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Abstract: The concise and highly convergent synthesis of the isodityrosine unit of seongsanamide
A–D and its derivatives bearing a diaryl ether moiety is described. In this work, the synthetic strat-
egy features palladium-catalyzed C(sp3)–H functionalization and a Cu/ligand-catalyzed coupling
reaction. We report a practical protocol for the palladium-catalyzed mono-arylation of β-methyl
C(sp3)–H of an alanine derivative bearing a 2-thiomethylaniline auxiliary. The reaction is compatible
with a variety of functional groups, providing practical access to numerous β-aryl-α-amino acids;
these acids can be converted into various tyrosine and dihydroxyphenylalanine (DOPA) derivatives.
Then, a CuI/N,N-dimethylglycine-catalyzed arylation of the already synthesized DOPA derivatives
with aryl iodides is described for the synthesis of isodityrosine derivatives.
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1. Introduction

In 2018, Choi and coworkers [1] reported the isolation of seongsanamide A–D from a
bacterial culture broth of Bacillus safensis KCTC 12796BP, obtained from a marine sponge
collected in water samples of Seongsan on Jeju Island. Seongsanamides are bicyclic dep-
sipeptides with an isodityrosine residue and exhibit antiallergenic properties (Figure 1).
Furthermore, isodityrosine is a tyrosine dimer containing oxidatively coupled aromatic
nuclei, and the tyrosine units are linked through a diaryl ether moiety [2]. A large class
of biological cyclopeptides containing this structural unit exists in nature, with a wide
range of pharmaceutical activities, such as seongsanamidesA–D, K-13 [3], OF4949-III [3],
rubiyunnanin D [4], and bouvardin [5].
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1. Introduction 
In 2018, Choi and coworkers [1] reported the isolation of seongsanamide A–D from 

a bacterial culture broth of Bacillus safensis KCTC 12796BP, obtained from a marine 
sponge collected in water samples of Seongsan on Jeju Island. Seongsanamides are bicy-
clic depsipeptides with an isodityrosine residue and exhibit antiallergenic properties 
(Figure 1). Furthermore, isodityrosine is a tyrosine dimer containing oxidatively coupled 
aromatic nuclei, and the tyrosine units are linked through a diaryl ether moiety [2]. A 
large class of biological cyclopeptides containing this structural unit exists in nature, with 
a wide range of pharmaceutical activities, such as seongsanamidesA–D, K-13 [3], 
OF4949-Ⅲ [3], rubiyunnanin D [4], and bouvardin [5]. 
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Figure 1. Structures of the seongsanamides A–D and isodityrosine. 
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Figure 1. Structures of the seongsanamides A–D and isodityrosine.

In addition, diaryl ether (DE) is a functional scaffold that exists widely in both natural
products and new drugs approved for the market [6]. Moreover, DE is always considered
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the fundamental fragment of a wide variety of medicinal and agrochemical agents as well
as their bioisosteres (Figure 2). Over the years, medicinal chemists have exploited the use
of privileged structures inspired by natural products in drug discovery. The introduction of
functional groups, such as α-keto [7] amide and gem-dimethyl [8] moieties, into biologically
active small molecules has emerged as an efficient way to obtain clinically useful drugs.
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Due to their potential structural diversity, pharmaceutical value, and good drugga-
bility, isodityrosines and cyclopeptide derivatives have attracted increasing attention in 
the synthetic community. Numerous research laboratories have engaged in the total 
synthesis of these natural products or analogs, including Dötz benzannulation [9], SNAr 
reactions [10], and the Ullman [11–16] and Evans–Chan–Lam [3,17,18] coupling reactions. 
However, the synthesis of isodityrosines and their derivatives usually begins with 
available natural amino acids, limiting the diversity of the synthesis of their derivatives 
and their applications in drug design. 
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moving hydroxyl protecting groups, Dakin oxidation of aldehyde, or Baeyer–Villiger 
oxidation of acetyl group. Compound 2 was prepared by removing the directing group of 
3, which resulted from the palladium-catalyzed monoarylation of β-methyl C(sp3)–H of 
an alanine derivative with aryl iodides using a directing group. The structural diversity 
of aryl iodides could facilitate the synthesis of more isodityrosine derivatives. 
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Due to their potential structural diversity, pharmaceutical value, and good drug-
gability, isodityrosines and cyclopeptide derivatives have attracted increasing attention
in the synthetic community. Numerous research laboratories have engaged in the total
synthesis of these natural products or analogs, including Dötz benzannulation [9], SNAr
reactions [10], and the Ullman [11–16] and Evans–Chan–Lam [3,17,18] coupling reactions.
However, the synthesis of isodityrosines and their derivatives usually begins with available
natural amino acids, limiting the diversity of the synthesis of their derivatives and their
applications in drug design.

To address these challenges, we aimed to establish a convenient and convergent
synthetic route. In recent years, transition-metal-catalyzed C–H functionalization has
provided general and practical access to various natural and unnatural aromatic amino
acids [19–23]. Our retrosynthetic analysis of the isodityrosine moiety of seongsanamides
is outlined in Scheme 1. We selected a strategy based on palladium-catalyzed C(sp3)–H
functionalization and copper-catalyzed Ullmann coupling reactions. The iodityrosine
moiety was prepared from key precursor 1 and 4-iodophenylalaninederivatives via a C–O
coupling reaction. The DOPA derivative 1 was derived from intermediate 2 by removing
hydroxyl protecting groups, Dakin oxidation of aldehyde, or Baeyer–Villiger oxidation
of acetyl group. Compound 2 was prepared by removing the directing group of 3, which
resulted from the palladium-catalyzed monoarylation of β-methyl C(sp3)–H of an alanine
derivative with aryl iodides using a directing group. The structural diversity of aryl iodides
could facilitate the synthesis of more isodityrosine derivatives.
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2. Results

Our study began with the synthesis of N-phthaloylalanine derivatives 4a–c to examine
potential amide directing groups (phthaloyl = Phth). Several commercially available aniline-
based auxiliary groups, including 8-aminoquinoline [24–26], 2-thiomethylaniline (ArS) [27],
and O-methylhydroxylamine [28], were selected for the palladium-catalyzed arylation.
Subsequently, the treatment of 2-methoxybenzaldehyde with N-iodosuccinimide(NIS) and
FeCl3 produced the corresponding aryl iodide5a,with a yield of 89%.

Initially, the selectivity for mono- versus diarylation needed to be controlled. We
initiated our investigation with the selective methyl C(sp3)–H monoarylation of alanine
derivative with aryl iodide (5a) as the model system (Scheme 2). In 2012, Daugulis re-
ported that the selective β-monoarylation of alanine derivatives occurred under solvent-
free conditions in high yield using a 2-thiomethylaniline auxiliary [27]. In 2014, Bull
reported that the 3-monoarylation of proline derivatives under solvent-free conditions
with 8-aminoquinoline directing groups was also successful [26]. Previously, Shi reported
that the use of coordinating solvents, such as dimethylamine (DMA) and dimethylpropy-
leneurea(DMPU), improved the selectivity in the arylation of alanine derivatives with aryl
iodides [29].
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Due to these studies, we selected solvent-free conditions using palladium (II) acetate
(Pd(OAc)2, 20 mol%), silver acetate (AgOAc, 1.5 equiv), and DMPU (5.0 equiv) as additives.
In accordance with reported results, the arylation of 4b bearing an 8-aminoquinoline
auxiliary mainly produced diarylated product 3ab when the reaction was conducted at
150 ◦C, and 4a bearing a 2-thiomethylaniline auxiliary mainly produced monoarylated
product 3a (Table 1, entries 1 and 2). The optimization of this transformation continued with
4a. We aimed to maximize the yield of 3a and the selectivity of monoarylation. We found
that lowering the reaction temperature to 100 ◦C improved both the yield and selectivity
of the reaction (48% yield, mono/di 12:1; Table 1, entry 3). Further screening showed that
running the reaction at 80 ◦C increased both mono-selectivity and yield (62% yield, Table 1,
entry 4). However, no satisfactory result was obtained when the reaction was run at 60 ◦C
(42% yield, Table 1, entry 5).

Table 1. Palladium-catalyzed arylation of 4a–c with 5a.

Entry Substrate Temp. Time Yield (%) Ratio (mono/di) g

1 a 4a 150 ◦C 24 h 38 e 2.2:1 h

2 a 4b 150 ◦C 24 h 12 e 1:3.1 h

3 b 4a 100 ◦C 48 h 48 e 12:1
4 b 4a 80 ◦C 48 h 62 e mono
5 b 4a 60 ◦C 60 h 42 f mono
6 c 4b 80 ◦C 48 h 26 f 1:1.7
7 d 4c 80 ◦C 48 h 36 e mono
8 i 4a 80 ◦C 48 h 65 e –
9 j 4a 80 ◦C 48 h 51 e –

a 4 (0.6 mmol) was used. b 4a (1.5 mmol) was used. c 4b (1.5 mmol) was used. d 4c (4.0 mmol) was used. e Isolated
yields. f Yields are based on 1H-NMR analysis. g The ratio of the mono- to the diarylated product was determined
via 1HNMR spectroscopy of the crude reaction mixture. h The ratio of the mono- to the diarylated product was
determined via isolated yield. i 4a (4.4 mmol) was used. j 4a (18.5 mmol) was used.
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Additional optimization experiments showed that the more strongly coordinating
8-aminoquinoline auxiliary still provided a predominantly diarylated product at 80 ◦C
(mono/di 1:1.7; Table 1, entry 6). Interestingly, the palladium-catalyzed C(sp3)–H arylation
of Weinreb amides 4c bearing an N-methoxyamide auxiliary was also successful, with a
36% yield(Table 1, entry 7). Notably, the reaction was also successful on a larger scale, and
the yields were similar to those obtained on a smaller scale (Table 1, entries 8 and 9).

With the optimized the reaction conditions for the β-monoarylation of alanine-derived
amide 4a, we next investigated the scope of alkyl iodides that were compatible in the
reaction (Scheme 3). A wide range of aryl iodides with different electron-withdrawing
functional groups, such as formyl (3b, 53%; 3c, 51%), acetyl (3e, 54%; 3f, 57%), bromo (3n,
60%), and methoxycarbonyl (3j, 71%) groups underwent efficient monoarylation to produce
the corresponding substituted phenylalanines in moderate yields (see Supplementary
Materials). Moreover, aryl iodide bearing a nitro (3p) substituent was less reactive and
successful, affording a 36% yield. Additionally, aryl iodides bearing alkoxy (3g, 76%; 3h,
60%; 3i, 56%) substituents were compatible with this protocol to produce their desired
products in moderate to good yields.

Mar. Drugs 2023, 21, x FOR PEER REVIEW 4 of 14 
 

 

rylated product was determined via 1HNMR spectroscopy of the crude reaction mixture. h The ra-
tio of the mono- to the diarylated product was determined via isolated yield. i4a (4.4 mmol) was 
used. j 4a (18.5 mmol) was used. 

Additional optimization experiments showed that the more strongly coordinating 
8-aminoquinoline auxiliary still provided a predominantly diarylated product at 80 
°C(mono/di 1:1.7; Table 1, entry 6). Interestingly, the palladium-catalyzed C(sp3)–H ary-
lation of Weinreb amides 4c bearing an N-methoxyamide auxiliary was also successful, 
with a 36% yield(Table 1, entry 7). Notably, the reaction was also successful on a larger 
scale, and the yields were similar to those obtained on a smaller scale (Table 1, entries 8 
and 9). 

With the optimized the reaction conditions for the β-monoarylation of ala-
nine-derived amide 4a, we next investigated the scope of alkyl iodides that were com-
patible in the reaction (Scheme 3). A wide range of aryl iodides with different elec-
tron-withdrawing functional groups, such as formyl (3b, 53%; 3c, 51%), acetyl (3e, 54%; 
3f, 57%), bromo (3n, 60%), and methoxycarbonyl (3j, 71%) groups underwent efficient 
monoarylation to produce the corresponding substituted phenylalanines in moderate 
yields (see Supplementary Materials). Moreover, aryl iodide bearing a nitro (3p) substit-
uent was less reactive and successful, affording a 36% yield. Additionally, aryl iodides 
bearing alkoxy (3g, 76%; 3h, 60%; 3i, 56%) substituents were compatible with this pro-
tocol to produce their desired products in moderate to good yields. 

Importantly, 3,4-disubstituted aryl iodides bearing one alkoxy group and an elec-
tron-withdrawing functional group also reacted smoothly under the standard conditions 
to produce the β-monoarylation products in moderate yields (3d, 55%; 3k, 57%; 3l, 60%; 
3m, 57%). In general, aryl iodides carrying electron-donating groups are more reactive 
than aryl iodides bearing electron-withdrawing groups. Also proving to be compatible 
were 3,4-Disubstituted aryl iodides, albeit with reduced yields (3r, 33%; 3s, 36%). 

However, an unfavorable steric effect was also apparent in 2-substituted aryl io-
dides, and decreased reactivity was also evident; sterically hindered immediately adja-
cent to the iodide decreased reactivity. Notably, steric aryl iodides were also compatible 
with the reaction conditions, although they were less reactive (3t, 36%; 3u, 46%; 3v, 33%). 
Interestingly, the 4-tert-butoxycarbonylamino- and 4-iodo-aryl derivatives were also 
successful, providing handles for potential further functionalization (3o, 46%; 3q, 40%). 

ArS =
S

N
H

O
ArS

NPhth
N
H

O
ArS

NPhth
Ar

Pd(OAc)2 (20%mmol)
Ar-I (1.5equiv)

AgOAc (2.0equiv)
DMPU (5.0equiv)

80℃, 48h
4a (1.5mmol) 3

N
H

O
ArS

NPhth

MeO

MeO

N
H

O
ArS

NPhth
Br

N
H

O
ArS

NPhth
I

N
H

O
ArS

NPhth
O2N

N
H

O
ArS

NPhth
BocHN

N
H

O
ArS

NPhth

MeOOC

3j (71%)

3i (56%)

3n (60%) 3o (46%)a 3p (36%) 3q (40%)

N
H

O
ArS

NPhth

OHC N
H

O
ArS

NPhth
OHC

N
H

O
ArS

NPhth

OHC

BnO

N
H

O
ArS

NPhth
BnO

N
H

O
ArS

NPhth

BnO

N
H

O
ArS

NPhth

O

N
H

O
ArS

NPhth

O

N
H

O
ArS

NPhth

MeOOC

BnO

N
H

O
ArS

NPhth

BnO

MeOOC

N
H

O
ArS

NPhth

NC

MeO

N
H

O
ArS

NPhth

OMe

N
H

O
ArS

NPhth

OBn

N
H

O
ArS

NPhth

OMe

Br

N
H

O
ArS

NPhth
OHC

Br
N
H

O
ArS

NPhth
Br

OHC

3b (53%) 3c (51%) 3d (55%)

3s (36%)3r (33%)

3k (57%) 3l (60%)

3h (60%)3g (76%)

3e (54%)

3f(57%)

3m (57%)

3u (46%) 3v (33%)3t (36%) CHO CHO

a2.0 equiv. of Ar-I was used  
Scheme 3. Palladium-catalyzed monoarylation of 4a with aryl iodides. Scheme 3. Palladium-catalyzed monoarylation of 4a with aryl iodides.

Importantly, 3,4-disubstituted aryl iodides bearing one alkoxy group and an electron-
withdrawing functional group also reacted smoothly under the standard conditions to
produce the β-monoarylation products in moderate yields (3d, 55%; 3k, 57%; 3l, 60%; 3m,
57%). In general, aryl iodides carrying electron-donating groups are more reactive than
aryl iodides bearing electron-withdrawing groups. Also proving to be compatible were
3,4-Disubstituted aryl iodides, albeit with reduced yields (3r, 33%; 3s, 36%).

However, an unfavorable steric effect was also apparent in 2-substituted aryl iodides,
and decreased reactivity was also evident; sterically hindered immediately adjacent to
the iodide decreased reactivity. Notably, steric aryl iodides were also compatible with the
reaction conditions, although they were less reactive (3t, 36%; 3u, 46%; 3v, 33%). Interest-
ingly, the 4-tert-butoxycarbonylamino- and 4-iodo-aryl derivatives were also successful,
providing handles for potential further functionalization (3o, 46%; 3q, 40%).

Based on our access to a wide range of phenylalanine derivatives, we subsequently ex-
amined the removal of the directing group. The sequential transformation of formyl, acetyl,
and alkoxy groups to hydroxyl groups provided various tyrosine and DOPA derivatives
that could be used to produce more isodityrosine derivatives via the Ullmann coupling re-
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action. The directing group of 3a was easily removed by treatment with H2SO4 in methanol
(MeOH) to produce the corresponding methyl ester 2a with a 77% yield (Scheme 4). The
treatment of aldehyde 2a with m-CPBA produced the formate ester, which was immediately
converted into the corresponding phenol 1 (74% yield for two steps).
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Subsequently, we focused on the second key step, the copper-catalyzed Ullmann
coupling reaction of DOPA derivative 1 (Scheme 5, see Supplementary Materials). The
development of useful methods via the Cu/ligand-catalyzed arylation of phenols for
assembling diaryl ethers was accomplished [30–34]. Initially, we selected the coupling
of phenylalanine-derived aryl iodides (1.5 equiv), with 1 as a model reaction to opti-
mize the reaction conditions. The coupling reaction was tested in the presence of CuI
(1.0 equiv) and Cs2CO3 (4.5 equiv) when the reaction was carried out in 1,4-dioxane (0.1 M)
under N2 at 90 ◦C for 20 h. We tested several ligands that are known to promote copper-
catalyzed coupling reactions. Interestingly, we found that using commercially available
N,N-dimethylglycine as a ligand produced the corresponding products. Moreover, several
phenylalanine-derived aryl iodides with different protecting groups at the C-terminus
were compatible with the reaction conditions (6a, 49%; 6b, 50%; 6c, 44%). Notably, in
isodityrosine derivatives 6a–d, all amino and carboxylate groups with different protections
enabled the selective manipulation of the individual functionalities.
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With the optimized reaction conditions, we next examined an extensive range of aryl
iodides to produce a 3-aryloxyphenylalanine derivative bearing a diaryl ether moiety. A
variety of functional groups of aryl iodides are known to tolerate this reaction condition, in-
cluding alkoxyl, formyl, acetyl, nitro, carbonyl, iodo, and cyano groups. Both electron-rich
and electron-deficient aryl iodides underwent this reaction to produce the corresponding
diaryl ethers in good yields. A high yield was provided by 4-iodobenzaldehyde (6e, 88%),
whereas 3-iodobenzaldehyde provided a 52% yield under standard conditions. Further-
more, aromatics with aldehyde and methoxyl groups were also compatible, with reduced
yields (6g, 30%). Notably, the reaction of 1,4-diiodobenzene with phenol 1 produced the
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coupling product 6j in 64% yield, which was a 3-(4-iodoaryloxy)-phenylalanine derivative
and provided a handle for potential further functionalization.

In conclusion, we have developed a convenient and highly convergent synthesis of the
isodityrosine unit of seongsanamide A–D and its derivatives bearing a diaryl ether moiety.
The synthetic sequence is based on a palladium-catalyzed C(sp3)–H functionalization and
a Cu/ligand-catalyzed coupling reaction. Initially, we developed a Pd-catalyzed mono-
arylation of β-methyl C(sp3)–H of an alanine derivative using the 2-thiomethylaniline
directing group. A wide range of aryl iodides could be applied in this protocol to provide
various aromatic α-amino acid compounds; these compounds could be used for the synthe-
sis of various tyrosine and DOPA derivatives. Subsequently, the CuI/N,N-dimethylglycine-
catalyzed coupling of DOPA derivatives with aryl iodides was accomplished to prepare
diaryl ethers and the synthesis of isodityrosine derivatives. Our convergent synthetic
method facilitates a concise way for the efficient preparation of various DE-based analogs
for drug development efforts. The specific introduction of DE-based units into biologically
active small molecules and a study of the impact on the physicochemical properties and
potential biological activities are currently being performed.

3. Materials and Methods
3.1. General Experimental Methods

Chemicals were acquired from commercial sources and used as received. Nuclear mag-
netic resonance (NMR) spectra were recorded on Bruker Ascend-400 and Bruker Ascend-
500 spectrometers at the following spectrometer frequencies. Multiplicities are assigned as
s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and app (apparent).The exact
mass was obtained using a time-of-flight (TOF) detector on Agilent 6530-Q-TOF. Thin layer
chromatography (TLC) was carried out with 0.2 mm thick silica gel plates. Visualization
was accomplished by using UV light. Column chromatography was performed on silica
gel (200–300 mesh).

3.2. Synthesis of the Phenylalanine Derivatives3a–v

A Schlenk tube was charged with 1 (1.5 mmol), aryl iodide (1.5 equiv., or 2.0 equiv.
used for synthesis of 3o), Pd(OAc)2 (0.2 equiv.), AgOAc (2.0 equiv.), and DMPU (5.0 equiv.),
evacuated, and backfilled with N2. The reaction mixture was stirred at 80 ◦C for 48 h. The
suspension was filtered, and the filtrate was concentrated, followed by column chromatog-
raphy on silica gel (eluting with 1:5 to 1:2 ethyl acetate/petroleum ether) to provide the
desired product.
(S)-N-(3-(4-Methoxy-3-formylphenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3a). 3a was
obtained as a solid. 1H NMR (400 MHz, CDCl3) δ 10.30 (s, 1H), 8.94 (s, 1H), 8.31 (d,
J = 8.1 Hz, 1H), 7.82 (dt, J = 7.1, 3.5 Hz, 2H), 7.79–7.67 (m, 2H), 7.64 (d, J = 2.2 Hz, 1H),
7.52–7.38 (m, 2H), 7.29 (dd, J = 13.5, 6.0 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.86 (d,
J = 8.6 Hz, 1H), 5.24 (dd, J = 10.6, 5.9 Hz, 1H), 3.84 (s, 3H), 3.68 (qd, J = 14.3, 8.3 Hz, 2H),
2.20 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 189.45, 167.81, 166.20, 160.89, 137.97, 136.49,
134.63, 133.53, 131.43, 129.33, 129.13, 129.08, 125.64, 124.97, 124.82, 123.82, 120.70, 112.27,
56.30, 55.79, 33.40, 19.22; HRMS(ESI): m/z [M + H]+calcd. for C26H23N2O5S+: 475.1322,
found: 475.1448.
(S)-N-(3-(3-Formylphenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3b). 3b was obtained
as an oil. 1H NMR (500 MHz, CDCl3) δ 9.88 (s, 1H), 8.95 (s, 1H), 8.33 (d, J = 8.2 Hz, 1H),
7.81 (dt, J = 7.4, 3.7 Hz, 2H), 7.76–7.71 (m, 3H), 7.68 (d, J = 7.6 Hz, 1H), 7.52 (d, J = 7.6 Hz,
1H), 7.45 (t, J = 8.5 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.31 (t, J = 7.8 Hz, 1H), 7.07 (t, J = 7.6 Hz,
1H), 5.33 (dd, J = 10.9, 5.7 Hz, 1H), 3.80 (ddd, J = 25.2, 14.3, 8.4 Hz, 2H), 2.18 (s, 3H); 13C
NMR (126 MHz, CDCl3) δ 192.11, 167.76, 166.03, 138.13, 137.90, 136.85, 135.14, 134.73,
133.56, 131.33, 130.59, 129.57, 129.39, 128.34, 125.59, 125.04, 123.83, 120.66, 56.01, 34.14, 19.22;
HRMS(ESI): m/z [M + H]+calcd. for C25H21N2O4S+: 445.1217, found: 445.1223.
(S)-N-(3-(4-Formylphenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3c). 3c was obtained
as an oil. 1H NMR (500 MHz, CDCl3) δ 9.91 (d, J = 11.3 Hz, 1H), 8.94 (s, 1H), 8.32 (d,
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J = 8.2 Hz, 1H), 7.81 (dt, J = 7.5, 3.8 Hz, 2H), 7.78–7.70 (m, 4H), 7.44 (d, J = 7.7 Hz, 1H), 7.39
(d, J = 7.9 Hz, 2H), 7.31 (t, J = 7.8 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 5.34 (dd, J = 10.7, 6.0 Hz,
1H), 3.87–3.72 (m, 2H), 2.17 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 191.94, 167.71, 165.95,
144.18, 137.87, 135.37, 134.77, 133.57, 131.28, 130.25, 129.78, 129.41, 125.57, 125.07, 123.85,
120.63, 55.76, 34.56, 19.21; HRMS(ESI): m/z [M + H]+calcd. for C25H21N2O4S+: 445.1217,
found: 445.1221.
(S)-N-(3-(4-(Benzyloxy)-3-formylphenyl)-2-phthalimidopropionyl)-2-methylthioaniline(3d). 3d
was obtained as a solid. 1H NMR (500 MHz, CDCl3) δ 10.40 (s, 1H), 8.94 (s, 1H), 8.32 (d,
J = 8.2 Hz, 1H), 7.82 (dt, J = 7.3, 3.7 Hz, 2H), 7.76–7.70 (m, 2H), 7.67 (d, J = 2.1 Hz, 1H),
7.47–7.41 (m, 2H), 7.38 (d, J = 4.3 Hz, 4H), 7.36–7.32 (m, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.06
(t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.6 Hz, 1H), 5.24 (dd, J = 10.7, 5.7 Hz, 1H), 5.10 (s, 2H), 3.68
(ddd, J = 25.1, 14.4, 8.3 Hz, 2H), 2.20 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 189.36, 167.80,
166.18, 160.11, 137.96, 136.45, 136.03, 134.63, 133.55, 131.43, 129.52, 129.35, 128.91, 128.83,
128.41, 127.42, 125.61, 125.16, 124.97, 123.83, 120.69, 70.62, 56.27, 33.43, 19.23; HRMS(ESI):
m/z [M + H]+calcd. for C32H27N2O5S+: 551.1635, found: 551.1674.
(S)-N-(3-((4-Acetylphenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3e). 3e was obtained
as an oil. 1H NMR (500 MHz, CDCl3) δ 8.95 (s, 1H), 8.33 (d, J = 8.1 Hz, 1H), 7.81 (dt, J = 9.7,
4.8 Hz, 3H), 7.79 (s, 1H), 7.73 (dd, J = 5.3, 3.1 Hz, 2H), 7.44 (d, J = 7.6 Hz, 1H), 7.31 (t,
J = 8.4 Hz, 3H), 7.07 (t, J = 7.5 Hz, 1H), 5.70–4.91 (m, 1H), 4.21–3.39 (m, 2H), 2.52 (s, 3H),
2.18 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 197.86, 167.76, 166.08, 142.55, 137.93, 136.05,
134.73, 133.60, 131.34, 129.42, 129.31, 128.91, 125.56, 125.04, 123.85, 120.64, 55.88, 34.36, 26.70,
19.24; HRMS(ESI): m/z [M + H]+calcd. for C26H23N2O4S+: 459.1373, found: 459.1376.
(S)-N-(3-(3-Acetylphenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3f). 3f was obtained as
an oil. 1H NMR (500 MHz, CDCl3) δ 8.96 (s, 1H), 8.33 (d, J = 8.2 Hz, 1H), 7.84–7.79 (m, 2H),
7.78 (s, 1H), 7.76–7.70 (m, 3H), 7.44 (d, J = 7.7 Hz, 2H), 7.35–7.28 (m, 2H), 7.07 (td, J = 7.6,
1.0 Hz, 1H), 5.32 (dd, J = 10.9, 5.7 Hz, 1H), 3.78 (ddd, J = 25.2, 14.3, 8.4 Hz, 2H), 2.47 (s, 3H),
2.19 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 197.92, 167.78, 166.15, 137.92, 137.54, 137.43,
134.70, 133.79, 133.52, 131.37, 129.36, 129.16, 129.03, 127.08, 125.63, 125.02, 123.79, 120.70,
56.13, 34.25, 26.71, 19.21; HRMS(ESI): m/z [M + H]+calcd. for C26H23N2O4S+: 459.1373,
found: 459.1378.
(S)-N-(3-(3-(Benzyloxy)phenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3g). 3g was ob-
tained as an oil. 1H NMR (400 MHz, CDCl3) δ 8.96 (s, 1H), 8.34 (d, J = 8.1 Hz, 1H), 7.86–7.79
(m, 2H), 7.75–7.68 (m, 2H), 7.47–7.40 (m, 1H), 7.37–7.33 (m, 4H), 7.33–7.27 (m, 2H), 7.13
(dd, J = 14.3, 6.4 Hz, 1H), 7.07 (td, J = 7.6, 1.2 Hz, 1H), 6.90–6.80 (m, 2H), 6.76 (dd, J = 8.2,
2.1 Hz, 1H), 5.33 (dd, J = 10.7, 5.9 Hz, 1H), 4.91 (q, J = 11.6 Hz, 2H), 3.70 (qd, J = 14.2,
8.3 Hz, 2H), 2.20 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 167.86, 166.46, 159.06, 138.31, 138.01,
136.92, 134.52, 133.51, 131.51, 129.87, 129.31, 128.63, 128.03, 127.54, 125.59, 124.91, 123.72,
121.59, 120.68, 115.25, 113.85, 69.93, 56.31, 34.49, 19.19; HRMS(ESI): m/z [M + H]+calcd. for
C31H27N2O4S+: 523.1686, found: 523.1734.
(S)-N-(3-(4-(Benzyloxy)phenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3h). 3h was ob-
tained as an oil. 1H NMR (500 MHz, CDCl3) δ 8.96 (s, 1H), 8.34 (d, J = 8.2 Hz, 1H), 7.86–7.79
(m, 2H), 7.75–7.69 (m, 2H), 7.45 (d, J = 7.6 Hz, 1H), 7.39–7.32 (m, 4H), 7.30 (dd, J = 10.4,
4.8 Hz, 2H), 7.14 (d, J = 8.5 Hz, 2H), 7.06 (t, J = 7.6 Hz, 1H), 6.81 (d, J = 8.6 Hz, 2H), 5.27 (dd,
J = 10.6, 6.1 Hz, 1H), 4.96 (s, 2H), 3.74–3.60 (m, 2H), 2.20 (s, 3H); 13C NMR (126 MHz, CDCl3)
δ 167.92, 166.58, 157.84, 138.08, 137.00, 134.50, 133.55, 131.53, 130.08, 129.33, 128.93, 128.66,
128.06, 127.58, 125.58, 124.89, 123.72, 120.71, 115.19, 70.04, 56.56, 33.67, 19.21; HRMS(ESI):
m/z [M + H]+ calcd. for C31H27N2O4S+: 523.1686, found: 523.1700.
(S)-N-(3-(3,4-Dimethoxyphenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3i). 3i was ob-
tained as a solid. 1H NMR (500 MHz, CDCl3) δ 8.98 (s, 1H), 8.33 (d, J = 8.2 Hz, 1H), 7.81
(dt, J = 7.5, 3.8 Hz, 2H), 7.76–7.69 (m, 2H), 7.44 (d, J = 7.7 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H),
7.06 (t, J = 7.6 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.69 (d, J = 7.9 Hz, 2H), 5.29 (dd, J = 10.9,
6.0 Hz, 1H), 3.77 (s, 3H), 3.70 (s, 3H), 3.69–3.60 (m, 2H), 2.21 (s, 3H); 13C NMR (126 MHz,
CDCl3) δ 167.93, 166.59, 148.94, 147.94, 138.03, 134.57, 133.48, 131.51, 129.31, 129.03, 125.64,
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124.93, 123.69, 121.20, 120.73, 111.84, 111.38, 56.53, 55.87, 55.80, 34.03, 19.16; HRMS(ESI):
m/z [M + H]+calcd. for C26H25N2O5S+: 477.1479, found: 477.1492.
(S)-N-(3-(3-(Methoxycarbonyl)phenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3j). 3j was
obtained as an oil. 1H NMR (500 MHz, CDCl3) δ 8.95 (s, 1H), 8.33 (d, J = 8.2 Hz, 1H), 7.89
(s, 1H), 7.82 (dt, J = 9.7, 4.9 Hz, 3H), 7.77–7.70 (m, 2H), 7.43 (t, J = 8.0 Hz, 2H), 7.30 (dt,
J = 15.8, 7.9 Hz, 2H), 7.06 (t, J = 7.6 Hz, 1H), 5.31 (dd, J = 10.8, 5.6 Hz, 1H), 3.83 (s, 3H),
3.76 (ddd, J = 25.1, 14.3, 8.4 Hz, 2H), 2.19 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 167.78,
166.83, 166.17, 137.97, 137.25, 134.60, 133.58, 131.42, 130.68, 130.18, 129.37, 128.93, 128.47,
125.58, 124.98, 123.79, 120.68, 56.19, 52.22, 34.19, 19.22; HRMS(ESI): m/z [M + H]+calcd. for
C26H21N2O5S+: 475.1322, found: 475.1326.
(S)-N-(3-(4-(Benzyloxy)-3-(methoxycarbonyl)phenyl)-2-phthalimidopropionyl)-2-methylthioaniline
(3k). 3k was obtained as an oil. 1H NMR (500 MHz, CDCl3) δ 8.94 (s, 1H), 8.33 (d, J = 8.2 Hz,
1H), 7.85–7.79 (m, 2H), 7.76–7.70 (m, 2H), 7.65 (d, J = 2.3 Hz, 1H), 7.47–7.40 (m, 3H), 7.35 (dd,
J = 10.3, 4.8 Hz, 2H), 7.33–7.27 (m, 3H), 7.06 (td, J = 7.6, 1.3 Hz, 1H), 6.88 (d, J = 8.6 Hz, 1H),
5.26 (dd, J = 10.6, 6.0 Hz, 1H), 5.09 (s, 2H), 3.79 (s, 3H), 3.67 (qd, J = 14.4, 8.3 Hz, 2H), 2.20
(s, 3H); 13C NMR (126 MHz, CDCl3) δ 167.85, 166.30, 166.24, 157.32, 138.01, 136.73, 134.58,
133.97, 133.56, 132.37, 131.49, 129.35, 128.84, 128.63, 127.88, 126.89, 125.61, 124.95, 123.80,
120.78, 120.71, 114.41, 70.71, 56.28, 52.06, 33.41, 19.21; HRMS(ESI): m/z [M + H]+calcd. for
C33H29N2O6S+: 581.1741, found: 581.1753.
(S)-N-(3-(3-(Benzyloxy)-4-(methoxycarbonyl)phenyl)-2-phthalimidopropionyl)-2-methylthioaniline
(3l). 3l was obtained as an oil. 1H NMR (500 MHz, CDCl3) δ 8.95 (s, 1H), 8.33 (d, J = 8.1 Hz,
1H), 7.87–7.80 (m, 2H), 7.73 (td, J = 5.2, 2.1 Hz, 2H), 7.70 (t, J = 5.5 Hz, 1H), 7.45 (d, J = 7.5 Hz,
3H), 7.37 (dd, J = 10.3, 4.7 Hz, 2H), 7.34–7.27 (m, 2H), 7.07 (td, J = 7.6, 1.3 Hz, 1H), 6.90 (s,
1H), 6.88 (d, J = 7.9 Hz, 1H), 5.34 (dd, J = 9.5, 7.3 Hz, 1H), 5.02 (dd, J = 41.7, 11.9 Hz, 2H),
3.83 (s, 3H), 3.74 (dd, J = 12.0, 4.7 Hz, 2H), 2.19 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 167.80,
166.51, 166.13, 158.58, 143.11, 137.92, 136.65, 134.75, 133.55, 132.50, 131.39, 129.39, 128.64,
127.90, 126.92, 125.62, 125.05, 123.86, 121.26, 120.67, 119.34, 114.41, 70.69, 55.75, 52.05, 34.52,
19.20; HRMS(ESI): m/z [M + H]+calcd. for C33H29N2O6S+: 581.1741, found: 581.1752.
(S)-N-(3-(3-Cyano-4-methoxyphenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3m). 3m was
obtained as a solid. 1H NMR (500 MHz, CDCl3) δ 8.91 (s, 1H), 8.30 (d, J = 8.2 Hz, 1H),
7.84 (dt, J = 7.4, 3.7 Hz, 2H), 7.79–7.73 (m, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 1.8 Hz,
1H), 7.30 (t, J = 7.8 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.84 (d, J = 8.7 Hz, 1H), 5.22 (dd,
J = 10.8, 5.7 Hz, 1H), 3.84 (s, 3H), 3.66 (ddd, J = 25.3, 14.4, 8.3 Hz, 2H), 2.18 (s, 3H); 13C NMR
(126 MHz, CDCl3) δ 167.76, 165.92, 160.36, 137.79, 135.05, 134.83, 134.06, 133.47, 131.26,
129.48, 129.33, 125.63, 125.07, 123.91, 120.65, 116.21, 111.81, 101.95, 56.13, 55.96, 33.15, 19.17;
HRMS(ESI): m/z [M + H]+calcd. for C26H22N3O4S+: 472.1326, found: 472.1341.
(S)-N-(3-(4-Bromophenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3n). 3n was obtained
as an oil. 1H NMR (500 MHz, CDCl3) δ 8.93 (s, 1H), 8.32 (d, J = 8.2 Hz, 1H), 7.83 (dt,
J = 7.2, 3.6 Hz, 2H), 7.78–7.70 (m, 2H), 7.44 (d, J = 7.6 Hz, 1H), 7.32 (d, J = 8.3 Hz, 2H),
7.30 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 8.3 Hz, 2H), 7.07 (t, J = 7.6 Hz, 1H), 5.27 (dd, J = 10.3,
6.4 Hz, 1H), 3.73–3.64 (m, 2H), 2.19 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 167.82, 166.19,
137.95, 135.82, 134.70, 133.59, 131.95, 131.39, 130.77, 129.40, 125.55, 125.01, 123.85, 121.09,
120.65, 56.03, 33.86, 19.24; HRMS(ESI): m/z [M + H]+calcd. for C24H20BrN2O3S+: 495.0373,
found: 495.0375.
(S)-N-(3-(4-Iodophenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3o). 3o was obtained as an
oil. 1H NMR (400 MHz, CDCl3) δ 8.92 (s, 1H), 8.31 (d, J = 8.2 Hz, 1H), 7.82 (dt, J = 7.1, 3.6 Hz,
2H), 7.77–7.71 (m, 2H), 7.52 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 7.7 Hz, 1H), 7.30 (t, J = 7.8 Hz,
1H), 7.06 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 8.2 Hz, 2H), 5.32–5.23 (m, 1H), 3.75–3.59 (m, 2H),
2.18 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 167.82, 166.18, 137.88, 136.47, 134.68, 133.54,
131.37, 131.03, 129.37, 125.53, 124.99, 123.84, 120.64, 92.62, 55.97, 33.95, 19.22; HRMS(ESI):
m/z [M + H]+calcd. for C24H20IN2O3S+: 543.0234, found: 543.0233.
(S)-N-(3-(3-Nitrophenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3p). 3p was obtained
as a solid. 1H NMR (400 MHz, CDCl3) δ 8.93 (s, 1H), 8.32 (d, J = 8.2 Hz, 1H), 8.08 (s, 1H),
8.03 (d, J = 8.2 Hz, 1H), 7.83 (dt, J = 7.0, 3.5 Hz, 2H), 7.79–7.71 (m, 2H), 7.60 (d, J = 7.7 Hz,
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1H), 7.42 (dd, J = 16.3, 8.1 Hz, 2H), 7.31 (t, J = 7.8 Hz, 1H), 7.08 (td, J = 7.6, 1.1 Hz, 1H),
5.32 (dd, J = 10.8, 5.6 Hz, 1H), 3.83 (ddd, J = 25.2, 14.4, 8.2 Hz, 2H), 2.18 (s, 3H); 13C NMR
(126 MHz, CDCl3) δ 167.70, 165.71, 148.45, 139.13, 137.79, 135.30, 134.88, 133.57, 131.24,
129.82, 129.43, 125.59, 125.13, 124.07, 123.95, 122.36, 120.64, 55.74, 34.07, 19.23; HRMS(ESI):
m/z [M + H]+calcd. for C24H20N3O5S+: 462.1118, found: 462.1161.
(S)-N-(3-(4-tert-Butoxycarbonylaminophenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3q).
3q was obtained as a solid. 1H NMR (400 MHz, CDCl3) δ 8.96 (s, 1H), 8.33 (d, J = 8.2 Hz,
1H), 7.81 (dt, J = 7.1, 3.6 Hz, 2H), 7.75–7.68 (m, 2H), 7.44 (d, J = 7.7 Hz, 1H), 7.30 (t, J = 7.8 Hz,
1H), 7.16 (dd, J = 25.0, 8.4 Hz, 4H), 7.06 (td, J = 7.7, 1.2 Hz, 1H), 6.37 (s, 1H), 5.27 (t, J = 8.4 Hz,
1H), 3.65 (t, J = 11.5 Hz, 2H), 2.20 (s, 3H), 1.47 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 167.90,
166.53, 152.72, 138.07, 137.33, 134.53, 133.57, 131.50, 131.11, 129.58, 129.35, 125.58, 124.90,
123.76, 120.70, 118.69, 80.55, 56.45, 33.76, 28.43, 19.22; HRMS(ESI): m/z [M + H]+calcd. for
C29H30N3O5S+: 532.1901, found: 532.1905.
(S)-N-(3-(4-Bromo-3-formylphenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3r). 3r was
obtained as an oil. 1H NMR (400 MHz, CDCl3) δ 10.22 (s, 1H), 8.91 (s, 1H), 8.31 (t, J = 8.1 Hz,
1H), 7.87–7.81 (m, 2H), 7.78–7.72 (m, 3H), 7.50 (d, J = 8.2 Hz, 1H), 7.43 (d, J = 7.8 Hz, 1H),
7.35 (dd, J = 8.2, 2.3 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 7.07 (td, J = 7.6, 1.2 Hz, 1H), 5.27
(dd, J = 10.6, 5.8 Hz, 1H), 3.73 (qd, J = 14.1, 8.3 Hz, 2H), 2.18 (s, 3H); 13C NMR (126 MHz,
CDCl3) δ 191.51, 167.71, 165.80, 137.79, 137.40, 136.01, 134.80, 134.37, 133.58, 133.54, 131.28,
130.39, 129.38, 125.68, 125.59, 125.08, 123.94, 120.65, 55.69, 33.66, 19.23; HRMS(ESI): m/z
[M + Na]+calcd. for C25H19BrN2O4SNa+: 545.0141, found: 545.0183.
(S)-N-(3-(3-Bromo-4-formylphenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3s). 3s was
obtained as an oil. 1H NMR (400 MHz, CDCl3) δ 10.22 (s, 1H), 8.91 (s, 1H), 8.30 (d,
J = 8.1 Hz, 1H), 7.84 (dt, J = 7.0, 3.5 Hz, 2H), 7.76 (dt, J = 7.8, 3.9 Hz, 3H), 7.53 (d, J = 5.9 Hz,
1H), 7.43 (d, J = 7.7 Hz, 1H), 7.35–7.27 (m, 2H), 7.07 (td, J = 7.6, 1.2 Hz, 1H), 5.31 (dd,
J = 10.8, 5.6 Hz, 1H), 3.95–3.56 (m, 2H), 2.17 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 191.50,
167.68, 165.64, 145.60, 137.74, 134.89, 134.47, 133.53, 132.42, 131.22, 130.21, 129.41, 128.65,
127.41, 125.61, 125.14, 123.97, 120.63, 55.39, 34.15, 19.21; HRMS(ESI): m/z [M + H]+calcd for
C25H22BrN2O4S+: 525.0478, found: 525.0377.
(S)-N-(3-(4-Bromo-2-methoxypheny)-2-phthalimidopropionyl)-2-methylthioaniline (3t). 3t was
obtained as an oil. 1H NMR (400 MHz, CDCl3) δ 8.92 (s, 1H), 8.35 (d, J = 8.2 Hz, 1H),
7.85–7.79 (m, 2H), 7.78–7.70 (m, 2H), 7.45 (d, J = 7.7 Hz, 1H), 7.34–7.27 (m, 1H), 7.06 (td,
J = 7.6, 1.2 Hz, 1H), 6.93 (d, J = 8.1 Hz, 2H), 6.85 (dd, J = 7.9, 1.7 Hz, 1H), 5.44 (dd, J = 10.8,
5.0 Hz, 1H), 3.80 (s, 3H), 3.64 (ddd, J = 24.6, 13.8, 7.9 Hz, 2H), 2.22 (s, 3H); 13C NMR
(126 MHz, CDCl3) δ 167.88, 166.72, 158.38, 138.18, 134.47, 133.60, 132.17, 131.59, 129.42,
125.30, 124.78, 124.32, 123.66, 121.75, 120.55, 114.13, 55.76, 54.05, 29.94, 19.24; HRMS(ESI):
m/z [M + H]+calcd. for C25H22BrN2O4S+: 525.0478, found: 525.0515.
(S)-N-(3-(5-Formyl-2-methoxyphenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3u). 3u was
obtained as an oil. 1H NMR (400 MHz, CDCl3) δ 9.68 (s, 1H), 8.95 (s, 1H), 8.35 (d, J = 8.2 Hz,
1H), 7.82–7.77 (m, 2H), 7.74–7.68 (m, 3H), 7.58 (d, J = 2.0 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H),
7.30 (t, J = 7.8 Hz, 1H), 7.06 (td, J = 7.6, 1.1 Hz, 1H), 6.92 (d, J = 8.5 Hz, 1H), 5.48 (dd, J = 10.9,
4.8 Hz, 1H), 3.90 (s, 3H), 3.87–3.76 (m, 1H), 3.66 (dd, J = 13.8, 11.0 Hz, 1H), 2.21 (s, 3H);
13C NMR (126 MHz, CDCl3) δ 190.72, 167.80, 166.55, 162.79, 138.08, 134.55, 133.55, 132.86,
131.44, 129.70, 129.39, 129.29, 126.26, 125.36, 124.83, 123.65, 120.56, 110.60, 56.02, 53.90, 30.21,
19.21; HRMS(ESI): m/z [M + H]+calcd. for C26H23N2O5S+: 475.1322, found: 475.1361.
(S)-N-(3-(2-(Benzyloxy)-5-formylphenyl)-2-phthalimidopropionyl)-2-methylthioaniline (3v). 3v
was obtained as an oil. 1H NMR (400 MHz, CDCl3) δ 9.68 (s, 1H), 8.86 (s, 1H), 8.32 (d,
J = 8.1 Hz, 1H), 7.76 (dt, J = 7.0, 3.6 Hz, 2H), 7.69 (tt, J = 5.6, 3.0 Hz, 3H), 7.60 (d, J = 2.0 Hz,
1H), 7.50 (d, J = 7.3 Hz, 2H), 7.46–7.36 (m, 3H), 7.31 (dd, J = 16.6, 7.7 Hz, 2H), 7.05 (td, J = 7.6,
1.3 Hz, 1H), 6.99 (d, J = 8.5 Hz, 1H), 5.55 (dd, J = 10.9, 4.8 Hz, 1H), 5.30–5.14 (m, 2H), 3.88 (dd,
J = 13.8, 4.8 Hz, 1H), 3.71 (dd, J = 13.8, 11.0 Hz, 1H), 2.15 (s, 3H); 13C NMR (126 MHz, CDCl3)
δ 190.65, 167.80, 166.40, 161.94, 138.02, 135.87, 134.49, 133.50, 133.02, 131.42, 131.26, 129.85,
129.32, 128.92, 128.42, 127.47, 126.47, 125.47, 124.82, 123.64, 120.62, 111.94, 70.85, 53.75, 30.38,
19.11;HRMS(ESI): m/z [M + H]+calcd. for C32H27N2O5S+: 551.1635, found: 551.1676.
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3.3. Synthesis of the Compounds 3a and 1

Methyl (S)-3-(4-methoxy-3-formylphenyl)-2-phthalimidopropionate (2a). 3a (3.0 g, 6.3 mmol),
dry methanol (600 mL), conc. H2SO4 (5.0 mL) were added to a 500-mL round bottom flask.
The mixture was stirred at 100 ◦C for 24 h under N2. After cooling to room temperature,
the resulting solution was evaporated, and the residue was diluted with ethyl acetate
(200 mL) and brine (100 mL).The organic layer was separated and washed successively
with water, saturated aqueous NaHCO3 and brine, dried over anhydrous Na2SO4, and
concentrated in vacuo. The organic layer was purified via column chromatography in a
petroleum ether/ethyl acetate mixture of2:1 to produce corresponding product2a (1.8 g,
77%) as a solid.1H NMR (500 MHz, CDCl3) δ 10.31 (s, 1H), 7.84–7.75 (m, 2H), 7.74–7.65
(m, 2H), 7.60 (d, J = 2.4 Hz, 1H), 7.37 (dd, J = 8.6, 2.4 Hz, 1H), 6.83 (d, J = 8.6 Hz, 1H), 5.08
(dd, J = 11.1, 5.1 Hz, 1H), 3.84 (s, 3H), 3.77 (s, 3H), 3.60–3.42 (m, 2H); 13C NMR (126 MHz,
CDCl3) δ 189.55, 169.24, 167.54, 160.85, 136.37, 134.35, 131.65, 129.23, 129.09, 124.79, 123.72,
112.12, 55.76, 53.32, 53.08, 33.81; HRMS(ESI): m/z [M + H]+calcd. for C20H18NO6

+: 368.1129,
found: 368.1221.

Methyl (S)-3-(4-methoxy-3-hydroxy-phenyl)-2-phthalimidopropionate (1). 2a (750 mg, 2.0 mmol),
dichloromethane (50 mL), and meta-chloroperoxybenzoic acid(m-CPBA,85% purity, 770 mg,
3.8 mmol) were added to a 250-mL round bottom flask. The mixture was stirred at room
temperature overnight. The resulting solution was diluted with dichloromethane(DCM,
300 mL), washed successively with saturated aqueous Na2S2O3 and brine, dried over
anhydrous Na2SO4, and concentrated in vacuo. The crude intermediate was used for the
next step without further purification. A mixture of the concentrated residueandNaHCO3
(3.4 g, 40 mmol) in tetrahydrofuran (THF,40 mL) and water (20 mL) was stirred at room
temperature overnight. Then, the resulting solution was evaporated, and the residue was
adjusted to pH<1 with 2 M HCl. The mixture was extracted with ethyl acetate (200 mL). The
organic phase was washed with brine, dried over anhydrous Na2SO4, and concentrated in
vacuo. This mixture was purified via column chromatography in a petroleum ether/ethyl
acetate mixture of3:1 to produce corresponding product1 (540mg, 74% yield for two steps)
as a solid.1H NMR (400 MHz, CDCl3) δ 7.85–7.73 (m, 2H), 7.74–7.60 (m, 2H), 6.72 (d,
J = 1.5 Hz, 1H), 6.68–6.59 (m, 2H), 5.54 (s, 1H), 5.09 (dd, J = 11.2, 5.2 Hz, 1H), 3.76 (s, 6H),
3.46 (qd, J = 14.4, 8.2 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 169.51, 167.61, 145.51, 134.18,
131.73, 129.96, 123.61, 120.40, 115.19, 110.78, 55.90, 53.55, 52.97, 34.11; HRMS(ESI): m/z
[M + H]+calcd. for C19H18NO6

+: 356.1129, found: 356.1138.

3.4. Synthesis of the 4-Aryloxyphenylalanine Derivatives 6a–l

A Schlenk tube was charged with 1 (0.56 mmol), aryl iodide (2.0 equiv., or 3.0 equiv.
used for synthesis of 6j), CuI (1.0 equiv.), N,N-dimethylglycine hydrochloride salt (3.0 equiv.),
Cs2CO3 (5.0 equiv.), and 5.6 mL of 1,4-dioxane, evacuated, and backfilled with N2. The
reaction mixture was stirred at 90 ◦C for 20 h. The suspension was filtered, and the filtrate
was concentrated, followed by column chromatography on silica gel (eluting with 1:10 to
1:5 ethyl acetate/petroleum ether) to provide the desired product.
(S)-3-(3-{4-[(R)-2-Benzyloxycarbonyl-2-tert-butoxycarbonylamino]ethyl}phenoxy)-4-methoxyphenyl)-2-
phthalimido-propionic acid methyl ester (6a). 6a was obtained as an oil. 1H NMR (400 MHz,
CDCl3) δ 7.77 (dt, J = 5.3, 2.7 Hz, 2H), 7.73–7.65 (m, 2H), 7.40–7.28 (m, 5H), 6.92 (d, J = 8.3 Hz,
1H), 6.81 (d, J = 8.3 Hz, 3H), 6.73 (s, 1H), 6.60 (d, J = 7.6 Hz, 2H), 5.14 (q, J = 12.3 Hz, 2H),
5.07–5.01 (m, 1H), 4.99 (d, J = 3.9 Hz, 1H), 4.64–4.51 (m, 1H), 3.75 (s, 3H), 3.72 (s, 3H),
3.53–3.35 (m, 2H), 3.01 (d, J = 5.7 Hz, 2H), 1.42 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 171.88,
169.30, 167.46, 156.96, 155.27, 150.35, 144.75, 135.34, 134.30, 131.66, 130.46, 129.74, 129.68,
128.75, 128.66, 125.28, 123.68, 121.83, 121.75, 117.06, 112.97, 80.11, 67.25, 56.01, 54.63, 53.49,
53.02, 37.56, 33.94, 28.45; HRMS(ESI): m/z [M + Na]+calcd. for C40H40N2O10Na+: 731.2575,
found: 731.2584.
(S)-3-(3-{4-[(S)-2-Benzyloxycarbonyl-2-tert-butoxycarbonylamino]ethyl}phenoxy)-4-methoxyphenyl)-
2-phthalimido-propionic acid methyl ester (6b). 6b was obtained as an oil. 1H NMR (400 MHz,
CDCl3) δ 7.77 (dt, J = 5.3, 2.7 Hz, 2H), 7.74–7.67 (m, 2H), 7.40–7.28 (m, 5H), 6.92 (d, J = 8.3 Hz,
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1H), 6.88–6.78 (m, 3H), 6.72 (s, 1H), 6.59 (d, J = 7.5 Hz, 2H), 5.23–5.07 (m, 2H), 5.07–4.94
(m, 2H), 4.65–4.49 (m, 1H), 3.75 (s, 3H), 3.72 (s, 3H), 3.55–3.33 (m, 2H), 3.00 (d, J = 5.7 Hz,
2H), 1.42 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 171.86, 169.30, 167.46, 156.95, 155.27, 150.35,
144.69, 135.34, 134.30, 131.66, 130.46, 129.74, 129.69, 128.74, 128.66, 128.63, 125.27, 123.68,
121.82, 121.74, 117.02, 112.97, 80.07, 67.24, 56.01, 54.60, 53.46, 53.01, 37.54, 33.94, 28.44;
HRMS(ESI): m/z [M + Na]+calcd. for C40H40N2O10Na+: 731.2575, found: 731.2577.
(S)-3-(3-{4-[(R)-2-(2-trimethylsilylethoxycarbonyl)-2-tert-butoxycarbonylamino]ethyl}phenoxy)-4-
methoxyphenyl)-2-phthalimido-propionic Acid Methyl Ester (6c). 6c was obtained as an oil. 1H
NMR (400 MHz, CDCl3) δ 7.78 (dt, J = 7.6, 2.9 Hz, 2H), 7.75–7.69 (m, 2H), 6.91 (dd, J = 8.3,
1.8 Hz, 3H), 6.80 (d, J = 8.4 Hz, 1H), 6.73 (s, 1H), 6.65 (d, J = 7.1 Hz, 2H), 5.04 (dd, J = 11.4,
5.1 Hz, 1H), 4.97 (d, J = 7.9 Hz, 1H), 4.49 (d, J = 5.4 Hz, 1H), 4.27–4.10 (m, 2H), 3.75 (s, 3H),
3.72 (d, J = 1.4 Hz, 3H), 3.45 (ddd, J = 25.8, 14.4, 8.3 Hz, 2H), 3.11–2.87 (m, 2H), 1.42 (s, 9H),
0.98 (dd, J = 9.7, 7.6 Hz, 2H), 0.04 (d, J = 0.7 Hz, 9H); 13C NMR (126 MHz, CDCl3) δ 172.15,
169.30, 167.46, 156.91, 155.28, 150.34, 144.78, 134.31, 131.69, 130.49, 130.08, 129.70, 125.23,
123.69, 121.76, 121.69, 117.04, 112.99, 79.97, 63.88, 56.03, 54.67, 53.49, 53.01, 37.64, 33.95,
28.46, 17.49, −1.38; HRMS(ESI): m/z [M + Na]+calcd. for C38H46N2O10SiNa+: 741.2814,
found: 741.2805.
(S)-3-(3-{4-[(R)-2-Allyloxycarbonyl-2-tert-butoxycarbonylamino]ethyl}phenoxy)-4-methoxyphenyl)-
2-phthalimido-propionic acid methyl ester (6d). 6d was obtained as an oil. 1H NMR (400 MHz,
CDCl3) δ 7.78 (dt, J = 7.5, 2.9 Hz, 2H), 7.75–7.70 (m, 2H), 6.91 (d, J = 8.3 Hz, 3H), 6.80 (d,
J = 8.4 Hz, 1H), 6.73 (d, J = 1.3 Hz, 1H), 6.65 (dd, J = 8.6, 2.4 Hz, 2H), 5.87 (ddt, J = 16.9, 11.3,
5.8 Hz, 1H), 5.28 (dd, J = 22.7, 13.8 Hz, 2H), 5.04 (dd, J = 11.4, 5.1 Hz, 1H), 4.99 (d, J = 5.0 Hz,
1H), 4.60 (d, J = 5.8 Hz, 2H), 4.56 (s, 1H), 3.75 (s, 3H), 3.72 (s, 3H), 3.45 (dd, J = 16.9, 8.3 Hz,
2H), 3.02 (d, J = 5.3 Hz, 2H), 1.42 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 171.75, 169.30,
167.46, 156.96, 155.27, 150.34, 144.76, 134.31, 131.68, 130.48, 129.89, 129.70, 125.26, 123.69,
121.76, 121.69, 119.05, 117.09, 112.99, 80.08, 66.06, 56.03, 54.64, 53.47, 53.02, 37.65, 33.95,
28.45; HRMS(ESI): m/z [M + Na]+calcd. for C36H38N2O10Na+: 681.2419, found: 681.2408.
(S)-Methyl 2-phthalimido-3-(3-(4-formylphenoxy)-4-methoxyphenyl)-propanoate (6e). 6e was
obtained as an oil. 1H NMR (400 MHz, CDCl3) δ 9.86 (s, 1H), 7.77 (dt, J = 6.9, 3.6 Hz,
2H), 7.74–7.68 (m, 2H), 7.68–7.62 (m, 2H), 7.04 (dd, J = 8.4, 2.1 Hz, 1H), 6.86 (dd, J = 5.3,
3.1 Hz, 2H), 6.76 (d, J = 8.7 Hz, 2H), 5.07 (dd, J = 11.4, 5.2 Hz, 1H), 3.77 (s, 3H), 3.69 (s,
3H), 3.50 (qd, J = 14.4, 8.3 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ 190.90, 169.20, 167.51,
163.51, 150.60, 142.83, 134.41, 131.90, 131.59, 130.88, 130.05, 126.84, 123.69, 123.19, 116.20,
113.24, 55.98, 53.47, 53.09, 33.89; HRMS(ESI): m/z [M + H]+calcd. for C26H22NO7

+: 460.1391,
found: 460.1394.
(S)-Methyl 2-phthalimido-3-(3-(3-formylphenoxy)-4-methoxyphenyl)-propanoate (6f). 6f was
obtained as an oil. 1H NMR (400 MHz, CDCl3) δ 9.89 (s, 1H), 7.82–7.74 (m, 2H), 7.73–7.67
(m, 2H), 7.51 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.20 (dd, J = 2.3, 1.4 Hz, 1H),
7.08–7.02 (m, 1H), 7.00–6.94 (m, 1H), 6.83 (d, J = 8.6 Hz, 2H), 5.06 (dd, J = 11.3, 5.2 Hz,
1H), 3.76 (s, 3H), 3.71 (s, 3H), 3.56–3.40 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 192.02,
169.25, 167.51, 158.89, 150.52, 143.76, 137.94, 134.34, 131.61, 130.21, 129.96, 126.24, 123.68,
122.87, 122.45, 117.03, 113.14, 55.99, 53.41, 53.06, 33.94; HRMS(ESI): m/z [M + H]+calcd. for
C26H22NO7

+: 460.1391, found: 460.1394.
(S)-Methyl2-phthalimido-3-(3-(3-formyl-4-methoxyphenoxy)-4-methoxyphenyl)-propanoate(6g). 6g
was obtained as an oil. 1H NMR (400 MHz, CDCl3) δ 10.38 (s, 1H), 7.83–7.74 (m, 2H),
7.74–7.67 (m, 2H), 7.23 (d, J = 3.1 Hz, 1H), 7.08 (dd, J = 9.0, 3.2 Hz, 1H), 6.91–6.85 (m, 2H),
6.79 (d, J = 8.4 Hz, 1H), 6.67 (d, J = 2.1 Hz, 1H), 5.04 (dd, J = 11.3, 5.3 Hz, 1H), 3.92 (s, 3H),
3.75 (s, 3H), 3.74 (s, 3H), 3.44 (qd, J = 14.4, 8.3 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ
189.25, 169.32, 167.49, 157.75, 151.28, 149.93, 145.40, 134.27, 131.62, 129.69, 125.59, 125.41,
125.07, 123.67, 120.62, 116.84, 113.04, 112.90, 56.20, 56.00, 53.30, 53.00, 33.93; HRMS(ESI):
m/z [M + H]+calcd. for C27H24NO8

+: 490.1496, found: 490.1510.
(S)-Methyl 2-phthalimido-3-(4-methoxy-3-(4-nitrophenoxy)phenyl)-propanoate (6h). 6h was ob-
tained as an oil. 1H NMR (400 MHz, CDCl3) δ 8.04–7.95 (m, 2H), 7.80–7.75 (m, 2H), 7.75–7.70
(m, 2H), 7.07 (dd, J = 8.4, 2.1 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 6.73–6.65 (m, 2H), 5.07 (dd,
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J = 11.4, 5.2 Hz, 1H), 3.77 (s, 3H), 3.69 (s, 3H), 3.51 (qd, J = 14.4, 8.3 Hz, 2H); 13C NMR
(126 MHz, CDCl3) δ 169.13, 167.49, 163.59, 150.51, 142.43, 142.26, 134.47, 131.54, 130.17,
127.29, 125.83, 123.70, 123.28, 115.76, 113.30, 55.94, 53.45, 53.12, 33.87; HRMS(ESI): m/z
[M + H]+calcd. for C25H21N2O8

+: 477.1292, found: 477.1304.
(S)-Methyl 2-phthalimido-3-(3-(4-cyanophenoxy)-4-methoxyphenyl)-propanoate (6i). 6i was ob-
tained as an oil. 1H NMR (400 MHz, CDCl3) δ 7.81–7.69 (m, 4H), 7.44–7.35 (m, 2H), 7.03
(dd, J = 8.4, 2.1 Hz, 1H), 6.85 (t, J = 4.9 Hz, 2H), 6.75–6.64 (m, 2H), 5.06 (dd, J = 11.4, 5.2 Hz,
1H), 3.77 (s, 3H), 3.69 (s, 3H), 3.49 (qd, J = 14.4, 8.3 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ
169.14, 167.48, 161.89, 150.56, 142.51, 134.42, 133.97, 131.58, 130.12, 127.04, 123.68, 123.19,
119.12, 116.56, 113.25, 105.20, 55.95, 53.46, 53.10, 33.86; HRMS(ESI): m/z [M + H]+calcd. for
C26H21N2O6

+: 457.1394, found: 457.1401.
(S)-Methyl 2-phthalimido-3-(3-(4-iodophenoxy)-4-methoxyphenyl)-propanoate (6j). 6j was ob-
tained as an oil. 1H NMR (400 MHz, CDCl3) δ 7.83–7.68 (m, 4H), 7.40–7.32 (m, 2H), 6.96
(dd, J = 8.4, 2.1 Hz, 1H), 6.85–6.78 (m, 1H), 6.73 (d, J = 2.1 Hz, 1H), 6.49–6.41 (m, 2H), 5.04
(dd, J = 11.4, 5.2 Hz, 1H), 3.76 (s, 3H), 3.72 (s, 3H), 3.55–3.36 (m, 2H); 13C NMR (126 MHz,
CDCl3) δ 169.23, 167.48, 158.04, 150.39, 144.11, 138.34, 134.37, 131.60, 129.87, 125.86, 123.68,
122.07, 119.04, 113.10, 84.92, 56.02, 53.55, 53.06, 33.89; HRMS(ESI): m/z [M + H]+calcd. for
C25H21INO6

+: 558.0408, found: 558.0411.
(S)-Methyl 2-phthalimido-3-(3-(4-acetylphenoxy)-4-methoxyphenyl)-propanoate (6k). 6k was
obtained as an oil. 1H NMR (400 MHz, CDCl3) δ 7.81–7.75 (m, 3H), 7.71 (tt, J = 8.8, 2.5 Hz,
3H), 7.01 (dd, J = 8.4, 2.1 Hz, 1H), 6.85 (d, J = 8.1 Hz, 2H), 6.73–6.67 (m, 2H), 5.10–5.03
(m, 1H), 3.77 (s, 3H), 3.70 (s, 3H), 3.57–3.39 (m, 2H), 2.54 (s, 3H); 13C NMR (126 MHz,
CDCl3) δ 196.85, 169.22, 167.50, 162.31, 150.58, 143.11, 134.39, 131.57, 131.38, 130.54, 129.95,
126.55, 123.69, 123.00, 115.75, 113.18, 55.98, 53.47, 53.08, 33.90, 26.58; HRMS(ESI): m/z
[M + H]+calcd. for C27H24NO7

+: 474.1547, found: 474.1573.
(S)-Methyl 2-phthalimido-3-(3-(4-methoxycarbonyl-3-benzyloxyphenoxy)-4-methoxyphenyl)-propanoate
(6l). 6l was obtained as an oil. 1H NMR (400 MHz, CDCl3) δ 7.75 (dd, J = 5.5, 3.0 Hz,
2H), 7.67 (dd, J = 5.4, 3.1 Hz, 2H), 7.62 (d, J = 8.7 Hz, 1H), 7.45 (d, J = 7.3 Hz, 2H), 7.36 (t,
J = 7.4 Hz, 2H), 7.30 (d, J = 7.3 Hz, 1H), 6.99 (dd, J = 8.4, 2.1 Hz, 1H), 6.82 (dd, J = 8.3, 5.3 Hz,
2H), 6.49 (d, J = 2.3 Hz, 1H), 6.15 (dd, J = 8.7, 2.3 Hz, 1H), 5.08 (s, 2H), 5.07–5.01 (m, 1H), 3.88
(s, 3H), 3.77 (s, 3H), 3.64 (s, 3H), 3.55–3.39 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 169.21,
167.51, 166.29, 162.81, 160.25, 150.56, 143.14, 136.75, 134.38, 133.72, 131.56, 129.97, 128.64,
127.84, 126.95, 126.49, 123.67, 122.94, 113.97, 113.07, 107.60, 102.16, 70.47, 55.91, 53.54, 53.07,
51.89, 33.93; HRMS(ESI): m/z [M + H]+calcd. for C34H30NO9

+: 596.1915, found: 596.1930.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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