Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications
Abstract
:1. Introduction
2. Optical Properties of Carbon Quantum Dots (CQDs)
2.1. Absorbance Properties
2.2. Photoluminescence Properties
2.3. Quenching Mechanism
2.4. Quantum Yield
3. Marine Polysaccharides Precursors for the Synthesis of CQDs
3.1. Polysaccharides Extracted from Marine Algae
3.1.1. Carrageenan
3.1.2. Agarose
3.1.3. Sodium Alginate
3.1.4. Other CQDs Derived from Algae Polysaccharides
3.2. Polysaccharides Extracted from the Exoskeletons of Crustaceans
3.2.1. Chitin
3.2.2. Chitosan
3.3. Polysaccharides Extracted from Fish and Other Marine Animals
4. Processing Routes of Marine Polysaccharide-Based CQDs
4.1. Hydrothermal Carbonization
4.2. Microwave-assisted-hydrothermal Synthesis
4.3. Other Processing Routes
5. Applications
5.1. Drug Delivery
5.2. Bioimaging
5.3. Biosensing
5.4. Sensing
5.5. Food
6. Future Perspective
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, S.; Galan, M.C. Fluorescent Carbon Dots from Mono- and Polysaccharides: Synthesis, Properties and Applications. Beilstein J. Org. Chem. 2017, 13, 675–693. [Google Scholar] [CrossRef]
- Pérez-López, B.; Merkoçi, A. Nanomaterials Based Biosensors for Food Analysis Applications. Trends Food Sci. Technol. 2011, 22, 625–639. [Google Scholar] [CrossRef]
- Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of Nanomaterials in Agricultural Production and Crop Protection: A Review. Crop Prot. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, B.; Chen, Y.; Guo, L.; Wei, G. Carbon Nanofiber-Based Three-Dimensional Nanomaterials for Energy and Environmental Applications. Mater. Adv. 2020, 1, 2163–2181. [Google Scholar] [CrossRef]
- Zhang, M.; Song, W.; Tang, Y.; Xu, X.; Huang, Y.; Yu, D. Polymer-Based Nanofiber–Nanoparticle Hybrids and Their Medical Applications. Polymers 2022, 14, 351. [Google Scholar] [CrossRef]
- Kasaai, M.R. Biopolymer-Based Nanomaterials for Food, Nutrition, and Healthcare Sectors: An Overview on Their Properties, Functions, and Applications. In Handbook of Functionalized Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 167–184. [Google Scholar]
- Kumar, S.S.D.; Rajendran, N.K.; Houreld, N.N.; Abrahamse, H. Recent Advances on Silver Nanoparticle and Biopolymer-Based Biomaterials for Wound Healing Applications. Int. J. Biol. Macromol. 2018, 115, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Haponiuk, J.T.; Thomas, S.; Gopi, S. Biopolymer Based Nanomaterials in Drug Delivery Systems: A Review. Mater. Today Chem. 2018, 9, 43–55. [Google Scholar] [CrossRef]
- Caires, A.J.; Mansur, A.A.P.; Carvalho, I.C.; Carvalho, S.M.; Mansur, H.S. Green Synthesis of ZnS Quantum Dot/Biopolymer Photoluminescent Nanoprobes for Bioimaging Brain Cancer Cells. Mater. Chem. Phys. 2020, 244, 122716. [Google Scholar] [CrossRef]
- De Barros, A.; Braunger, M.L.; de Oliveira, R.F.; Ferreira, M. Sensing Materials: Functionalized Advanced Carbon-Based Nanomaterials. Encycl. Sens. Biosens. 2023, 2, 254–268. [Google Scholar] [CrossRef]
- Chandel, H.; Wang, B.; Verma, M.L. Nanomaterial-Based Fluorescent Biosensors for Monitoring Environmental Pollutants. Encycl. Sens. Biosens. 2023, 4, 742–754. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, I.; Bera, M.K. Microwave-Assisted Green Synthesis of Carbon Quantum Dots Derived from Calotropis Gigantea as a Fluorescent Probe for Bioimaging. J. Fluoresc. 2022, 32, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A.M. Polysaccharides, Protein and Lipid-Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef]
- Mahmud, N.; Islam, J.; Tahergorabi, R. Marine Biopolymers: Applications in Food Packaging. Processes 2021, 9, 2245. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.L.; Kumar, A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef]
- Jing, X.; Sun, Y.; Ma, X.; Hu, H. Marine Polysaccharides: Green and Recyclable Resources as Wound Dressings. Mater. Chem. Front. 2021, 5, 5595–5616. [Google Scholar] [CrossRef]
- Iacob, A.-T.; Drăgan, M.; Ionescu, O.-M.; Profire, L.; Ficai, A.; Andronescu, E.; Confederat, L.G.; Lupașcu, D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020, 12, 983. [Google Scholar] [CrossRef] [PubMed]
- Yosri, N.; Khalifa, S.A.M.; Guo, Z.; Xu, B.; Zou, X.; El-Seedi, H.R. Marine Organisms: Pioneer Natural Sources of Polysaccharides/Proteins for Green Synthesis of Nanoparticles and Their Potential Applications. Int. J. Biol. Macromol. 2021, 193, 1767–1798. [Google Scholar] [CrossRef]
- Can, M.; Sahiner, N. A Facile One-Pot Synthesis of Microgels and Nanogels of Laminarin for Biomedical Applications. J. Colloid. Interface Sci. 2021, 588, 40–49. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Chowdhuri, A.R.; Singh, T.; Ghosh, S.K.; Sahu, S.K. Carbon Dots Embedded Magnetic Nanoparticles @Chitosan @Metal Organic Framework as a Nanoprobe for PH Sensitive Targeted Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2016, 8, 16573–16583. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, W.; Wang, Y.; Cao, X.; Chen, J.; Wang, Q.; Xu, W.; Du, P.; Yu, Q.; Chen, J.; et al. Cationic Carbon Quantum Dots Derived from Alginate for Gene Delivery: One-Step Synthesis and Cellular Uptake. Acta Biomater. 2016, 42, 209–219. [Google Scholar] [CrossRef]
- Kurian, M.; Paul, A. Recent Trends in the Use of Green Sources for Carbon Dot Synthesis—A Short Review. Carbon Trends 2021, 3, 100032. [Google Scholar] [CrossRef]
- Mu, X.; Jiang, X.; Zhang, Y.; Liu, X.; Zhang, S.; Wang, W.; Huang, Y.; Ma, P.; Song, D. Sensitive Ratiometric Fluorescence Probe Based on Chitosan Carbon Dots and Calcein for Alkaline Phosphatase Detection and Bioimaging in Cancer Cells. Anal. Chim. Acta 2021, 1188, 339163. [Google Scholar] [CrossRef]
- Harish, R.; Nisha, K.D.; Prabakaran, S.; Sridevi, B.; Harish, S.; Navaneethan, M.; Ponnusamy, S.; Hayakawa, Y.; Vinniee, C.; Ganesh, M.R. Cytotoxicity Assessment of Chitosan Coated CdS Nanoparticles for Bio-Imaging Applications. Appl. Surf. Sci. 2020, 499, 143817. [Google Scholar] [CrossRef]
- Jiang, Q.; Jing, Y.; Ni, Y.; Gao, R.; Zhou, P. Potentiality of Carbon Quantum Dots Derived from Chitin as a Fluorescent Sensor for Detection of ClO−. Microchem. J. 2020, 157, 105111. [Google Scholar] [CrossRef]
- Feng, Y.; Li, R.; Zhou, P.; Duan, C. Non-Toxic Carbon Dots Fluorescence Sensor Based on Chitosan for Sensitive and Selective Detection of Cr (VI) in Water. Microchem. J. 2022, 180, 107627. [Google Scholar] [CrossRef]
- Soley, S.S. Carbon Quantum Dots: Carbon Quantum Dots: Synthesis and Optronics Applications. IJAEMS 2017, 1, 121–124. [Google Scholar]
- Pawar, S.; Togiti, U.K.; Bhattacharya, A.; Nag, A. Functionalized Chitosan–Carbon Dots: A Fluorescent Probe for Detecting Trace Amount of Water in Organic Solvents. ACS Omega 2019, 4, 11301–11311. [Google Scholar] [CrossRef] [PubMed]
- Molaei, M.J. The Optical Properties and Solar Energy Conversion Applications of Carbon Quantum Dots: A Review. Sol. Energy 2020, 196, 549–566. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Q.; Liu, M.; Chen, X.; Lin, H.; Zheng, Z.; Zhu, J.; Dai, C.; Dong, X.; Yang, D.-P. Carbon Dots Enhanced Gelatin/Chitosan Bio-Nanocomposite Packaging Film for Perishable Foods. Chin. Chem. Lett. 2022, 33, 4577–4582. [Google Scholar] [CrossRef]
- Nallayagari, A.R.; Sgreccia, E.; Pizzoferrato, R.; Cabibbo, M.; Kaciulis, S.; Bolli, E.; Pasquini, L.; Knauth, P.; Vona, M.L. Di Tuneable Properties of Carbon Quantum Dots by Different Synthetic Methods. J. Nanostruct. Chem. 2022, 12, 565–580. [Google Scholar] [CrossRef]
- Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging. Angew. Chem. 2015, 127, 5450–5453. [Google Scholar] [CrossRef]
- Jones, S.S.; Sahatiya, P.; Badhulika, S. One Step, High Yield Synthesis of Amphiphilic Carbon Quantum Dots Derived from Chia Seeds: A Solvatochromic Study. New J. Chem. 2017, 41, 13130–13139. [Google Scholar] [CrossRef]
- Wu, Z.L.; Zhang, P.; Gao, M.X.; Liu, C.F.; Wang, W.; Leng, F.; Huang, C.Z. One-Pot Hydrothermal Synthesis of Highly Luminescent Nitrogen-Doped Amphoteric Carbon Dots for Bioimaging from Bombyx Mori Silk–Natural Proteins. J. Mater. Chem. B 2013, 1, 2868–2873. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Suryawanshi, A.; Kumawat, B.; Dandia, A.; Guin, D.; Ogale, S.B. Starch (Tapioca) to Carbon Dots: An Efficient Green Approach to an on–off–on Photoluminescence Probe for Fluoride Ion Sensing. Analyst 2015, 140, 1837–1841. [Google Scholar] [CrossRef] [PubMed]
- Azizi, B.; Farhadi, K.; Samadi, N. Functionalized Carbon Dots from Zein Biopolymer as a Sensitive and Selective Fluorescent Probe for Determination of Sumatriptan. Microchem. J. 2019, 146, 965–973. [Google Scholar] [CrossRef]
- Helbert, W. Marine Polysaccharide Sulfatases. Front. Mar. Sci. 2017, 4, 1–10. [Google Scholar] [CrossRef]
- Hammi, N.; Chen, S.; Dumeignil, F.; Royer, S.; El Kadib, A. Chitosan as a Sustainable Precursor for Nitrogen-Containing Carbon Nanomaterials: Synthesis and Uses. Mater. Today Sustain. 2020, 10, 100053. [Google Scholar] [CrossRef]
- Chauhan, P.; Saini, J.; Chaudhary, S. Agarose Waste Derived Toxicologically Screened Carbon Dots as Dual Sensor: A Mechanistic Insight into Luminescence and Solvatochromic Behaviour. Nano-Struct. Nano-Objects 2020, 24, 100585. [Google Scholar] [CrossRef]
- Kim, K.W.; Choi, T.-Y.; Kwon, Y.M.; Kim, J.Y.H. Simple Synthesis of Photoluminescent Carbon Dots from a Marine Polysaccharide Found in Shark Cartilage. Electron. J. Biotechnol. 2020, 47, 36–42. [Google Scholar] [CrossRef]
- Leuterio, J.C.; Camacho, D.H.; Bantang, J.P.O.; Argamino, C.R.A. Influence of Precursor Chemistry in the Property of Carbon Nanodots and Its Application for the Degradation of Methyl Orange. Mater. Chem. Phys. 2022, 278, 125668. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L.; Yan, Y.; Li, S.; Yu, S.; Wang, J.; Huang, L. Chitosan-Derived Carbon Dots with Room-Temperature Phosphorescence and Energy Storage Enhancement Properties. ACS Sustain. Chem. Eng. 2022, 10, 3027–3036. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, A.C.H.; Yang, X.; Lee, S.-T. Water-soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem. Int. Ed. 2010, 49, 4430–4434. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Dong, T. Photoluminescence Tuning in Carbon Dots: Surface Passivation or/and Functionalization, Heteroatom Doping. J. Mater. Chem. C Mater. 2018, 6, 7944–7970. [Google Scholar] [CrossRef]
- Liu, G.; Li, B.; Liu, Y.; Feng, Y.; Jia, D.; Zhou, Y. Rapid and High Yield Synthesis of Carbon Dots with Chelating Ability Derived from Acrylamide/Chitosan for Selective Detection of Ferrous Ions. Appl. Surf. Sci. 2019, 487, 1167–1175. [Google Scholar] [CrossRef]
- Albani, J.R. Fluorescence Quenching. In Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies; Elsevier Science: Amsterdam, The Netherlands, 2004; pp. 141–192. [Google Scholar]
- Preethi, M.; Viswanathan, C.; Ponpandian, N. Fluorescence Quenching Mechanism of P-Doped Carbon Quantum Dots as Fluorescent Sensor for Cu2+ Ions. Colloids Surf. A Phys. Eng. Asp. 2022, 653, 129942. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Zhao, L.; Sun, L.; Zhao, X.; Xia, Y. κ-Carrageenan-Derived Carbon Dots for Highly Selective and Sensitive Detection of Fe3+ and Oxytetracycline. J. Mater. Sci. 2021, 56, 1272–1285. [Google Scholar] [CrossRef]
- Fong, J.F.Y.; Ng, Y.H.; Ng, S.M. Carbon Dots as a New Class of Light Emitters for Biomedical Diagnostics and Therapeutic Applications. In Fullerens, Graphenes and Nanotubes; Elsevier: Amsterdam, The Netherlands, 2018; pp. 227–295. [Google Scholar]
- Jorns, M.; Pappas, D. A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials 2021, 11, 1448. [Google Scholar] [CrossRef]
- Emam, H.E.; Ahmed, H.B. Antitumor/Antiviral Carbon Quantum Dots Based on Carrageenan and Pullulan. Int. J. Biol. Macromol. 2021, 170, 688–700. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Mondal, S.; Bose, M.; Das, A.K.; Banerjee, S.; Das, N.C. Heteroatom Doped Photoluminescent Carbon Dots for Sensitive Detection of Acetone in Human Fluids. Sens. Actuators B Chem. 2018, 266, 583–593. [Google Scholar] [CrossRef]
- Das, P.; Maity, P.P.; Ganguly, S.; Ghosh, S.; Baral, J.; Bose, M.; Choudhary, S.; Gangopadhyay, S.; Dhara, S.; Das, A.K.; et al. Biocompatible Carbon Dots Derived from κ-Carrageenan and Phenyl Boronic Acid for Dual Modality Sensing Platform of Sugar and Its Anti-Diabetic Drug Release Behavior. Int. J. Biol. Macromol. 2019, 132, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Supchocksoonthorn, P.; Sinoy, M.C.A.; de Luna, M.D.G.; Paoprasert, P. Facile Fabrication of 17β-Estradiol Electrochemical Sensor Using Polyaniline/Carbon Dot-Coated Glassy Carbon Electrode with Synergistically Enhanced Electrochemical Stability. Talanta 2021, 235, 122782. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Bose, M.; Ray, D.; Ghosh, S.; Mondal, S.; Aswal, V.K.; Das, A.K.; Banerjee, S.; Das, N.C. Surface Quaternized Nanosensor as a One-Arrow-Two-Hawks Approach for Fluorescence Turn “on–off–on” Bifunctional Sensing and Antibacterial Activity. New J. Chem. 2019, 43, 6205–6219. [Google Scholar] [CrossRef]
- Suhail, B.; Bajpai, S.K.; Souza, A.D. Microwave Assisted Facile Green Synthesis of Carrageenan Carbon Dots (CDs) and Their Interaction with Hisbiscus Rosa Sinensis Leaf Cells. Int. J. Env. Anal. Chem. 2022, 102, 2697–2713. [Google Scholar] [CrossRef]
- Sun, J.; Yu, J.; Jiang, Z.; Zhao, Z.; Xia, Y. Fluorescent Carbonized Polymer Dots Prepared from Sodium Alginate Based on the CEE Effect. ACS Omega 2020, 5, 27514–27521. [Google Scholar] [CrossRef]
- Atienzar, P.; Primo, A.; Lavorato, C.; Molinari, R.; García, H. Preparation of Graphene Quantum Dots from Pyrolyzed Alginate. Langmuir 2013, 29, 6141–6146. [Google Scholar] [CrossRef]
- Fong, J.F.Y.; Chin, S.F.; Ng, S.M. Facile Synthesis of Carbon Nanoparticles from Sodium Alginate via Ultrasonic-Assisted Nano-Precipitation and Thermal Acid Dehydration for Ferric Ion Sensing. Sens. Actuators B Chem. 2015, 209, 997–1004. [Google Scholar] [CrossRef]
- Chauhan, P.; Chaudhary, S.; Bhasin, K.K. Usage of Agarose Gel Waste for the High Yield Production of Carbon Dots and New Insight into Their Toxicological Screening. Process Biochem. 2021, 102, 229–239. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, H.; Mei, L.; Dou, K.; Jiang, Y.; Sun, Z.; Wang, S.; Hasanin, M.S.; Deng, J.; Zhou, Q. Fucoidan-Derived Carbon Dots against Enterococcus Faecalis Biofilm and Infected Dentinal Tubules for the Treatment of Persistent Endodontic Infections. J. Nanobiotechnol. 2022, 20, 321. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Q.; Zhou, J.; Deng, W.; Yu, Q.; Cao, X.; Wang, J.; Shao, F.; Li, Y.; Ma, P.; et al. Porphyra Polysaccharide-Derived Carbon Dots for Non-Viral Co-Delivery of Different Gene Combinations and Neuronal Differentiation of Ectodermal Mesenchymal Stem Cells. Nanoscale 2017, 9, 10820–10831. [Google Scholar] [CrossRef]
- Singh, S.; Nigam, P.; Pednekar, A.; Mukherjee, S.; Mishra, A. Carbon Quantum Dots Functionalized Agarose Gel Matrix for in Solution Detection of Nonylphenol. Env. Technol. 2020, 41, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Gedda, G.; Lee, C.-Y.; Lin, Y.-C.; Wu, H. Green Synthesis of Carbon Dots from Prawn Shells for Highly Selective and Sensitive Detection of Copper Ions. Sens. Actuators B Chem. 2016, 224, 396–403. [Google Scholar] [CrossRef]
- Naghdi, T.; Atashi, M.; Golmohammadi, H.; Saeedi, I.; Alanezhad, M. Carbon Quantum Dots Originated from Chitin Nanofibers as a Fluorescent Chemoprobe for Drug Sensing. J. Ind. Eng. Chem. 2017, 52, 162–167. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, H.; Wang, Y.; Xiong, Z.; Zhao, X.; Xia, Y. Chitosan-Derived N-Doped Carbon Dots for Fluorescent Determination of Nitrite and Bacteria Imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 251, 119468. [Google Scholar] [CrossRef]
- Su, H.; Wang, J.; Yan, L. Homogeneously Synchronous Degradation of Chitin into Carbon Dots and Organic Acids in Aqueous Solution. ACS Sustain. Chem. Eng. 2019, 7, 18476–18482. [Google Scholar] [CrossRef]
- Shchipunov, Y.A.; Khlebnikov, O.N.; Silant’ev, V.E. Carbon Quantum Dots Hydrothermally Synthesized from Chitin. Polym. Sci. Ser. B 2015, 57, 16–22. [Google Scholar] [CrossRef]
- Gonçalves, H.M.R.; Pereira, R.F.P.; Lepleux, E.; Pacheco, L.; Valente, A.J.M.; Duarte, A.J.; Bermudez, V.Z. Non-Newtonian Thermosensitive Nanofluid Based on Carbon Dots Functionalized with Ionic Liquids. Small 2020, 16, 1907661. [Google Scholar] [CrossRef]
- Feng, M.; Wang, Y.; He, B.; Chen, X.; Sun, J. Chitin-Based Carbon Dots with Tunable Photoluminescence for Fe3+ Detection. ACS Appl. Nano Mater. 2022, 5, 7502–7511. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Xu, F.; Shi, X.; Feng, D.; Wei, D.; Li, Y.; Feng, Y.; Wang, Y.; Jia, D.; et al. High-Yield Synthesis of Strong Photoluminescent N-Doped Carbon Nanodots Derived from Hydrosoluble Chitosan for Mercury Ion Sensing via Smartphone APP. Biosens. Bioelectron. 2016, 79, 1–8. [Google Scholar] [CrossRef]
- Mathew, S.A.; Praveena, P.; Dhanavel, S.; Manikandan, R.; Senthilkumar, S.; Stephen, A. Luminescent Chitosan/Carbon Dots as an Effective Nano-Drug Carrier for Neurodegenerative Diseases. RSC Adv. 2020, 10, 24386–24396. [Google Scholar] [CrossRef]
- Xu, J.; Qi, Q.; Sun, L.; Guo, X.; Zhang, H.; Zhao, X. Green Fluorescent Carbon Dots from Chitosan as Selective and Sensitive “off-on” Probes for Nitrite and “on-off-on” Probes for Enrofloxacin Detection. J. Alloys Compd. 2022, 908, 164519. [Google Scholar] [CrossRef]
- Zattar, A.P.P.; Fajardo, G.L.; de Mesquita, J.P.; Pereira, F.V. Luminescent Carbon Dots Obtained from Chitosan: A Comparison between Different Methods to Enhance the Quantum Yield. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 414–422. [Google Scholar] [CrossRef]
- Ni, Y.; Zhou, P.; Jiang, Q.; Zhang, Q.; Huang, X.; Jing, Y. Room-Temperature Phosphorescence Based on Chitosan Carbon Dots for Trace Water Detection in Organic Solvents and Anti-Counterfeiting Application. Dye. Pigment. 2022, 197, 109923. [Google Scholar] [CrossRef]
- Bera, M.K.; Mohapatra, S. Ultrasensitive Detection of Glyphosate through Effective Photoelectron Transfer between CdTe and Chitosan Derived Carbon Dot. Colloids Surf. A Phys. Eng. Asp. 2020, 596, 124710. [Google Scholar] [CrossRef]
- Zhan, J.; Peng, R.; Wei, S.; Chen, J.; Peng, X.; Xiao, B. Ethanol-Precipitation-Assisted Highly Efficient Synthesis of Nitrogen-Doped Carbon Quantum Dots from Chitosan. ACS Omega 2019, 4, 22574–22580. [Google Scholar] [CrossRef] [PubMed]
- Sonsin, A.F.; Nascimento, S.M.S.; Albuquerque, I.M.B.; Silva, E.C.O.; Rocha, J.C.A.; Oliveira, R.S.; Barbosa, C.D.A.E.S.; Souza, S.T.; Fonseca, E.J.S. Temperature-Dependence on the Optical Properties of Chitosan Carbon Dots in the Solid State. RSC Adv. 2021, 11, 2767–2773. [Google Scholar] [CrossRef]
- Ni, J.; Huang, X.; Bai, Y.; Zhao, B.; Han, Y.; Han, S.; Xu, T.; Si, C.; Zhang, C. Resistance to Aggregation-Caused Quenching: Chitosan-Based Solid Carbon Dots for White Light-Emitting Diode and 3D Printing. Adv. Compos. Hybrid. Mater. 2022, 5, 1865–1875. [Google Scholar] [CrossRef]
- Zhang, D.-W.; Papaioannou, N.; David, N.M.; Luo, H.; Gao, H.; Tanase, L.C.; Degousée, T.; Samorì, P.; Sapelkin, A.; Fenwick, O.; et al. Photoelectrochemical Response of Carbon Dots (CDs) Derived from Chitosan and Their Use in Electrochemical Imaging. Mater. Horiz. 2018, 5, 423–428. [Google Scholar] [CrossRef]
- Liu, X.; Pang, J.; Xu, F.; Zhang, X. Simple Approach to Synthesize Amino-Functionalized Carbon Dots by Carbonization of Chitosan. Sci. Rep. 2016, 6, 31100. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Q.; Zhao, B.; Li, Z.; Zhang, Y.; Huang, L.; Yu, S. Multi-Functionalized Carbon Aerogels Derived from Chitosan. J. Colloid. Interface Sci. 2022, 605, 790–802. [Google Scholar] [CrossRef]
- Gogoi, N.; Barooah, M.; Majumdar, G.; Chowdhury, D. Carbon Dots Rooted Agarose Hydrogel Hybrid Platform for Optical Detection and Separation of Heavy Metal Ions. ACS Appl. Mater. Interfaces 2015, 7, 3058–3067. [Google Scholar] [CrossRef]
- Chowdhury, D.; Gogoi, N.; Majumdar, G. Fluorescent Carbon Dots Obtained from Chitosan Gel. RSC Adv. 2012, 2, 12156. [Google Scholar] [CrossRef]
- Xiao, D.; Yuan, D.; He, H.; Lu, J. Microwave-Assisted One-Step Green Synthesis of Amino-Functionalized Fluorescent Carbon Nitride Dots from Chitosan. Luminescence 2013, 28, 612–615. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, R.; Liu, X.; Li, X.; Xu, M.; Huang, X.; Xiao, X. Screening of Chitosan Derivatives-Carbon Dots Based on Antibacterial Activity and Application in Anti-Staphylococcus Aureus Biofilm. Int. J. Nanomed. 2022, 17, 937–952. [Google Scholar] [CrossRef] [PubMed]
- Campalani, C.; Cattaruzza, E.; Zorzi, S.; Vomiero, A.; You, S.; Matthews, L.; Capron, M.; Mondelli, C.; Selva, M.; Perosa, A. Biobased Carbon Dots: From Fish Scales to Photocatalysis. Nanomaterials 2021, 11, 524. [Google Scholar] [CrossRef]
- Chauhan, P.; Saini, J.; Chaudhary, S.; Bhasin, K.K. Sustainable Synthesis of Carbon Dots from Agarose Waste and Prospective Application in Sensing of L-Aspartic Acid. Mater. Res. Bull. 2021, 134, 111113. [Google Scholar] [CrossRef]
- Ganguly, S.; Das, P.; Itzhaki, E.; Hadad, E.; Gedanken, A.; Margel, S. Microwave-Synthesized Polysaccharide-Derived Carbon Dots as Therapeutic Cargoes and Toughening Agents for Elastomeric Gels. ACS Appl. Mater. Interfaces 2020, 12, 51940–51951. [Google Scholar] [CrossRef] [PubMed]
- Ravi Kumar, M.N.V. A Review of Chitin and Chitosan Applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Manivasagan, P.; Oh, J. Marine Polysaccharide-Based Nanomaterials as a Novel Source of Nanobiotechnological Applications. Int. J. Biol. Macromol. 2016, 82, 315–327. [Google Scholar] [CrossRef]
- Chen, R.; Liu, G.; Sun, X.; Cao, X.; He, W.; Lin, X.; Liu, Q.; Zhao, J.; Pang, Y.; Li, B.; et al. Chitosan Derived Nitrogen-Doped Carbon Dots Suppress Osteoclastic Osteolysis via Downregulating ROS. Nanoscale 2020, 12, 16229–16244. [Google Scholar] [CrossRef]
- Bautista, J.; Jover, M.; Gutierrez, J.F.; Corpas, R.; Cremades, O.; Fontiveros, E.; Iglesias, F.; Vega, J. Preparation of Crayfish Chitin by in Situ Lactic Acid Production. Process Biochem. 2001, 37, 229–234. [Google Scholar] [CrossRef]
- Dun, Y.; Li, Y.; Xu, J.; Hu, Y.; Zhang, C.; Liang, Y.; Zhao, S. Simultaneous Fermentation and Hydrolysis to Extract Chitin from Crayfish Shell Waste. Int. J. Biol. Macromol. 2019, 123, 420–426. [Google Scholar] [CrossRef]
- Torres, F.G.; Troncoso, O.P.; Nakamatsu, J.; Grande, C.J.; Gómez, C.M. Characterization of the Nanocomposite Laminate Structure Occurring in Fish Scales from Arapaima Gigas. Mater. Sci. Eng. C 2008, 28, 1276–1283. [Google Scholar] [CrossRef]
- Torres, F.G.; Malásquez, M.; Troncoso, O.P. Impact and Fracture Analysis of Fish Scales from Arapaima Gigas. Mater. Sci. Eng. C 2015, 51, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, Z.; Yang, X.; Chang, J.; Liu, Z.; Jiang, K. Fish-Scale-Derived Carbon Dots as Efficient Fluorescent Nanoprobes for Detection of Ferric Ions. RSC Adv. 2019, 9, 940–949. [Google Scholar] [CrossRef]
- Wu, G.; Feng, M.; Zhan, H. Generation of Nitrogen-Doped Photoluminescent Carbonaceous Nanodots via the Hydrothermal Treatment of Fish Scales for the Detection of Hypochlorite. RSC Adv. 2015, 5, 44636–44641. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Sun, L.; Qi, Q.; Zhao, X. Chitosan and κ-Carrageenan-Derived Nitrogen and Sulfur Co-Doped Carbon Dots “on-off-on” Fluorescent Probe for Sequential Detection of Fe3+ and Ascorbic Acid. Int. J. Biol. Macromol. 2021, 191, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Horo, H.; Saha, M.; Das, H.; Mandal, B.; Kundu, L.M. Synthesis of Highly Fluorescent, Amine-Functionalized Carbon Dots from Biotin-Modified Chitosan and Silk-Fibroin Blend for Target-Specific Delivery of Antitumor Agents. Carbohydr. Polym. 2022, 277, 118862. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Sadrjavadi, K.; Farhadian, N.; Hosseinzadeh, L.; Shahlaei, M. Easy Synthesis, Characterization and Cell Cytotoxicity of Green Nano Carbon Dots Using Hydrothermal Carbonization of Gum Tragacanth and Chitosan Bio-Polymers for Bioimaging. J. Mol. Liq. 2018, 259, 284–290. [Google Scholar] [CrossRef]
- Yadav, P.K.; Chandra, S.; Kumar, V.; Kumar, D.; Hasan, S.H. Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis. Catalysts 2023, 13, 422. [Google Scholar] [CrossRef]
- Moradi, M.; Molaei, R.; Kousheh, S.A.; Guimarães, J.T.; McClements, D.J. Carbon Dots Synthesized from Microorganisms and Food By-Products: Active and Smart Food Packaging Applications. Crit. Rev. Food Sci. Nutr. 2021, 63, 1943–1959. [Google Scholar] [CrossRef] [PubMed]
- Hallaji, Z.; Bagheri, Z.; Kalji, S.O.; Ermis, E.; Ranjbar, B. Recent Advances in the Rational Synthesis of Red-Emissive Carbon Dots for Nanomedicine Applications: A Review. FlatChem 2021, 29, 100271. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhai, Y.; Li, Z.; Zhu, P.; Mao, S.; Zhu, C.; Du, D.; Belfiore, L.A.; Tang, J.; Lin, Y. Red Carbon Dots: Optical Property Regulations and Applications. Mater. Today 2019, 30, 52–79. [Google Scholar] [CrossRef]
- La Ferla, B.; Vercelli, B. Red-Emitting Carbon Quantum Dots for Biomedical Applications: Synthesis and Purification Issues of the Hydrothermal Approach. Nanomaterials 2023, 13, 1635. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.G.; Sahu, S.; Yang, S.T.; Sonkar, S.K.; Wang, J.; Wang, H.; Lecroy, G.E.; Cao, L.; Sun, Y.P. Carbon “Quantum” Dots for Optical Bioimaging. J. Mater. Chem. B 2013, 1, 2116–2127. [Google Scholar] [CrossRef]
- Liang, Y.C.; Liu, K.K.; Wu, X.Y.; Lou, Q.; Sui, L.Z.; Dong, L.; Yuan, K.-J.; Shan, C.X. Lifetime-Engineered Carbon Nanodots for Time Division Duplexing. Adv. Sci. 2021, 8, 2003433. [Google Scholar] [CrossRef]
- Masha, S.; Samuel Oluwafemi, O. Cost-Effective Synthesis of Red-Emitting Carbon-Based Quantum Dots and Its Photothermal Profiling. Mater. Lett. 2022, 323, 132590. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, A.; Yin, X.; Li, R.; Deng, Q.; Yang, R. Red Emission Carbon Dots for Mitoxantrone Detection. Sens. Actuators B Chem. 2023, 382, 133535. [Google Scholar] [CrossRef]
Source | Marine Polysaccharide | CQDs Properties | |||||
---|---|---|---|---|---|---|---|
Size (nm) | Color | Synthetic Yield (%) | Quantum Yield (%) | Heteroatoms Content (%) | Ref. | ||
Marine algae | Carrageenans | 1.5–30 0.63–3.92 c | Yellow-brown a, Yellow a, Green b | 4.4 | 2–69.27 | S%: 2.7–5.29% N%: 8.18% | [42,52,53,54,55,56,57] |
Alginates | 2–20 100 | Yellow a, Brown a, Green b, Blue b | – | 5.42–48.7 | N%: 0.02% | [22,58,59,60] | |
Others | 1–40 | Dark brown a Green b, Blue b | – | 56–62 | O%: 26.98–32.34% S%: 3.15% N%: 2.41–8.12% | [40,61,62,63,64] | |
Crustaceans | Chitins | 1–20.5 | Yellow a, Brown a, Orange a, Blue b, Green b | 6.7–9.9 | 5.1–35 | O%: 4.67–28.54% S%: 0.38–1.54% N%: 2.63–18.25% | [26,65,66,67,68,69,70,71] |
Chitosans | 0.6–11 2.7–3 c | Transparent a, Brown a, Yellow a, Blue b, Green b | 85.3–90 | 3.3–40 | O%: 1.47–51.67% N%: 0.02–9.63% | [24,27,29,31,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87] | |
Fish | Chondroitin sulfate (shark cartilage) | 19.6–60 | Yellow-brown a Yellowish-green b Blue b | – | 20.46 | C% and O% > 90% S% < 10% | [41] |
Collagen and chitin (Fish scales) | 13 | – | – | 17.3 | O%: 26% N%: 8% | [88] |
Precursor Marine Polysaccharide | Processing Route | Size (nm) | Color | Quantum Yield (%) | Maximum Excitation Wavelength (nm) | Maximum FL Emission Wavelength (nm) | Applications | Ref. |
---|---|---|---|---|---|---|---|---|
Algae | ||||||||
κ-Carrageenan | Hydrothermal carbonization | 0.93–2.47 c | Yellow-brown a Green b, | – | 340 | 435 | Degradation of dyes | [42] |
κ-Carrageenan | Hydrothermal carbonization | 2.1 | Yellow a | – | 340 | 454 | Antitumor, antiviral | [52] |
κ-Carrageenan | Hydrothermal carbonization | 1.5–5.5 | Yellow a, Green b | 69.27 | 360 | 432 | Acetone sensing | [53] |
κ-Carrageenan | Hydrothermal carbonization | 2.75–6.25 | Green b | 62.54 | 340 | 448 | Cr (VI) in environmental water and intracellular imaging | [56] |
κ-Carrageenan | Hydrothermal carbonization | 3.2 | Yellow a, Bluish green b | 14.64 | 380 | 470 | Drug Delivery of anti-diabetic drug Metformin | [54] |
κ-Carrageenan | Hydrothermal carbonization | 1.8 | Yellow a, Green b | 20.6 | 340 | 420 | Sensing of Fe3+ | [49] |
κ-Carrageenan | Microwave | 25–30 | Brownish-yellow a, Green b | 21 | 340 | 434 | Bioimaging of plant cell biology | [57] |
ɩ-Carrageenan | Hydrothermal carbonization | 2–6 | Yellow a | 2 | 360 | 472 | Capsaicin sensing | [55] |
ɩ-Carrageenan | Hydrothermal carbonization | 0.68–3.92 c | Yellow-brown a, Green b | – | 340 | 435 | Degradation of dyes | [42] |
λ-Carrageenan | Hydrothermal carbonization | 0.63–1.37 c | Yellow-brown a, Green b | – | 320 | 425 | Degradation of dyes | [42] |
Porphyra polysaccharide | Hydrothermal carbonization | 1–9 | Blue b | 56.3 | 360 | ~450 | Bioimaging | [63] |
Sodium alginate | Hydrothermal carbonization | 5–10 | Blue b | 12.7 | 300 | 450 | Gene delivery and bioimaging | [22] |
Sodium alginate | Hydrothermal carbonization | 2–5 | Brown a, Blue b | 11 | 360 | 467 | Anti-ultraviolet ageing additives | [58] |
Sodium alginate | Microwave-irradiated thermal coupling method | 5.6 | Yellow a, Green b | 48.7 | 330 | ~405 | Drug delivery | [90] |
Sodium alginate | Ultrasonic-assisted nanoprecipitation in acidic solvent | 100 | – | 5.42 | 340 | 440 nm | Fe3+ sensing | [60] |
Sodium alginate | Laser ablation–pyrolysis | 10–20 nm (length) 1–1.5 nm (depth) | – | 350 | 430 | – | [59] | |
Fucoidan | Hydrothermal carbonization | 4–10 | Dark brown a, Green b | – | 362 | 453 | Endodontic infections | [62] |
Agarose | Hydrothermal carbonization | 8–10 | Black-brownish a, Blue b | 56 | 310 | 550 | Dopamine sensing | [61] |
Agarose | Thermal treatment | 2–10 | Milky coloration a, Blue b | 62 | 300 | ~420 | ʟ-Aspartic acid sensing | [40] |
Ulvan | Hydrothermal carbonization | 20–40 | – | 0.68 | 360 | 435 | Detection of nonylphenol | [64] |
Crustacean | ||||||||
Chitin | Hydrothermal carbonization | 4 | Yellow a, Blue b | 9 | 330 | 405 | Cu 2+ sensing | [65] |
Chitin (DA ≥ 90%) | Hydrothermal carbonization | 4.21 | Yellow a, Blue b | 25.8 | 360 | 433 | ClO − sensing | [26] |
Chitin (85% DD) | Hydrothermal carbonization | 2.8 | Yellow a, Blue b | 35 | 330 | 400 | Bacterial imaging | [67] |
Chitin | Hydrothermal carbonization | 1–10 | Yellow a, Blue b | 5.77 | 380 | ~470 | Fe3+ sensing | [68] |
Chitin | Hydrothermal carbonization | 4–8 | Brown a, Blue b | – | 300 | 440 | – | [69] |
Chitin | Ionic liquid + thermal treatment | 2.8 | Orange a | – | 400 | 503 | Non-Newton nanofluids | [70] |
Chitin | Deep eutectic solvent method with simple heating | 20.5 | Green b | 8.9 | 380 | ~510 | Fe3+ detection | [71] |
Chitin (nanofibers) | Microwave assisted-hydrothermal | 2–12 | Blue b | 5.1 | 370 | 480 | DPA sensing | [66] |
Chitosan (85% DD) | Hydrothermal carbonization | 3 c | Yellow-brown a, Blue b | – | 350 | 400 | – | [66] |
Chitosan (85% DA) | Hydrothermal carbonization | 1.2–3.6 | Yellowish transparent a, Blue b | 9.3 | 340 | ~395 | Fe3+, Ag + sensing | [75] |
Chitosan (85% DA) | Hydrothermal carbonization | 1–1.8 | Yellowish transparent a, Blue b | 15.3 | 340 | ~415 | Fe3+, Ag + sensing | [75] |
Chitosan | Hydrothermal carbonization | 4–11 | Blue b | 16.81 | 330 | 408 | Cr (IV) sensing | [27] |
Chitosan | Hydrothermal carbonization | 1.5–3.1 | Blue b | – | 290 | 412 | PO4 3− sensing, bioimaging | [24] |
Chitosan | Hydrothermal carbonization | 0.5–4 | Brown a, Blue b | 38 | 457 | 533 | Trace water detection | [76] |
Chitosan (80–95% DD) | Hydrothermal carbonization | 1–3 | Blue b | 28.32 | 340 | 420 | Packaging | [31] |
Chitosan | Hydrothermal carbonization | 3 | Brown-yellow a, Green b | 19 | 390 | 520 | Enrofloxacin, NO2 − sensing | [74] |
Chitosan (75% DD) | Hydrothermal carbonization | 3–6 | Blue b | – | 320 | ~405 | Organophosphorus herbicide glyphosate sensing | [77] |
Chitosan (91% DD) | Hydrothermal carbonization | 2.6–5 | Yellow a, Blue b | 31.8 | 360 | ~440 | Hg 2+ sensing | [72] |
Chitosan (DD ≥ 95%) | Hydrothermal carbonization | 2–10 | Yellow a, Blue b | 6.6 | 310 | 418 | Fe3+ detection | [78] |
Chitosan | Hydrothermal carbonization | 6 | Dark brown a, Blueb | 4.36 | 380 | 340 | Solid-state emission component | [79] |
Chitosan | Hydrothermal carbonization | 4.02 | Yellow b | 40 | 430 | 513 | Solid-state emission component | [80] |
Chitosan | Solvothermal | 4 | Blue b | 10.4 | 360 | ~450 | Bioanalytical and bioimaging | [81] |
Chitosan (85% DD) | Carbonization | 3 c | – | – | 510 | 550 | Drug delivery | [73] |
Chitosan | Carbonization | 1–6 | Transparent a, Blue b | 4.34 | 310 | 390 | Cellular imaging | [82] |
Chitosan | Thermal + freeze drying + milling | 2–6 | Blue b | – | 340 | 432 | Fe3+ sensing | [83] |
Chitosan (77.7% DD) | Microwave | 2.7 c | Yellow a, Blue b | – | 360 | ~410 | Detection of heavy metal ions | [84] |
Chitosan | Microwave | 0.6–8.7 c | Yellow a, Blue b | – | 300 | 334 | – | [85] |
Chitosan | Microwave heating method | 3–4.8 | Blue b | 25 | 350 | 450 | Sensor for water detection in organic solvents | [29] |
Chitosan | Microwave pyrolysis | 2.7–6.5 | Yellow-brown a | 6.4 | 338 | 440 | – | [86] |
Chitosan (DD ≥ 95%) | Microwave assisted-hydrothermal | 4.8 | Brown-yellow a, Green b | 27 | 460 | 502 | Sensing, security, and energy storage | [43] |
Chitosan (85% DA) | Acid dehydration | 1–2 | Yellowish transparent a, Blue b | 3.3 | 340 | ~405 | Fe3+, Ag+ sensing | [75] |
Chitosan quaternary ammonium salt | Hydrothermal carbonization | 1.74 | Yellow a, Blue b | 9 | 340 | ~460 | Visual treatment of bacterial infection | [87] |
Fish | ||||||||
Chondroitin sulfate (shark cartilage) | Hydrothermal carbonization | 19.6–60 | Yellow-brown a, Yellowish-green b, Blue b | 20.46 | 390 | 490 | Bioimaging | [41] |
Collagen and chitin (fish scales) | Hydrothermal carbonization | 13 | – | 17.3 | 372 | 450 | – | [88] |
Mixtures | ||||||||
Chitosan and κ-Carrageenan | Hydrothermal carbonization | 8 | Yellow a, Blue b | 59.31 | 365 | 440 | Fe3+, AA sensing | [100] |
Chitosan and silk fibroin | Hydrothermal carbonization | 1.5–4.5 | Yellow a, Blue b | 39–66 | 350 | 430 | 5-FU drug delivery | [101] |
Chitosan and gum tragacanth | Hydrothermal carbonization | 20 | – | – | 317 | 413 | Bioimaging | [102] |
Chitosan and acrylamide | Hydrothermal carbonization | 1–3 | Blue b | – | 360 | 438 | Osteolytic diseases | [93] |
Chitosan and acrylamide | Microwave-assisted-hydrothermal synthesis | – | Blue b | 12.17 | 330 | 409 | Fe2+ detection | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, F.G.; Gonzales, K.N.; Troncoso, O.P.; Cañedo, V.S. Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications. Mar. Drugs 2023, 21, 338. https://doi.org/10.3390/md21060338
Torres FG, Gonzales KN, Troncoso OP, Cañedo VS. Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications. Marine Drugs. 2023; 21(6):338. https://doi.org/10.3390/md21060338
Chicago/Turabian StyleTorres, Fernando G., Karen N. Gonzales, Omar P. Troncoso, and Victoria S. Cañedo. 2023. "Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications" Marine Drugs 21, no. 6: 338. https://doi.org/10.3390/md21060338
APA StyleTorres, F. G., Gonzales, K. N., Troncoso, O. P., & Cañedo, V. S. (2023). Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications. Marine Drugs, 21(6), 338. https://doi.org/10.3390/md21060338