus sp. YJ191021. The isolated compound had inhibitory effects on Rhizoctonia solani,
Xanthomonas oryzae pv. Oryzicola and Vibrio anguillarum, with MIC values of 25, 12.5 and
8 µg/mL, respectively [78].

Three antimicrobial compounds were isolated from the fermented extracts of As-
pergillus sp. WHUF05236. They included 6,8-di-O-methylversicolorin A (96), 6,8,1′-tri-
O-methylaverantin (97) and 6,8-di-O-methylaverantin (98). They exhibited antibacterial
activity against H. pylori, with MIC values ranging from 20.00 to 43.47 µM [79].

In conclusion, Aspergillus and its active metabolites from marine sediments were
summarized. Twenty antimicrobial compounds were found in six Aspergillus strains from
marine sediments. According to the literature, more than fifty antimicrobial compounds
were produced by Aspergillus from marine sediments between 2018 and 2020. Therefore,
marine sediments are an important source of secondary metabolites of fungi. Among them,
compound 91 showed strong antimicrobial activity against S. aureus and H. pylori.

Sources and activities of compounds from marine Aspergillus were summarized in
Table 1. We classified fungi and compounds according to Aspergillus origin.

Table 1. Sources and activities of compounds from marine Aspergillus.

Sources and Aspergillus Compounds Activities References

Marine animals

A. fumigatus HX-1 Trypacidin (1) MIC (anti-V. harveyi) was
31.25 µg/mL [52]

Aspergillus sp. DY001 Asperopiperazines A, B (2, 3) MIC (anti-E. coli) were 8 and 4 µM
MIC (anti-S. aureus) were 8 and 8 µM [53]

Marine plants

A. alabamensis
4-hydroxy-5(6)-

dihydroterrecyclic acid A (4),
asperalacids A–D (5–8)

MIC (anti-plant pathogens) was
25–200 µg/mL [54]

A. alabamensis asperalins A–F (9–14) MIC (anti-fish pathogens) was
2.2–87.3 µM [55]
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Table 1. Cont.

Sources and Aspergillus Compounds Activities References

Mangroves

A. brunneoviolaceus MF180246

asperbrunneo acid (15),
secalonic acids H, F1 (16, 18),

chrysoxanthone C (17),
asperdichrome (19),

penicillixanthone A (20)

MIC (anti-S. aureus) were 200, 50, 50,
25, 25, 6.25 µg/mL [27]

A. candius LDJ-5 asperterphenyllin C (21) MIC (anti-Proteus sp.) was 19 µg/mL [56]

A. flavus QQYZ aflatoxones A, B (22, 23) MIC (anti-pathogens) was 3.13–50 µM [57]

Marine algaes

A. chevalieri SQ-8 asperglaucins A, B (24, 25) MIC (anti-plant pathogens) was
6.25 µM [58]

A. creber EN-602 versiamide A (26), 3,
15-dehydroprotuboxepin K (27) MIC (anti-bacteria) was 8–64 µg/mL [59]

Aspergillus sp. RR-YLW12 terretonin F (28) IC50 (anti-three microalgae) were 3.1,
5.2, 10.5 µg/mL [60]

Marine corals

A. hiratsukae SCSIO 5Bn1003
demethylincisterol A2 (29),

asperophiobolin E (30),
butyrolactone I (31)

MIC (anti-B. subtilis) were
10.26 ± 0.76, 17.00 ± 1.25 and

5.30 ± 0.29 µM
[61]

A. hiratsukae SCSIO 7S2001 methterpenoids H-L (32–36)
neoechinulin A (37)

MIC (anti-bacteria) was
6.25–100 µg/mL [62]

A. terreus SCSIO41404 versicolactone B (38),
butyrolactone VI (39)

IC50 (anti-E. faecalis, K. pneumoniae)
were 25 and 50 µg/mL [63]

A. unguis GXIMD 02505 40–45 MIC (anti-bacteria) was 2–64 µg/mL [64]

Aspergillus sp. SCSIO 41501 maribasins C–E,A,B (46–50) MIC (anti-plant pathogens) was
3.12–50 µg/disc [34]

Sponges

A. candius KUFA 0062 preussin (51) anti-pathogens [65]

A. flavipes KUFA1152 aspulvinones B’, H, R and S
(52–55)

MIC (anti-pathogens) was
16–64 µg/mL [66]

A. niger L14 fonsecinone A (56),
isoaurasperone A (57) MIC (anti-H. pylori) was ≤4 µg/mL [67]

A. ochraceopetaliformis
SCSIO 41018 hydroxy-neotriamycin (58) MIC (anti-pathogens) was

0.45–7.8 µg/mL µM [68]

A. terreus 164018
aspergetherins A, C (59, 60)

3, 5-dichloroasterric acid (61),
methyl chloroasterrate (62)

MIC (anti-MRSA) was
1.0–128 µg/mL [69]

Aspergillus sp. LS57 aspergilluone A (63) MIC (anti-pathogens) was
32–128 µg/mL [70]

Aspergillus sp. LS116 perinadines B, C (64, 65) MIC (anti-B. subtilis) were 32 and
64 µg/mL [71]
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Table 1. Cont.

Sources and Aspergillus Compounds Activities References

Seawater

A. fumigatus H22
12,13-dihydroxyfumitremorgin C

(66),
fumitremorgin B (67)

MIC(anti-M. Bovis, C. albicans) were
25 and 50 µM [72]

A. fumigatus H22 (66),13-oxofumitremorgin B (68) antibacterial activity [72]

A. fumigatus H22

fumagillin (69),
helvolic acid (70), 6-O-propionyl-
16-O-deacetylhelvolic acid (71),

16-O-propionyl-6-O-
deacetylhelvolic acid (72),
penibenzophenone E (73),

sulochrin (74)

MIC (anti-MRSA) were 1.25 and 2.5 [72]

A. unguis unguidepside C (75), aspersidone
B (76), agonodepside C (77) MIC (anti-bacteria) was 5.3 to 22.1 µM [73]

A. aculeatinus WHUF0198 aculeaxanthone A (78) MIC (anti-bacteria) was 1.0 to 4.0 µM [74]

Marine sediments

A. flavus SCSIO F025 cyclopiamide (79), speradines
G,H,B,C (80–83), CPA (84) weak anti-bacteria [75]

A. fumigatus SD-406 85–90 MIC (anti-bacteria and plant
pathogens) were 4–64 µg/mL [76]

Aspergillus sp. CSYZ-1 meroterpenoid (91) MIC (anti-S. aureus, H. pylori) were
2–16 and 1–4 µg/mL [77]

Aspergillus sp.
IMCASMF180035 aspergiloxathene A (92) MIC (anti-MRSA, S. aureus) were

22.40 and 5.60 µM [30]

Aspergillus sp.
IMCASMF180035

∆2′ -1′-dehydropenicillide (93),
dehydropenicillide (94)

MIC (anti-H. pylori) were 21.61 and
21.73 µM [30]

Aspergillus sp. YJ191021 asperthrins A (95) MIC (anti-plant pathogens) was
8–25µg/mL [78]

Aspergillus sp. WHUF05236

6, 8-di-O-methylversicolorin A
(96), 6,8,1′-tri-O-methylaverantin

(97),
6,8-di-O-methylaverantin (98)

MIC (anti-H. pylori) was 20.00 to
43.47 µM [79]

In recent years, marine fungi have attracted the attention of researchers due to their
bioactive compounds [10,44,46,80–85]. Combined with a series of previous excellent litera-
ture reviews, we conducted a comprehensive literature review of antibacterial compounds
produced by Aspergillus fungi of different marine origin during the period of 2021–2023.
The reported numbers of Aspergillus from marine animals, plants, mangroves, seagrasses,
coral, sponge, seawater and marine sediment are shown in Figure 9. The most Aspergillus
was derived from sponges, accounting for 23.30%. Aspergillus derived from marine coral
was found in the second place, accounting for 16.7%.
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We summarized ninety-eight antibacterial compounds from Aspergillus strains iso-
lated from different marine sources (Figure 10). Among them, twenty-two antimicrobial
compounds were found in marine corals from January 2021 to March 2023. Marine sedi-
ments had the next highest number of antimicrobial compounds, with twenty compounds.
Therefore, in recent years, the antimicrobial compounds of Aspergillus from marine sources
mainly came from marine corals and marine sediments. Marine natural products are rich
in species and play an obvious role in the treatment of pathogen infections [86–92]. More
and more novel compounds with different chemical structures and biological activities are
being discovered [48,93–99].
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Figure 10. The proportion of Aspergillus compounds from different marine sources.

3. Conclusions

This review describes antimicrobial compounds from Aspergillus species during Jan-
uary 2021 to March 2023. Ninety-eight compounds derived from Aspergillus species were
described. Only three compounds with antimicrobial activities are found from marine
animals (except sponges and corals). Twenty-two antimicrobial compounds were found
in five fungi strains of coral origin. Fifteen antibacterial compounds were found in seven
fungi strains derived from sponge. Most of these thirty-seven compounds had a wide
antimicrobial spectrum against a variety of bacteria and fungi. Except for the compounds
derived from coral and sponge, most of the compounds from other sources showed an-
tibacterial activity, but no fungal inhibitory activity. Most of the compounds had inhibitory
effects on S. aureus. Some compounds exhibited inhibitory effects on E. coli and B. subtilis.
Among them, compound 91 showed strong antimicrobial activity against H. pylori. These
active compounds have potential applications in bacterial and fungal infections and will
provide reference for the development of novel anti-infective drugs.
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