Synthesis and Biological Activity of Novel α-Conotoxins Derived from Endemic Polynesian Cone Snails
Abstract
:1. Introduction
2. Results
2.1. α-Conotoxin Sequences
2.2. Synthesis of Conotoxins
2.3. Functional Characterization
3. Discussion
4. Materials and Methods
4.1. Abbreviations
4.2. Chemical Synthesis
4.2.1. General Procedure for the Synthesis of Linear Conotoxin Peptides
4.2.2. General Procedure for the Synthesis of Conotoxin via NBzl Protecting Group
4.2.3. General Procedure for the Synthesis of Conotoxin via Acm Protecting Group
4.2.4. General Procedure for the Synthesis of Conotoxin via Oxidative Folding
4.3. Mass Spectrometry
4.4. Preparative RP-HPLC
4.5. Electrophysiology
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Georges, R.; Michael, R. PANORAMA SUR LA DIVERSITE DES CONIDAE 110 Espèces Prédatrices Des plus Efficaces; Association Française de Conchyliologie: Paris, France, 2021; p. 162. [Google Scholar]
- Kaas, Q.; Westermann, J.-C.; Craik, D.J. Conopeptide Characterization and Classifications: An Analysis Using ConoServer. Toxicon 2010, 55, 1491–1509. [Google Scholar] [CrossRef] [PubMed]
- Miljanich, G.P. Ziconotide: Neuronal Calcium Channel Blocker for Treating Severe Chronic Pain. Curr. Med. Chem. 2004, 11, 3029–3040. [Google Scholar] [CrossRef] [PubMed]
- Dani, J.A.; Bertrand, D. Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic Mechanisms of the Central Nervous System. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 699–729. [Google Scholar] [CrossRef] [PubMed]
- Hone, A.J.; McIntosh, J.M. Nicotinic Acetylcholine Receptors in Neuropathic and Inflammatory Pain. FEBS Lett. 2018, 592, 1045–1062. [Google Scholar] [CrossRef]
- Hone, A.J.; McIntosh, J.M. Nicotinic Acetylcholine Receptors: Therapeutic Targets for Novel Ligands to Treat Pain and Inflammation. Pharmacol. Res. 2023, 190, 106715. [Google Scholar] [CrossRef]
- Papke, R.L.; Lindstrom, J.M. Nicotinic Acetylcholine Receptors: Conventional and Unconventional Ligands and Signaling. Neuropharmacology 2020, 168, 108021. [Google Scholar] [CrossRef]
- Albuquerque, E.X.; Pereira, E.F.R.; Alkondon, M.; Rogers, S.W. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function. Physiol. Rev. 2009, 89, 73–120. [Google Scholar] [CrossRef]
- Kalamida, D.; Poulas, K.; Avramopoulou, V.; Fostieri, E.; Lagoumintzis, G.; Lazaridis, K.; Sideri, A.; Zouridakis, M.; Tzartos, S.J. Muscle and Neuronal Nicotinic Acetylcholine Receptors. FEBS J. 2007, 274, 3799–3845. [Google Scholar] [CrossRef]
- Giribaldi, J.; Dutertre, S. α-Conotoxins to Explore the Molecular, Physiological and Pathophysiological Functions of Neuronal Nicotinic Acetylcholine Receptors. Neurosci. Lett. 2018, 679, 24–34. [Google Scholar] [CrossRef]
- Dutertre, S.; Nicke, A.; Tsetlin, V.I. Nicotinic Acetylcholine Receptor Inhibitors Derived from Snake and Snail Venoms. Neuropharmacology 2017, 127, 196–223. [Google Scholar] [CrossRef]
- Dani, J.A. Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine. Int. Rev. Neurobiol. 2015, 124, 3–19. [Google Scholar] [CrossRef]
- Azam, L.; Dowell, C.; Watkins, M.; Stitzel, J.A.; Olivera, B.M.; McIntosh, J.M. α-Conotoxin BuIA, a Novel Peptide from Conus Bullatus, Distinguishes among Neuronal Nicotinic Acetylcholine Receptors. J. Biol. Chem. 2005, 280, 80–87. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, S.; Kaas, Q.; Yu, J.; Wu, Y.; Harvey, P.J.; Zhangsun, D.; Craik, D.J.; Luo, S. Discovery, Characterization, and Engineering of LvIC, an A4/4-Conotoxin That Selectively Blocks Rat A6/A3β4 Nicotinic Acetylcholine Receptors. J. Med. Chem. 2023, 66, 2020–2031. [Google Scholar] [CrossRef]
- Wei, N.; Chu, Y.; Liu, H.; Xu, Q.; Jiang, T.; Yu, R. Antagonistic Mechanism of α-Conotoxin BuIA toward the Human A3β2 Nicotinic Acetylcholine Receptor. ACS Chem. Neurosci. 2021, 12, 4535–4545. [Google Scholar] [CrossRef]
- Ning, J.; Li, R.; Ren, J.; Zhangsun, D.; Zhu, X.; Wu, Y.; Luo, S. Alanine-Scanning Mutagenesis of α-Conotoxin GI Reveals the Residues Crucial for Activity at the Muscle Acetylcholine Receptor. Mar. Drugs 2018, 16, 507. [Google Scholar] [CrossRef]
- Kapono, C.A.; Thapa, P.; Cabalteja, C.C.; Guendisch, D.; Collier, A.C.; Bingham, J.-P. Conotoxin Truncation as a Post-Translational Modification to Increase the Pharmacological Diversity within the Milked Venom of Conus Magus. Toxicon 2013, 70, 170–178. [Google Scholar] [CrossRef]
- Cruz, L.J.; Gray, W.R.; Olivera, B.M.; Zeikus, R.D.; Kerr, L.; Yoshikami, D.; Moczydlowski, E. Conus Geographus Toxins That Discriminate between Neuronal and Muscle Sodium Channels. J. Biol. Chem. 1985, 260, 9280–9288. [Google Scholar] [CrossRef]
- Chi, S.-W.; Kim, D.-H.; Olivera, B.M.; McIntosh, J.M.; Han, K.-H. NMR Structure Determination of α-Conotoxin BuIA, a Novel Neuronal Nicotinic Acetylcholine Receptor Antagonist with an Unusual 4/4 Disulfide Scaffold. Biochem. Biophys. Res. Commun. 2006, 349, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Laps, S.; Sun, H.; Kamnesky, G.; Brik, A. Palladium-Mediated Direct Disulfide Bond Formation in Proteins Containing S-Acetamidomethyl-Cysteine under Aqueous Conditions. Angew. Chem. Int. Ed. 2019, 58, 5729–5733. [Google Scholar] [CrossRef] [PubMed]
- Laps, S.; Atamleh, F.; Kamnesky, G.; Sun, H.; Brik, A. General Synthetic Strategy for Regioselective Ultrafast Formation of Disulfide Bonds in Peptides and Proteins. Nat. Commun. 2021, 12, 870. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.-H.; Brandstaetter, H.; Nevin, S.T.; Tan, C.C.; Clark, R.J.; Adams, D.J.; Alewood, P.F.; Craik, D.J.; Daly, N.L. Structure of α-Conotoxin BuIA: Influences of Disulfide Connectivity on Structural Dynamics. BMC Struct. Biol. 2007, 7, 28. [Google Scholar] [CrossRef]
- Kuryatov, A.; Berrettini, W.; Lindstrom, J. Acetylcholine Receptor (AChR) A5 Subunit Variant Associated with Risk for Nicotine Dependence and Lung Cancer Reduces (A4β2)2α5 AChR Function. Mol. Pharmacol. 2011, 79, 119–125. [Google Scholar] [CrossRef]
- Dutertre, S.; Jin, A.-H.; Vetter, I.; Hamilton, B.; Sunagar, K.; Lavergne, V.; Dutertre, V.; Fry, B.G.; Antunes, A.; Venter, D.J.; et al. Evolution of Separate Predation- and Defence-Evoked Venoms in Carnivorous Cone Snails. Nat. Commun. 2014, 5, 3521. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.-H.; Muttenthaler, M.; Dutertre, S.; Himaya, S.W.A.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Conotoxins: Chemistry and Biology. Chem. Rev. 2019, 119, 11510–11549. [Google Scholar] [CrossRef]
- Kaas, Q.; Yu, R.; Jin, A.-H.; Dutertre, S.; Craik, D.J. ConoServer: Updated Content, Knowledge, and Discovery Tools in the Conopeptide Database. Nucleic Acids Res. 2012, 40, D325–D330. [Google Scholar] [CrossRef] [PubMed]
- Morrison, K.L.; Weiss, G.A. Combinatorial Alanine-Scanning. Curr. Opin. Chem. Biol. 2001, 5, 302–307. [Google Scholar] [CrossRef]
- Gyanda, R.; Banerjee, J.; Chang, Y.-P.; Phillips, A.M.; Toll, L.; Armishaw, C.J. Oxidative Folding and Preparation of α-Conotoxins for Use in High-Throughput Structure–Activity Relationship Studies. J. Pept. Sci. 2013, 19, 16–24. [Google Scholar] [CrossRef]
- Wu, X.; Wu, Y.; Zhu, F.; Yang, Q.; Wu, Q.; Zhangsun, D.; Luo, S. Optimal Cleavage and Oxidative Folding of α-Conotoxin TxIB as a Therapeutic Candidate Peptide. Mar. Drugs 2013, 11, 3537–3553. [Google Scholar] [CrossRef] [PubMed]
- Postma, T.M.; Albericio, F. Disulfide Formation Strategies in Peptide Synthesis: Disulfide Formation Strategies in Peptide Synthesis. Eur. J. Org. Chem. 2014, 2014, 3519–3530. [Google Scholar] [CrossRef]
- Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Multifaceted Roles of Disulfide Bonds. Peptides as Therapeutics. Chem. Rev. 2014, 114, 901–926. [Google Scholar] [CrossRef]
- Postma, T.M.; Albericio, F. N-Chlorosuccinimide, an Efficient Reagent for On-Resin Disulfide Formation in Solid-Phase Peptide Synthesis. Org. Lett. 2013, 15, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Spears, R.J.; McMahon, C.; Chudasama, V. Cysteine Protecting Groups: Applications in Peptide and Protein Science. Chem. Soc. Rev. 2021, 50, 11098–11155. [Google Scholar] [CrossRef] [PubMed]
- Azam, L.; Maskos, U.; Changeux, J.-P.; Dowell, C.D.; Christensen, S.; De Biasi, M.; McIntosh, J.M. α-Conotoxin BuIA[T5A;P6O]: A Novel Ligand That Discriminates between A6ß4 and A6ß2 Nicotinic Acetylcholine Receptors and Blocks Nicotine-Stimulated Norepinephrine Release. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2010, 24, 5113–5123. [Google Scholar] [CrossRef] [PubMed]
- Giribaldi, J.; Wilson, D.; Nicke, A.; El Hamdaoui, Y.; Laconde, G.; Faucherre, A.; Moha Ou Maati, H.; Daly, N.L.; Enjalbal, C.; Dutertre, S. Synthesis, Structure and Biological Activity of CIA and CIB, Two α-Conotoxins from the Predation-Evoked Venom of Conus Catus. Toxins 2018, 10, 222. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, J.M.; Azam, L.; Staheli, S.; Dowell, C.; Lindstrom, J.M.; Kuryatov, A.; Garrett, J.E.; Marks, M.J.; Whiteaker, P. Analogs of Alpha-Conotoxin MII Are Selective for Alpha6-Containing Nicotinic Acetylcholine Receptors. Mol. Pharmacol. 2004, 65, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Kuryatov, A.; Olale, F.; Cooper, J.; Choi, C.; Lindstrom, J. Human A6 AChR Subtypes: Subunit Composition, Assembly, and Pharmacological Responses. Neuropharmacology 2000, 39, 2570–2590. [Google Scholar] [CrossRef]
Framework Loop | Conotoxin | Title 3 | Species |
---|---|---|---|
3/5 | GaIA | GRCCHPACGRKYNC * | Conus gauguini |
MI | GRCCHPACGKNYSC * | Conus magus | |
GI | ECCNPACGRHYSC * | Conus geographus | |
4/4 | AdIA | GCCSTPPCAVLHC * | Conus adamsonii |
BuIA | GCCSTPPCAVLYC * | Conus bullatus | |
4/4 | LvIC | DCCANPVCNGKHCQ | Conus lividus |
[∆Q14]LvIC | DCCANPVCNGKHC * | ||
[D1G, ∆Q14]LvIC | GCCANPVCNGKHC * |
AdIA | GaIA | BuIA | ||||
---|---|---|---|---|---|---|
nAChRs (Rat) | Toxin (IC50) nM | Hill Slope | Toxin (IC50) nM | Hill Slope | Toxin (IC50) nM | Hill Slope |
α7 | >10.000 | N.D. | 5158 | −1.45 | 272 | −1.21 |
(4048 to 6680) | (−1.60 to −1.02) | (243 to 304) | (−1.10 to −1.32) | |||
αβγδ | N.D. | N.D. | 38.37 | −1.23 | N.D. | N.D. |
(32.44 to 45.40) | (−1.49 to −1.03) | |||||
α2β2 | >10.000 | N.D. | 6474 | −1.09 | 800 | −0.850 |
(5296 to 8167) | (−1.39 to −0.83) | (567 to 1130) | (−0.591 to −1.11) | |||
α3β2 | 1375 | −1.24 | 988.9 | −1.25 | 5.72 | −1.48 |
(1201 to 1574) | (−1.46 to −1.07) | (867.9 to 1128) | (−1.45 to −1.09) | (4.57 to 7.16) | (−1.04 to −1.92) | |
α3β4 | >10.000 | N.D. | 7912 | −1.37 | 27.7 | −1.52 |
(6638 to 9680) | (−1.76 to −1.06) | (22.3 to 34.5) | (−1.01 to −2.04) | |||
α4β2 | >10.000 | N.D. | 3931 | −1.28 | >10.000 | N.D. |
(2578 to 6466) | (−1.86 to −0.71) | |||||
α4β4 | >10.000 | N.D. | >10.000 | N.D. | 69.9 | −1.15 |
(47.9 to 102) | (−0.738 to −1.57) | |||||
α6/α3β2β3 | 177.3 | −1.14 | 1170 | −0.87 | 0.26 | −0.963 |
(153.3 to 205.4) | (−1.32 to −0.99) | (996.9 to 1376) | (−1.0 to −0.76) | (0.207 to −0.320) | (−0.815 to −1.11) | |
α6/α3β4 | >10.000 | N.D. | >10.000 | N.D. | 1.54 | −1.40 |
(1.32 to −1.78) | (−1.12 to −1.68) | |||||
α9α10 | >10.000 | N.D. | 777.2 | −0.93 | N.D. | N.D. |
(679.8 to 889.3) | (−1.04 to −0.83) | |||||
References | This work | This work | This work | This work | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souf, Y.M.; Lokaj, G.; Kuruva, V.; Saed, Y.; Raviglione, D.; Brik, A.; Nicke, A.; Inguimbert, N.; Dutertre, S. Synthesis and Biological Activity of Novel α-Conotoxins Derived from Endemic Polynesian Cone Snails. Mar. Drugs 2023, 21, 356. https://doi.org/10.3390/md21060356
Souf YM, Lokaj G, Kuruva V, Saed Y, Raviglione D, Brik A, Nicke A, Inguimbert N, Dutertre S. Synthesis and Biological Activity of Novel α-Conotoxins Derived from Endemic Polynesian Cone Snails. Marine Drugs. 2023; 21(6):356. https://doi.org/10.3390/md21060356
Chicago/Turabian StyleSouf, Yazid Mohamed, Gonxhe Lokaj, Veeresh Kuruva, Yakop Saed, Delphine Raviglione, Ashraf Brik, Annette Nicke, Nicolas Inguimbert, and Sébastien Dutertre. 2023. "Synthesis and Biological Activity of Novel α-Conotoxins Derived from Endemic Polynesian Cone Snails" Marine Drugs 21, no. 6: 356. https://doi.org/10.3390/md21060356
APA StyleSouf, Y. M., Lokaj, G., Kuruva, V., Saed, Y., Raviglione, D., Brik, A., Nicke, A., Inguimbert, N., & Dutertre, S. (2023). Synthesis and Biological Activity of Novel α-Conotoxins Derived from Endemic Polynesian Cone Snails. Marine Drugs, 21(6), 356. https://doi.org/10.3390/md21060356