Tissue Extract from Brittle Star Undergoing Arm Regeneration Promotes Wound Healing in Rat
Abstract
:1. Introduction
2. Results
2.1. Species Identification Demonstrated That the Persian Gulf Brittle Star Was Ophiocoma Cynthiae
2.2. Amputated Arm of O. cynthiae Regenerated in 14 d
2.3. GC-MS Profile of O. cynthiae Extract Showed Proliferative and Migrative Compounds in 7d and 14d BSE Extracts
2.4. The 7 d and 14 d BSEs Did Not Have Negative Effects on Cell Viability
2.5. In Vitro Cell Migration Assay of Brittle Star Extract Showed the Migratory Effects of the 7 d and 14 d Extracts
2.6. Western Blot Profile of O. cynthiae Extracts Showed Different Expression Proteins
2.7. Three Bioactive Molecules in O. cynthiae Extracts Had the Highest Affinity to Apoptotic Peptides
2.8. In Vivo Wound Healing Model Evaluation
2.9. Hydroxyproline Measurement
3. Discussion
4. Materials and Methods
4.1. Ethical Approval Statements
4.2. Brittle Star Collection and Adaptation
4.3. Brittle Star Species Identification
4.4. Macroscopic and Histological Evaluation of Amputated Arm Regeneration of Brittle Stars
4.5. Brittle Star Extractions
4.6. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
4.7. MTT Assay
4.8. In Vitro Cell Migration Assay
4.9. Western Blot Analysis
4.10. Computational Details
4.11. Preparation of Therapeutic Gels
4.12. Animal Model of Wound Healing
4.13. Grouping and Treatment
4.14. Macroscopic Examination
4.15. Histological Examination
4.16. Measurement of Hydroxyproline
4.17. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watt, F.M. Mammalian skin cell biology: At the interface between laboratory and clinic. Science 2014, 346, 937–940. [Google Scholar] [CrossRef]
- Kanwar, A. Skin barrier function. Indian J. Med. Res. 2018, 147, 117. [Google Scholar] [CrossRef]
- Shedoeva, A.; Leavesley, D.; Upton, Z.; Fan, C. Wound healing and the use of medicinal plants. Evid. Based Complement. Alternat. Med. 2019, 2019, 2684108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grubbs, H.; Manna, B. Wound Physiology; StatPearls Publishing: Boca Raton, FL, USA, 2018. [Google Scholar]
- Borena, B.M.; Martens, A.; Broeckx, S.Y.; Meyer, E.; Chiers, K.; Duchateau, L.; Spaas, J.H. Regenerative skin wound healing in mammals: State-of-the-art on growth factor and stem cell based treatments. Cell. Physiol. Biochem. 2015, 36, 1–23. [Google Scholar] [CrossRef]
- Rowan, M.P.; Cancio, L.C.; Elster, E.A.; Burmeister, D.M.; Rose, L.F.; Natesan, S.; Chan, R.K.; Christy, R.J.; Chung, K.K. Burn wound healing and treatment: Review and advancements. Crit. Care 2015, 19, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, E.D.; Bledsoe, S.C.; Barker, J. Ambulatory management of burns. Am. Fam. Physician 2000, 62, 2015–2026. [Google Scholar] [PubMed]
- Singh, S.; Young, A.; McNaught, C.-E. The physiology of wound healing. Surgery 2017, 35, 473–477. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, W.; Yu, Q.; Qu, W.; Wang, Y.; Li, R. Functional biomaterials for treatment of chronic wound. Front. Bioeng. Biotechnol. 2020, 8, 516. [Google Scholar] [CrossRef]
- Heng, M.C. Wound healing in adult skin: Aiming for perfect regeneration. Int. J. Dermatol. 2011, 50, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; Francescon, M.; Drigo, D.; Salloum, G.; Baraziol, R.; Tesei, J.; Fraccalanza, E.; Barbone, F. The use of Integra dermal regeneration template versus flaps for reconstruction of full-thickness scalp defects involving the calvaria: A cost–benefit analysis. Aesthetic Plast. Surg. 2016, 40, 901–907. [Google Scholar] [CrossRef] [Green Version]
- Boyce, S.T.; Lalley, A.L. Tissue engineering of skin and regenerative medicine for wound care. Burn. Trauma 2018, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, R.F.; Bartolo, P.J. Traditional therapies for skin wound healing. Adv. Wound Care 2016, 5, 208–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poss, K.D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat. Rev. Genet. 2010, 11, 710–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carnevali, M.C. Regeneration in Echinoderms: Repair, regrowth, cloning. Invertebr. Surviv. J. 2006, 3, 64–76. [Google Scholar]
- Czarkwiani, A.; Ferrario, C.; Dylus, D.V.; Sugni, M.; Oliveri, P. Skeletal regeneration in the brittle star Amphiura filiformis. Front. Zool. 2016, 13, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biressi, A.C.M.; Zou, T.; Dupont, S.; Dahlberg, C.; Di Benedetto, C.; Bonasoro, F.; Thorndyke, M.; Carnevali, M.D.C. Wound healing and arm regeneration in Ophioderma longicaudum and Amphiura filiformis (Ophiuroidea, Echinodermata): Comparative morphogenesis and histogenesis. Zoomorphology 2010, 129, 1–19. [Google Scholar] [CrossRef]
- Ben Khadra, Y.; Ferrario, C.; Di Benedetto, C.; Said, K.; Bonasoro, F.; Candia Carnevali, M.D.; Sugni, M. Wound repair during arm regeneration in the red starfish E chinaster sepositus. Wound Repair Regen. 2015, 23, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Prithiviraj, N.; Gan, J.; Zhang, X.A.; Yan, J. Tissue extract fractions from starfish undergoing regeneration promote wound healing and lower jaw blastema regeneration of zebrafish. Sci. Rep. 2016, 6, 38693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abolhasani, I.; Baharara, J.; Mahdavi, S.N.; Amini, E. The regenerative properties of the extracted polysaccharide from Brittle star (Ophiocoma erinaceus) on cutaneous wound in male Wistar rat. Nova Biol. Reper. 2020, 7, 9–18. [Google Scholar] [CrossRef]
- Afzali, M.; Baharara, J.; Shahrokhabadi, K.; Amini, E. Effect of the Persian Gulf Brittle Star (Ophiocoma erinaceus) dichloromethane extract on induction of apoptosis on EL4 Cell Line. J. Rafsanjan Univ. Med. Sci. 2015, 14, 467–480. [Google Scholar]
- Amini, E.; Nabiuni, M.; Baharara, J.; Parivar, K.; Asili, J. Metastatic inhibitory and radical scavenging efficacies of saponins extracted from the brittle star (Ophiocoma erinaceus). Asian Pac. J. Cancer Prev. 2015, 16, 4751–4758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amini, E.; Nabiuni, M.; Baharara, J.; Parivar, K.; Asili, J. In-vitro pro apoptotic effect of crude saponin from Ophiocoma erinaceus against cervical cancer. Iran. J. Pharm. Res. 2017, 16, 266. [Google Scholar] [PubMed]
- Baharara, J.; Amini, E. Phytochemical screening, antioxidant effect and down regulation of TGF-β induced by Ophiocoma erinaceus Brittle star crude extract. Zahedan J. Res. Med. Sci. 2015, 17, e5194. [Google Scholar] [CrossRef] [Green Version]
- Baharara, J.; Amini, E.; Namvar, F. Evaluation of the anti-proliferative effects of Ophiocoma erinaceus methanol extract against human cervical cancer cells. Avicenna J. Med. Biotechnol. 2016, 8, 29. [Google Scholar] [PubMed]
- Baharara, J.; Amini, E.; Salek-Abdollahi, F. Anti-inflammatory properties of saponin fraction from Ophiocoma erinaceus. Iran. J. Fish. Sci. 2020, 19, 638–652. [Google Scholar]
- Baharara, J.; Mahdavi–Shahri, N.; Shaddel, N. The local effect of Persian Gulf brittle star (Ophiocoma erinaceus) alcoholic extract on cutaneous wound healing in Balb/C mouse. J. Birjand Univ. Med. Sci. 2014, 21, 312–323. [Google Scholar]
- Benavides-Serrato, M.; O’Hara, T.D. A new species in the Ophiocoma erinaceus complex from the South-west Pacific Ocean (Echinodermata: Ophiuroidea: Ophiocomidae). Mem. Mus. Vic. 2008, 65, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Olbers, J.M. Taxonomy, biodiversity and biogeography of the brittle stars (Echinodermata: Ophiuroidea) of South Africa; Thesis manuscript. OpenUSCT 2016. Available online: http://hdl.handle.net/11427/22906 (accessed on 3 December 2022).
- Pomory, C.M. Key to the common shallow-water brittle stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea. Caribb. J. Sci. 2007, 10, 1–42. [Google Scholar]
- Tyagi, S.C.; Kumar, S.; Katwa, L. Differential regulation of extracellular matrix metalloproteinase and tissue inhibitor by heparin and cholesterol in fibroblast cells. J. Mol. Cell. Cardiol. 1997, 29, 391–404. [Google Scholar] [CrossRef]
- Barraclough, P.; Hanson, J.; Gunning, P.; Rees, D.; Xia, Z.; Hu, Y. 5-Beta-Sapogenin and Pseudosapogenin Derivatives and Their Use in the Treatment of Dementia. US7507720B2. 11 August; 2009.
- Bogaki, T.; Mitani, K.; Oura, Y.; Ozeki, K. Effects of ethyl-α-d-glucoside on human dermal fibroblasts. Biosci. Biotechnol. Biochem. 2017, 81, 1706–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Xu, L.; Hu, L.; Chen, D.; Yu, L.; Li, X.; Chen, H.; Zhu, J.; Chen, C.; Luo, Y. Stearic acid methyl ester promotes migration of mesenchymal stem cells and accelerates cartilage defect repair. J. Orthop. Transl. 2020, 22, 81–91. [Google Scholar] [CrossRef]
- Sosa, A.A.; Bagi, S.H.; Hameed, I.H. Analysis of bioactive chemical compounds of Euphorbia lathyrus using gas chromatography-mass spectrometry and fourier-transform infrared spectroscopy. J. Pharmacogn. Phytother. 2016, 8, 109–126. [Google Scholar]
- Krishnaveni, M. Docking, Simulation Studies of Desulphosinigrin–Cyclin Dependent Kinase 2, an Anticancer Drug Target. Int. J. Pharm. Sci. Rev. Res. 2015, 30, 115–118. [Google Scholar]
- Sytchev, V.I.; Odnoshivkina, Y.G.; Ursan, R.V.; Petrov, A.M. Oxysterol, 5α-cholestan-3-one, modulates a contractile response to β2-adrenoceptor stimulation in the mouse atria: Involvement of NO signaling. Life Sci. 2017, 188, 131–140. [Google Scholar] [CrossRef]
- Agnel, R.; Mohan, V. GC–MS analyses of bioactive compounds present in the whole plant of Andrographis echioides (L.) nees. Eur. J. Biomed. Pharm. Sci. 2014, 1, 443–452. [Google Scholar]
- Policegoudra, R.; Chattopadhyay, P.; Aradhya, S.; Shivaswamy, R.; Singh, L.; Veer, V. Inhibitory effect of Tridax procumbens against human skin pathogens. J. Herb. Med. 2014, 4, 83–88. [Google Scholar] [CrossRef]
- Saeed, N.M.; El-Demerdash, E.; Abdel-Rahman, H.M.; Algandaby, M.M.; Al-Abbasi, F.A.; Abdel-Naim, A.B. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models. Toxicol. Appl. Pharmacol. 2012, 264, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Shareef, I.M.; Leelavathi, S.; Gopinath, S. Isolation and Characterization of Pentadecanoic Acid Ethyl Ester from the Methanolic Extract of the Aerial Parts of Anisomeles Malabarica (L). R. BR. Glob. J. Res. Med. Plants Indig. Med. 2014, 3, 67. [Google Scholar]
- Esghaei, M.; Ghaffari, H.; Esboei, B.R.; Tapeh, Z.E.; Salim, F.B.; Motevalian, M. Evaluation of anticancer activity of Camellia sinensis in the Caco-2 colorectal cancer cell line. Asian Pac. J. Cancer Prev. 2018, 19, 1697. [Google Scholar]
- Togashi, N.; Shiraishi, A.; Nishizaka, M.; Matsuoka, K.; Endo, K.; Hamashima, H.; Inoue, Y. Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules 2007, 12, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Osman, N.; Harun, A. Antioxidative constituents from petroleum ether extract of Curcuma longa leaves. Gading J. Sci. Technol. 2019, 2, 60–65. [Google Scholar]
- Meechaona, R.; Sengpracha, W.; Banditpuritat, J.; Kawaree, R.; Phutdhawong, W. Fatty acid content and antioxidant activity of Thai bananas. Maejo Int. J. Sci. Technol. 2007, 1, 222–228. [Google Scholar]
- Wei, L.S.; Wee, W.; Siong, J.Y.F.; Syamsumir, D.F. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med. Iran. 2011, 49, 670–674. Available online: https://portal.issn.org/resource/ISSN/0044-6025 (accessed on 3 December 2022).
- Vijayakumar, K.; Prasanna, B.; Rengarajan, R.; Rathinam, A.; Velayuthaprabhu, S.; Vijaya Anand, A. Anti-diabetic and hypolipidemic effects of Cinnamon cassia bark extracts: An in vitro, in vivo, and in silico approach. Arch. Physiol. Biochem. 2020, 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nisar, A.; Mamat, A.S.; Hatim, M.I.; Aslam, M.S.; Syarhabil, M. An updated review on Catharanthus roseus: Phytochemical and pharmacological analysis. Ind. Res. J. Pharm. Sci. 2016, 3, 631–653. [Google Scholar]
- Cao, P.; Liang, Y.; Gao, X.; Li, X.-M.; Song, Z.-Q.; Liang, G. Monoterpenoid indole alkaloids from Alstonia yunnanensis and their cytotoxic and anti-inflammatory activities. Molecules 2012, 17, 13631–13641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, M.-S.; Shin, J.-S.; Lee, K.-Y.; Lee, K.-H.; Kim, Y.J. Long-range transport of biomass burning emissions based on organic molecular markers and carbonaceous thermal distribution. Sci. Total Environ. 2014, 466, 56–66. [Google Scholar] [CrossRef]
- Kim, C.-H.; Lee, M.-A.; Kim, T.-W.; Jang, J.Y.; Kim, H.J. Anti-inflammatory effect of Allium hookeri root methanol extract in LPS-induced RAW264. 7 cells. J. Korean Soc. Food Sci. Nutr. 2012, 41, 1645–1648. [Google Scholar] [CrossRef]
- Idan, S.A.; Al-Marzoqi, A.H.; Hameed, I.H. Spectral analysis and anti-bacterial activity of methanolic fruit extract of Citrullus colocynthis using gas chromatography-mass spectrometry. Afr. J. Biotechnol. 2015, 14, 3131–3158. [Google Scholar]
- Prabakaran, R.; Kumar, T.S.; Rao, M. GC-MS Analysis and in vitro Cytotoxicity Studies of Root Bark Exudates of Hardwickia binata Roxb. Methods 2014, 8, 12. [Google Scholar]
- Aswathy, T.; Gayathri, E.; Praveen, J.; Achuthsankar, S.N.; Sugunan, V. Phytoprofiling of medicinal plant Cayratia pedata by qualitative and quantitative method. J. Pharmacogn. Phytochem. 2019, 8, 1637–1642. [Google Scholar]
- Hussein, A.O.; Mohammed, G.J.; Hadi, M.Y.; Hameed, I.H. Phytochemical screening of methanolic dried galls extract of Quercus infectoria using gas chromatography-mass spectrometry (GC-MS) and Fourier transform-infrared (FT-IR). J. Pharmacogn. Phytother. 2016, 8, 49–59. [Google Scholar]
- Kreja, L.; Seidel, H.-J. On the cytotoxicity of some microbial volatile organic compounds as studied in the human lung cell line A549. Chemosphere 2002, 49, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Altaee, N.; Kadhim, M.J.; Hameed, I.H. Characterization of metabolites produced by E. coli and analysis of its chemical compounds using GC-MS. Int. J. Curr. Pharm. Rev. Res. 2017, 7, 13–19. [Google Scholar]
- Setyati, W.A.; Pramesti, R.; Susanto, A.; Chrisna, A.; Zainuddin, M. In vitro antibacterial study and spectral analysis of brown seaweed Sargassum crassifolium extract from Karimunjawa Islands, Jepara. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Changchun, China, 21–23 August 2020; p. 12028. [Google Scholar]
- Altameme, H.J.; Hameed, I.H.; Abu-Serag, N.A. Analysis of bioactive phytochemical compounds of two medicinal plants, Equisetum arvense and Alchemila valgaris seed using gas chromatographymass spectrometry and fourier-transform infrared spectroscopy. Malays. Appl. Biol. 2015, 44, 47–58. [Google Scholar]
- Lombardino, J.G.; Mylari, B.L.; Mcmanus, J.M. Process for the Preparation of Therapeutically Useful Pyrroloquinoline, Benzothiazine, Acridine, Phenoxazine and Phenothiazine Derivatives. FI96315C, 9 November 1996. [Google Scholar]
- Gelmi, M.L.; Mottadelli, S.; Pocar, D.; Riva, A.; Bombardelli, E.; De Vincenzo, R.; Scambia, G. N-deacetyl-N-aminoacylthiocolchicine derivatives: Synthesis and biological evaluation on MDR-positive and MDR-negative human cancer cell lines. J. Med. Chem. 1999, 42, 5272–5276. [Google Scholar] [CrossRef]
- Kurek, J.; Kwaśniewska-Sip, P.; Myszkowski, K.; Cofta, G.; Murias, M.; Barczyński, P.; Jasiewicz, B.; Kurczab, R. 7-Deacetyl-10-alkylthiocolchicine derivatives—New compounds with potent anticancer and fungicidal activity. MedChemComm 2018, 9, 1708–1714. [Google Scholar] [CrossRef]
- Beyett, T.S.; Gan, X.; Reilly, S.M.; Gomez, A.V.; Chang, L.; Tesmer, J.J.G.; Saltiel, A.R.; Showalter, H.D. Design, synthesis, and biological activity of substituted 2-amino-5-oxo-5H-chromeno[2,3-b]pyridine-3-carboxylic acid derivatives as inhibitors of the inflammatory kinases TBK1 and IKKε for the treatment of obesity. Bioorganic Med. Chem. 2018, 26, 5443–5461. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, Y.; Yoshida, H.; Kondo, K. Potential anti-atherosclerotic properties of astaxanthin. Mar. Drugs 2016, 14, 35. [Google Scholar] [CrossRef]
- Nath, K.; Talukdar, A.D.; Bhattacharya, M.K.; Bhowmik, D.; Chetri, S.; Choudhury, D.; Mitra, A.; Choudhury, N.A. Cyathea gigantea (Cyatheaceae) as an antimicrobial agent against multidrug resistant organisms. BMC Complement. Altern. Med. 2019, 19, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyagi, T.; Agarwal, M. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J. Pharmacogn. Phytochem. 2017, 6, 195–206. [Google Scholar]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Monisha, S.I.; Vimala, J.R. Extraction, Identification and Pharmacological Evaluation of Phyto-Active Compound in Manilkara Hexandra (Roxb.) Dubard Stem Bark. Biosci. Biotechnol. Res. Asia 2018, 15, 687–698. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, S.; Yang, Y.; Zhang, J.; Zhao, D.; Pan, Y.; Fan, S.; Yang, Z.; Zhu, J. Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solani in potato. Front. Microbiol. 2020, 11, 1196. [Google Scholar] [CrossRef]
- Liu, C.-H.; Huang, H.-Y. Antimicrobial activity of curcumin-loaded myristic acid microemulsions against Staphylococcus epidermidis. Chem. Pharm. Bull. 2012, 60, 1118–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrillo Pérez, C.; Cavia Camarero, M.d.M.; Alonso de la Torre, S. Role of oleic acid in immune system; mechanism of action; a review. Nutr. Hosp. 2012, 27, 978–990. [Google Scholar]
- Mudgil, P.; Whitehall, J. Oleic acid as an Antibacterial for Treating Eye Infections. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1477. [Google Scholar]
- Hayashi, K.; Kamiya, M.; Hayashi, T. Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta Med. 1995, 61, 237–241. [Google Scholar] [CrossRef]
- Huang, J.; Su, D.; Feng, Y.; Liu, K.; Song, Y. Antiviral herbs-present and future. Infect. Disord.-Drug Targets 2014, 14, 61–73. [Google Scholar] [CrossRef]
- El-Demerdash, E. Anti-inflammatory and antifibrotic effects of methyl palmitate. Toxicol. Appl. Pharmacol. 2011, 254, 238–244. [Google Scholar] [CrossRef]
- Molander, P.; Haugland, K.; Hegna, D.; Ommundsen, E.; Lundanes, E.; Greibrokk, T. Determination of low levels of an antioxidant in polyolefins by large-volume injection temperature-programmed packed capillary liquid chromatography. J. Chromatogr. A 1999, 864, 103–109. [Google Scholar] [CrossRef]
- Ovsyannikova, M.; Vol’eva, V.; Belostotskaya, I.; Komissarova, N.; Malkova, A.; Kurkovskaya, L. Antibacterial activity of substituted 1, 3-Dioxolanes. Pharm. Chem. J. 2013, 47, 142–145. [Google Scholar] [CrossRef]
- Chaouat, C.; Balor, S.; Roques, C.; Franceschi-Messant, S.; Perez, E.; Rico-Lattes, I. Antimicrobial catanionic vesicular self-assembly with improved spectrum of action. J. Surfactants Deterg. 2013, 16, 717–722. [Google Scholar] [CrossRef]
- Prabhu, K.; Bragadeeswaran, S. Biological properties of brittle star Ophiocnemis marmorata collected from Parangipettai, Southeast coast of India. J. Microbiol. Antimicrob. 2013, 5, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Heber-Katz, E. Oxygen, metabolism, and regeneration: Lessons from mice. Trends Mol. Med. 2017, 23, 1024–1036. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Y.; Wu, C.; Li, X.; Fu, Z.; Yang, M.; Bian, W.; Wang, S.; Song, Y.; Tang, J. Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing. Sci. Rep. 2018, 8, 15906. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Li, J.; Xu, W.W.; Guan, X.Y.; Qin, Y.R.; Zhang, L.Y.; Law, S.; Tsao, S.W.; Cheung, A.L. Suppression of esophageal tumor growth and chemoresistance by directly targeting the PI3K/AKT pathway. Oncotarget 2014, 5, 11576. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 2005, 4, 988–1004. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Li, Y.-S.J.; Chang, S.-F.; Zhou, J.; Ho, H.-M.; Chiu, J.-J.; Chien, S. Oscillatory flow-induced proliferation of osteoblast-like cells is mediated by αvβ3 and β1 integrins through synergistic interactions of focal adhesion kinase and Shc with phosphatidylinositol 3-kinase and the Akt/mTOR/p70S6K pathway. J. Biol. Chem. 2010, 285, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Jiang, W.; Yu, D.; Yan, Z. Luteolin inhibits proliferation and induces apoptosis of human melanoma cells in vivo and in vitro by suppressing MMP-2 and MMP-9 through the PI3K/AKT pathway. Food Funct. 2019, 10, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, L.; Li, J.; Zhang, G.; Tao, H.; Li, X.; Sun, D.; Hu, Y. Swainsonine inhibits invasion and the EMT process in esophageal carcinoma cells by targeting twist1. Oncol. Res. 2018, 26, 1207. [Google Scholar] [CrossRef]
- Trimis, G.; Chatzistamou, I.; Politi, K.; Kiaris, H.; Papavassiliou, A.G. Expression of p21waf1/Cip1 in stromal fibroblasts of primary breast tumors. Hum. Mol. Genet. 2008, 17, 3596–3600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ansari, M.; Hendrayani, S.; Shehata, A.; Aboussekhra, A. p16 INK4A Represses the paracrine tumor-promoting effects of breast stromal fibroblasts. Oncogene 2013, 32, 2356–2364. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.V.; Erickson, L.A.; Jin, L.; Kulig, E.; Qian, X.; Cheville, J.C.; Scheithauer, B.W. p27kip1: A multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am. J. Pathol. 1999, 154, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Tsoli, E.; Gorgoulis, V.G.; Zacharatos, P.; Kotsinas, A.; Mariatos, G.; Kastrinakis, N.G.; Kokotas, S.; Kanavaros, P.; Asimacopoulos, P.; Bramis, J. Low levels of p27 in association with deregulated p53-pRb protein status enhance tumor proliferation and chromosomal instability in non-small cell lung carcinomas. Mol. Med. 2001, 7, 418–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaproth-Joslin, K.A.; Li, X.; Reks, S.E.; Kelley, G.G. Phospholipase Cδ1 regulates cell proliferation and cell-cycle progression from G1-to S-phase by control of cyclin E–CDK2 activity. Biochem. J. 2008, 415, 439–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Y.; Ren, S.; Ai, L.; Sun, W.; Zhao, Z.; Jiang, F.; Zhu, Y.; Piao, D. ZNF692 promotes colon adenocarcinoma cell growth and metastasis by activating the PI3K/AKT pathway. Int. J. Oncol. 2019, 54, 1691–1703. [Google Scholar] [CrossRef] [Green Version]
- Graña, X.; Reddy, E.P. Cell cycle control in mammalian cells: Role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995, 11, 211–220. [Google Scholar]
- Paydar, S.; Akrami, M.; Dehghanian, A.; Moghadam, R.A.; Heidarpour, M.; Khoob, A.B.; Dalfardi, B. A Comparison of the Effects of Alpha and Medical-Grade Honey Ointments on Cutaneous Wound Healing in Rats. J. Pharm. 2016, 2016, 9613908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cissell, D.D.; Link, J.M.; Hu, J.C.; Athanasiou, K.A. A modified hydroxyproline assay based on hydrochloric acid in Ehrlich’s solution accurately measures tissue collagen content. Tissue Eng. Part C Methods 2017, 23, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Fatemi, S.; Jamili, S.; Valinassab, T.; Kuranlu, N. Diversity of Ophiuroidea from lengeh portand Qeshm island in the Persian Gulf. J. Fish Aquat. Sci. 2010, 5, 42–48. [Google Scholar] [CrossRef]
- Price, A. Echinoderms of Saudi Arabia: Echinoderms of the Arabian Gulf Coast of Saudi Arabia. In Fauna of Saudi Arabia; 1983; Volume 5, pp. 28–108. [Google Scholar]
- Heinzeller, T.; Nebelsick, J.H. Echinoderms: Munchen. In Proceedings of the 11th International Echinoderm Conference, Munich, Germany, 6–10 October 2003. [Google Scholar]
- Clark, A.M. Monograph of shallow-water Indo-West Pacific echinoderms. Trust. Br. Mus. Nat. Hist. Publ. 1971, 690, 1–238. [Google Scholar]
- Stöhr, S. New records and new species of Ophiuroidea (Echinodermata) from Lifou, Loyalty Islands, New Caledonia. Zootaxa 2011, 3089, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Giorgio, G.D.; Rubilar, T.; Brogger, M.I. Histological analysis after arm tip amputation in the brittle star Ophioplocus januarii (Echinodermata: Ophiuroidea). Rev. De Biol. Trop. 2015, 63, 297–308. [Google Scholar]
- Zhang, J.-Y.; Tao, L.-Y.; Liang, Y.-J.; Chen, L.-M.; Mi, Y.-J.; Zheng, L.-S.; Wang, F.; She, Z.-G.; Lin, Y.-C.; To, K.K.W.; et al. Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar. Drugs 2010, 8, 1469–1481. [Google Scholar] [CrossRef]
- Sultana, J.; Molla, M.R.; Kamal, M.; Shahidullah, M.; Begum, F.; Bashar, M.A. Histological differences in wound healing in maxillofacial region in patients with or without risk factors. Bangladesh J. Pathol. 2009, 24, 3–8. [Google Scholar] [CrossRef] [Green Version]
Compounds | Formula | Effects | MW | Brittle Star Extracts | References | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 h | 3 h | 3 d | 5 d | 7 d | 14 d | |||||
Cholesterol | C27H46O | Cell proliferative Contraction | 386 | + | - | - | - | + | - | [31] |
Pseduosarsasapogenin-5,20-dien methyl ether | C28H44O3 | Neuroregeneration | 428 | + | - | + | - | - | - | [32] |
Ethyl.alpha-d-glucopyranoside | C8H16O6 | Cell proliferative ECM production | 208 | - | - | - | - | + | - | [33] |
Octadecanoic acid, methyl ester (Methyl stearate) | C19H38O2 | Cell migration | 298 | - | - | - | - | - | + | [34] |
Desulphosinigrin | C10H17NO6S | Antibacterial Anti-proliferation | 279 | + | - | - | - | - | - | [35,36] |
5α-cholestan-3-one | C29H50O2 | Contraction | 430 | + | - | + | - | - | - | [37] |
Methoxyacetic acid,4-tetradecyl ester | C17H34O3 | Antimicrobial | 286 | + | - | - | - | - | - | [38] |
Hexadecanoic acid, ethyl ester | C18H36O2 | Antimicrobial Anti-inflammatory | 284 | + | - | - | + | + | - | [39,40] |
Pentadecanoic acid, ethyl ester | C17H34O2 | Anti-inflammatory | 270 | + | - | - | - | - | - | [41] |
1-Dodecanol,3,7,11-trimethyl- | C15H32O | Antimicrobial Anti-proliferation | 228 | + | - | + | - | - | - | [42,43] |
Estra-1,3,5(10)-trien-17.beta.-ol | C18H24O | Antioxidant | 256 | + | - | - | - | - | - | [44] |
9-Hexadecenoic acid, methyl ester(z) | C17H32O2 | Antioxidant Antimicrobial | 268 | + | - | - | - | - | - | [45,46] |
Heptadecanoic acid, ethyl ester | C19H38O2 | Antioxidant | 298 | + | - | - | - | - | - | [47] |
Dihydrovallesiachotamine | C21H24N2O3 | Anti-proliferation Anti-inflammatory | 352 | + | - | + | - | - | - | [47,48,49] |
Linoleic acid ethyl ester | C20H36O2 | Antioxidant Anti-inflammatory | 308 | + | - | + | - | - | - | [50,51] |
1-Monolinolenoyl-rac-glycerol | C21H36O4 | Anti-inflammatory | 352 | + | - | + | - | - | - | [52] |
Ethyl arachidonate | C22H36O2 | Anti-proliferation | 332 | + | - | + | - | - | - | [53] |
Tridocosahexaenoyl-glycerol | C69H98O6 | Anti-inflammatory | 1022 | + | - | + | - | - | - | [54] |
Ethyl iso-allocholate | C26H44O5 | Anti-inflammatory Antimicrobial | 436 | + | - | + | - | - | - | [55] |
1-Decanol,2,2-dimethyl- | C12H26O | Anti-proliferation | 186 | + | - | - | - | - | - | [56] |
1-Hexadecanol,2-methyl- | C17H36O | Antimicrobial | 256 | + | - | - | - | - | - | [57] |
1-Octanol, 2-butyl- | C12H26O | Antimicrobial | 186 | + | - | - | - | - | - | [58] |
3-Hydroxyspirost-8-en-11-one | C27H40O4 | Anti-inflammatory | 428 | + | - | + | + | - | - | [59] |
Acridin-1(2H)-one,3,4-dihydro-3,3-dimethyl-9-propylamino- | C18H22N2O | Anti-inflammatory | 282 | - | + | - | - | - | - | [60] |
Colchicine, N-desacetyl-N-[4-acetoxy-3,5-dimethoxycinnamoyl] | C33H35NO10 | Antimicrobial Anti-proliferation | 605 | - | + | - | - | - | - | [61,62] |
Pyridine-3-carboxylic acid,1,4-dihydro-5-cyano-2-hydroxy-4-(4-isopropylphenyl)-6-methyl-,ethyl ester | C19H22N2O3 | Anti-inflammatory | 326 | - | + | - | - | - | - | [63] |
Astaxanthin | C40H52O4 | Anti-inflammatory Antioxidant | 596 | - | - | - | + | - | - | [64] |
Octadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | C21H42O4 | Antimicrobial | 358 | - | - | - | + | + | + | [65] |
Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | C19H38O4 | Antimicrobial Antioxidant | 330 | - | - | - | + | + | - | [65,66] |
n-Hexadecanoic acid | C16H32O2 | Antimicrobial | 256 | - | - | - | + | + | - | [67] |
7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | C17H24O3 | Antimicrobial | 276 | - | - | - | + | + | - | [68] |
2-Heptanone, 6-(3-acetyl-1-cyclopropen-1-yl)-3-hydroxy-6-methyl- | C13H20O3 | Antimicrobial | 224 | - | - | - | + | - | - | [69] |
Tetradecanoic acid | C14H28O2 | Antimicrobial | 228 | - | - | - | - | + | - | [70] |
Oleic Acid | C18H34O2 | Anti-inflammatory Antimicrobial | 282 | - | - | - | - | + | - | [71,72] |
Dodecanal (Lauraldehyde) | C12H24O | Antimicrobial | 184 | - | - | - | - | - | + | [73,74] |
1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | C16H22O4 | Anti-proliferation Antifibrotic | 278 | - | - | - | - | - | + | [70] |
7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | C17H24O3 | Antimicrobial | 276 | - | - | - | - | - | + | [68] |
Hexadecanoic acid, methyl ester | C17H34O2 | Antifibrotic Anti-inflammatory | 270 | - | - | - | - | - | + | [75] |
Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester | C18H28O3 | Antioxidant | 292 | - | - | - | - | - | + | [76] |
1,3-Dioxolane, 2-(2,3-dimethyl-1-cyclopenten-3-yl)-2,4,5-trimethyl- | C13H22O2 | Antimicrobial | 210 | - | - | - | - | - | + | [77] |
Ethanol, 2,2′-(dodecylimino)bis, N-Dodecyldiethanolamine | C16H35NO2 | Antimicrobial | 273 | - | - | - | - | - | + | [78] |
2-(2-Azepan-1-yl-2-oxoethyl)-1-hydroxy-1-phenyl-octahydro-pyrido [1,2-a]azepin-4-one | C24H34N2O3 | NA | 398 | + | - | + | - | - | - | - |
Score | Parameter | Criteria |
---|---|---|
1 | Collagen deposition | None |
Cell maturation | Unmatured cell | |
Epithelialization | None to very minimal | |
Cellular content | Mostly acute and chronic inflammatory cells | |
Granulation tissue | None to sparse amount at wound edges | |
2 | Collagen deposition | None |
Cell maturation | Mostly unmatured | |
Epithelialization | Minimal to moderate | |
Cellular content | Predominantly acute cells and few fibroblasts | |
Granulation tissue | No layer to thin layer at wound center, thicker at wound edges | |
3 | Collagen deposition | Few collagen fibers |
Cell maturation | Few maturated | |
Epithelialization | Completely epithelialized, thin layer | |
Cellular content | More fibroblast. Moderate inflammatory cells | |
Granulation tissue | Thicker layer at wound center | |
4 | Collagen deposition | More collagen fibers |
Cell maturation | Mild maturation | |
Epithelialization | Thicker epithelial layer | |
Cellular content | Predominantly fibroblasts | |
Granulation tissue | Uniformly thick | |
Collagen deposition | Moderate to extensive collagen deposited. Less mature than score 5 | |
5 | Cell maturation | Moderate maturation |
Epithelialization | Thick epithelium | |
Cellular content | Fewer number of fibroblasts in dermis | |
Granulation tissue | Uniformly thick | |
Collagen deposition | Dense, organized, oriented collagen fibers | |
Cell maturation | Maturation near normal skin tissue |
Ligand | α-SMA | E-cadherin | MMP9 | MMP2 | PTEN | AkT | pAkT | Cdk2 | Cdk4 | Cdk6 | Cyclin D1 | Cyclin E | pRb | p21 | p27 | p85α | p110 | mTOR | p70S6K | 4EBP1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | −5.1 | −5 | −6.9 | −5.8 | −5.6 | −6.7 | −6.5 | −6.5 | −6.6 | −6.3 | −6.2 | −5.7 | −5.8 | −4.1 | −5.2 | −5.6 | −6.3 | −6.1 | −6.4 | −3.9 |
5α-cholestan-3-one | −6.6 | −5.8 | −7.5 | −6.8 | −7 | −7.8 | −8.1 | −7.4 | −6 | −7.6 | −7.3 | −6.1 | −6.3 | −4.4 | −6 | −6.8 | −7.7 | −6.7 | −7.3 | −5 |
9-Hexadecenoic acid, methyl ester(z) | −4.1 | −3.5 | −6.3 | −4.9 | −5 | −5.2 | −5.2 | −5.5 | −5.8 | −4.8 | −4.6 | −4.6 | −5.1 | −3 | −4.8 | −4.7 | −4.9 | −5 | −5.3 | −3.3 |
Astaxanthin | −7.9 | −7.2 | −9.1 | −8.7 | −9.3 | −9 | −10.6 | −9.2 | −8.2 | −7.7 | −9 | −8.8 | −8.8 | −6 | −8.3 | −7.6 | −8.8 | −8.7 | −8.5 | −6.2 |
Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester | −5.3 | −5.6 | −6.5 | −5.9 | −6.2 | −6.6 | −7.3 | −6.3 | −6.8 | −5.8 | −6.2 | −6 | −6.3 | −4 | −5.3 | −5.7 | −7.2 | −6.3 | −6.8 | −4.5 |
Cholesterol | −6.9 | −6 | −7.4 | −6.6 | −7.2 | −7.4 | −8.7 | −8.3 | −6 | −7.8 | −7 | −6.8 | −7.9 | −4.6 | −7.2 | −6.9 | −8.7 | −6.2 | −7.4 | −5 |
Estra-1,3,5(10)-trien-17.beta.-ol | −6.7 | −6.5 | −7.4 | −6.6 | −7.1 | −8.2 | −9.4 | −7.7 | −8 | −7.9 | −8.3 | −7.2 | −7.4 | −5.3 | −6.5 | −6.8 | −8.7 | −7.3 | −8.5 | −5.5 |
Ethyl.alpha-d-glucopyranoside | −5.3 | −4.7 | −5.6 | −6 | −5.1 | −5.5 | −5.5 | −5.7 | −5.3 | −5.8 | −5.5 | −5.4 | −5.5 | −3.6 | −4.1 | −4.9 | −5.5 | −4.6 | −5 | −3.5 |
Heptadecanoic acid, ethyl ester | −4.1 | −3.7 | −6.4 | −4.7 | −4.8 | −4.6 | −5.2 | −5.5 | −5.7 | −4 | −4.5 | −4.6 | −4.6 | −3.2 | −5.1 | −4.4 | −4.9 | −5.2 | −4.3 | −3 |
Hexadecanoic acid, methyl ester | −4.4 | −4 | −6.3 | −5 | −5.1 | −4.8 | −5.6 | −5.4 | −5.4 | −4.8 | −5.1 | −5.1 | −5.3 | −2.9 | −4.6 | −4.3 | −5.4 | −5.1 | −5 | −3.4 |
Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | −4 | −4 | −6.2 | −4.7 | −4.8 | −4.6 | −5.1 | −5.3 | −5.3 | −4.1 | −4.8 | −4.6 | −4.3 | −2.8 | −4.6 | −4.1 | −4.4 | −4.6 | −4.7 | −3.2 |
Linoleic acid ethyl ester | −4.9 | −3.8 | −5.4 | −4.9 | −5.2 | −5.8 | −5.8 | −6 | −4.5 | −4.5 | −5 | −4.7 | −4.9 | −3.3 | −4.9 | −4.4 | −5.3 | −5.1 | −4.8 | −3.3 |
Octadecanoic acid, methyl ester (Methyl stearate) | −4.1 | −3.6 | −6.1 | −5.3 | −5 | −5.1 | −5.3 | −5.7 | −5 | −4.1 | −4.8 | −4.4 | −4.3 | −3.5 | −4.5 | −4.5 | −4.8 | −5.2 | −4.7 | −2.9 |
Pseduosarsasapogenin-5,20-dien methyl ether | −7.3 | −7.1 | −7.4 | −7.4 | −7.5 | −9 | −9.6 | −8.2 | −7.8 | −7.8 | −7.2 | −6.9 | −7.5 | −5.4 | −6.9 | −6.5 | −8.6 | −7.7 | −7.8 | −5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afshar, A.; Khoradmehr, A.; Nowzari, F.; Baghban, N.; Zare, M.; Najafi, M.; Keshavarzi, S.Z.; Zendehboudi, F.; Mohebbi, G.; Barmak, A.; et al. Tissue Extract from Brittle Star Undergoing Arm Regeneration Promotes Wound Healing in Rat. Mar. Drugs 2023, 21, 381. https://doi.org/10.3390/md21070381
Afshar A, Khoradmehr A, Nowzari F, Baghban N, Zare M, Najafi M, Keshavarzi SZ, Zendehboudi F, Mohebbi G, Barmak A, et al. Tissue Extract from Brittle Star Undergoing Arm Regeneration Promotes Wound Healing in Rat. Marine Drugs. 2023; 21(7):381. https://doi.org/10.3390/md21070381
Chicago/Turabian StyleAfshar, Alireza, Arezoo Khoradmehr, Fariborz Nowzari, Neda Baghban, Masoud Zare, Maryam Najafi, Seyedeh Zahra Keshavarzi, Fatemeh Zendehboudi, Gholamhossein Mohebbi, Alireza Barmak, and et al. 2023. "Tissue Extract from Brittle Star Undergoing Arm Regeneration Promotes Wound Healing in Rat" Marine Drugs 21, no. 7: 381. https://doi.org/10.3390/md21070381
APA StyleAfshar, A., Khoradmehr, A., Nowzari, F., Baghban, N., Zare, M., Najafi, M., Keshavarzi, S. Z., Zendehboudi, F., Mohebbi, G., Barmak, A., Mohajer, F., Basouli, N., Keshtkar, M., Iraji, A., Sari Aslani, F., Irajie, C., Nabipour, I., Mahmudpour, M., Tanideh, N., & Tamadon, A. (2023). Tissue Extract from Brittle Star Undergoing Arm Regeneration Promotes Wound Healing in Rat. Marine Drugs, 21(7), 381. https://doi.org/10.3390/md21070381