Scenedesmus rubescens Heterotrophic Production Strategies for Added Value Biomass
Abstract
:1. Introduction
2. Results
2.1. Growth Performance
2.1.1. Preliminary Assays (Carbon and Nitrogen Sources and Working pH)
2.1.2. Culture Medium Screening Using Plackett–Burman Design
2.1.3. Culture Medium Optimization Using Box–Behnken Design
2.2. Validation of Optimized Medium in Bench-Top Fermenters
2.3. Biochemical Analysis
3. Discussion
4. Materials and Methods
4.1. Microalgae Strain and Culture Media
4.2. Growth Assessment
4.3. Experimental Trials
4.4. Nutrient Quantification
4.5. Biomass Characterization
4.5.1. Protein Content
4.5.2. Lipid Content
4.5.3. Ash Content
4.5.4. Carbohydrate Content
4.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mobin, S.; Alam, F. Some Promising Microalgal Species for Commercial Applications: A Review. Energy Procedia 2017, 110, 510–517. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Shaima, A.F.; Mohd Yasin, N.H.; Ibrahim, N.; Takriff, M.S.; Gunasekaran, D.; Ismaeel, M.Y.Y. Unveiling Antimicrobial Activity of Microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi J. Biol. Sci. 2022, 29, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Benemann, J. Microalgae for Biofuels and Animal Feeds. Energies 2013, 6, 5869–5886. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Zhang, H.; Zhou, Z.; Li, K.; Hou, G.; Xu, Q.; Chuai, W.; Zhang, C.; Han, D.; Hu, Q. Ultrahigh-Cell-Density Heterotrophic Cultivation of the Unicellular Green Microalga Scenedesmus acuminatus and Application of the Cells to Photoautotrophic Culture Enhance Biomass and Lipid Production. Biotechnol. Bioeng. 2020, 117, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Correia, N.; Pereira, H.; Schulze, P.S.C.; Costa, M.M.; Santo, G.E.; Guerra, I.; Trovão, M.; Barros, A.; Cardoso, H.; Silva, J.L.; et al. Heterotrophic and Photoautotrophic Media Optimization Using Response Surface Methodology for the Novel Microalga Chlorococcum amblystomatis. Appl. Sci. 2023, 13, 2089. [Google Scholar] [CrossRef]
- Barros, A.; Pereira, H.; Campos, J.; Marques, A.; Varela, J.; Silva, J. Heterotrophy as a Tool to Overcome the Long and Costly Autotrophic Scale-up Process for Large Scale Production of Microalgae. Sci. Rep. 2019, 9, 13935. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Johns, M.R. Heterotrophic Growth of Chlamydomonas reinhardtii on Acetate in Chemostat Culture. Process Biochem. 1996, 31, 601–604. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Prinsen, P.; Raheem, A.; Zhao, M. Microalgae Cultivation and Metabolites Production: A Comprehensive Review. Biofuels Bioprod. Biorefining 2018, 12, 304–324. [Google Scholar] [CrossRef]
- Ende, S.S.W.; Noke, A. Heterotrophic Microalgae Production on Food Waste and By-Products. J. Appl. Phycol. 2019, 31, 1565–1571. [Google Scholar] [CrossRef]
- Liang, Y.; Sarkany, N.; Cui, Y. Biomass and Lipid Productivities of Chlorella vulgaris under Autotrophic, Heterotrophic and Mixotrophic Growth Conditions. Biotechnol. Lett. 2009, 31, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Pancha, I.; Chokshi, K.; George, B.; Ghosh, T.; Paliwal, C.; Maurya, R.; Mishra, S. Nitrogen Stress Triggered Biochemical and Morphological Changes in the Microalgae Scenedesmus sp. CCNM 1077. Bioresour. Technol. 2014, 156, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Çelekli, A.; Balci, M.; Bozkurt, H. Modelling of Scenedesmus obliquus; Function of Nutrients with Modified Gompertz Model. Bioresour. Technol. 2008, 99, 8742–8747. [Google Scholar] [CrossRef] [PubMed]
- Dunker, S.; Wilhelm, C. Cell Wall Structure of Coccoid Green Algae as an Important Tradeoff between Biotic Interference Mechanisms and Multidimensional Cell Growth. Front. Microbiol. 2018, 9, 719. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-Algae as a Source of Protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.Y.; Vaca-Garcia, C. Morphology, Composition, Production, Processing and Applications of Chlorella vulgaris: A Review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.J.; Chae, A.N.; Song, K.G.; Park, J.; Lee, B.C. Effect of Trophic Conditions on Microalga Growth, Nutrient Removal, Algal Organic Matter, and Energy Storage Products in Scenedesmus (Acutodesmus) obliquus KGE-17 Cultivation. Bioprocess Biosyst. Eng. 2019, 42, 1225–1234. [Google Scholar] [CrossRef]
- Aluç, Y.; Kök, O.; Tüzün, I. Profiling the Carotenoids of Microalga (Scenedesmus obliquus) Extract by HPLC and Its Antioxidant Capacity. J. Appl. Biol. Sci. 2022, 16, 206–219. [Google Scholar] [CrossRef]
- Ambati, R.R.; Gogisetty, D.; Aswathanarayana, R.G.; Ravi, S.; Bikkina, P.N.; Bo, L.; Yuepeng, S. Industrial Potential of Carotenoid Pigments from Microalgae: Current Trends and Future Prospects. Crit. Rev. Food Sci. Nutr. 2019, 59, 1880–1902. [Google Scholar] [CrossRef]
- Zhang, C. Biosynthesis of Carotenoids and Apocarotenoids by Microorganisms and Their Industrial Potential. Prog. Carotenoid Res. 2018, 5, 85–105. [Google Scholar] [CrossRef] [Green Version]
- Varela, J.C.; Pereira, H.; Vila, M.; León, R. Production of Carotenoids by Microalgae: Achievements and Challenges. Photosynth. Res. 2015, 125, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Mata, T.M.; Almeida, R.; Caetano, N.S. Effect of the Culture Nutrients on the Biomass and Lipid Productivities of Microalgae Dunaliella tertiolecta. Chem. Eng. Trans. 2013, 32, 973–978. [Google Scholar] [CrossRef]
- Daliry, S.; Hallajisani, A.; Mohammadi Roshandeh, J.; Nouri, H.; Golzary, A. Investigation of Optimal Condition for Chlorella vulgaris Microalgae Growth. Glob. J. Environ. Sci. Manag. 2017, 3, 217–230. [Google Scholar] [CrossRef]
- Lu, L.; Wang, J.; Yang, G.; Zhu, B.; Pan, K. Biomass and Nutrient Productivities of Tetraselmis chuii under Mixotrophic Culture Conditions with Various C:N Ratios. Chin. J. Oceanol. Limnol. 2017, 35, 303–312. [Google Scholar] [CrossRef]
- Bowden, G.D.; Pichler, B.J.; Maurer, A. A Design of Experiments (DoE) Approach Accelerates the Optimization of Copper-Mediated 18F-Fluorination Reactions of Arylstannanes. Sci. Rep. 2019, 9, 11370. [Google Scholar] [CrossRef] [Green Version]
- Dejaegher, B.; Vander Heyden, Y. Experimental Designs and Their Recent Advances in Set-up, Data Interpretation, and Analytical Applications. J. Pharm. Biomed. Anal. 2011, 56, 141–158. [Google Scholar] [CrossRef]
- Hron, J. Design Of Experiments For the Analysis And Optimization Of Barcodes Of Food And Agricultural Products. Agric. Econ. 2012, 12, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Hallenbeck, P.C.; Grogger, M.; Mraz, M.; Veverka, D. The Use of Design of Experiments and Response Surface Methodology to Optimize Biomass and Lipid Production by the Oleaginous Marine Green Alga, Nannochloropsis gaditana in Response to Light Intensity, Inoculum Size and CO2. Bioresour. Technol. 2015, 184, 161–168. [Google Scholar] [CrossRef]
- Mahdi, S.; Shahabadi, S.; Reyhani, A. Water Treatment via the Full Factorial Design Methodology. Sep. Purif. Technol. 2014, 132, 50–61. [Google Scholar] [CrossRef]
- Maroneze, M.M.; Zepka, L.Q.; Lopes, E.J.; Pérez-Gálvez, A.; Roca, M. Chlorophyll Oxidative Metabolism during the Phototrophic and Heterotrophic Growth of Scenedesmus obliquus. Antioxidants 2019, 8, 600. [Google Scholar] [CrossRef] [Green Version]
- Tap Medium|UTEX Culture Collection of Algae. Available online: https://utex.org/products/tap-medium?variant=30991736897626 (accessed on 27 June 2020).
- BBM Medium|CCALA. Available online: https://ccala.butbn.cas.cz/en/bbm-medium (accessed on 27 June 2020).
- Lin, Q.; Lin, J. Effects of Nitrogen Source and Concentration on Biomass and Oil Production of a Scenedesmus rubescens like Microalga. Bioresour. Technol. 2011, 102, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Gao, S.; Lopez, P.A.; Ogden, K.L. Effects of PH on Cell Growth, Lipid Production and CO2 Addition of Microalgae Chlorella sorokiniana. Algal Res. 2017, 28, 192–199. [Google Scholar] [CrossRef]
- Trovão, M.; Pereira, H.; Costa, M.; Machado, A.; Barros, A.; Soares, M.; Carvalho, B.; Silva, J.T.; Varela, J.; Silva, J. Lab-Scale Optimization of Aurantiochytrium sp. Culture Medium for Improved Growth and DHA Production. Appl. Sci. 2020, 10, 2500. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.Y.; Jiang, Y.; Chen, F. High Cell Density Culture of the Diatom Nitzschia laevis for Eicosapentaenoic Acid Production: Fed-Batch Development. Process Biochem. 2002, 37, 1447–1453. [Google Scholar] [CrossRef]
- Ganuza, E.; Anderson, A.J.; Ratledge, C. High-Cell-Density Cultivation of Schizochytrium sp. in an Ammonium/PH-Auxostat Fed-Batch System. Biotechnol. Lett. 2008, 30, 1559–1564. [Google Scholar] [CrossRef]
- Zheng, Y.; Chi, Z.; Lucker, B.; Chen, S. Two-Stage Heterotrophic and Phototrophic Culture Strategy for Algal Biomass and Lipid Production. Bioresour. Technol. 2012, 103, 484–488. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, Y.; Osei-Wusu, D.; Wang, Y.; Liu, T. Development of Nitrogen Supply Strategy for Scenedesmus rubescens Attached Cultivation toward Growth and Lipid Accumulation. Bioprocess Biosyst. Eng. 2018, 41, 435–442. [Google Scholar] [CrossRef]
- Mandotra, S.K.; Kumar, P.; Suseela, M.R.; Ramteke, P.W. Fresh Water Green Microalga Scenedesmus abundans: A Potential Feedstock for High Quality Biodiesel Production. Bioresour. Technol. 2014, 156, 42–47. [Google Scholar] [CrossRef]
- Beuckels, A.; Smolders, E.; Muylaert, K. Nitrogen Availability Influences Phosphorus Removal in Microalgae-Based Wastewater Treatment. Water Res. 2015, 77, 98–106. [Google Scholar] [CrossRef]
- Suen, Y.J.S.; Hubbard, G.H.; Tornabene, G.T. Total Lipid Production of the Green Alga Nannochloropsis sp. QII under Different Nitrogen Regimes. Production 1987, 296, 289–296. [Google Scholar] [CrossRef]
- Seghiri, R.; Kharbach, M.; Essamri, A. Functional Composition, Nutritional Properties, and Biological Activities of Moroccan Spirulina Microalga. J. Food Qual. 2019, 2019, 7219. [Google Scholar] [CrossRef] [Green Version]
- Aliyu, A.; Lee, J.G.M.; Harvey, A.P. Microalgae for Biofuel: Isothermal Pyrolysis of a Fresh and a Marine Microalga with Mass and Energy Assessment. Chem. Eng. J. Adv. 2023, 14, 100474. [Google Scholar] [CrossRef]
- Ördög, V.; Stirk, W.A.; Bálint, P.; Lovász, C.; Pulz, O.; van Staden, J. Lipid Productivity and Fatty Acid Composition in Chlorella and Scenepdesmus Strains Grown in Nitrogen-Stressed Conditions. J. Appl. Phycol. 2013, 25, 233–243. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Mozes, A.; Florindo, C.; Polo, C.; Duarte, C.V.; Custádio, L.; Varela, J. Microplate-Based High Throughput Screening Procedure for the Isolation of Lipid-Rich Marine Microalgae. Biotechnol. Biofuels 2011, 4, 61. [Google Scholar] [CrossRef] [Green Version]
Conditions (pH) | Global Productivity (g/L/day) | Growth Rate (day−1) |
---|---|---|
6.0 | 0.94 ± 0.11 a | 0.78 ± 0.04 a |
6.5 | 2.95 ± 0.26 b | 1.05 ± 0.01 b |
7.0 | 2.98 ± 1.74 b | 1.04 ± 0.07 b |
8.0 | 0.30 ± 0.10 c | 0.49 ± 0.05 c |
Factors (mM) | Coded Levels | ||
---|---|---|---|
Low | Central Point | High | |
Ammonia (A) | 20 | 40 | 60 |
Phosphate (B) | 1 | 5.5 | 10 |
Calcium (C) | 0.3 | 1 | 1.7 |
Nickel (D) | 0 | 0.01 | 0.02 |
Concentrations (mM) | Biomass Concentration (g/L) | Global Productivity (g/L/ h) | Specific Growth Rate (day−1) |
---|---|---|---|
10 | 11.5 | 0.119 ± 0.012 a | 1.18 ± 0.027 a |
50 | 12.2 | 0.115 ± 0.005 ab | 1.17 ± 0.011 ab |
100 | 9.2 | 0.090 ± 0.011 b | 1.09 ± 0.005 b |
Sample | Proteins (%) | Lipids (%) | Carbohydrates (%) | Ashes (%) |
---|---|---|---|---|
Beginning of cultivation | 32.9 ± 0.25 a | 13.2 ± 1.90 a | 51.4 ± 1.90 a | 2.3 ± 0.35 a |
End of cultivation | 31.2 ± 0.30 b | 12.3 ± 1.70 a | 53.5 ± 1.40 a | 3.2 ± 0.41 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santo, G.E.; Barros, A.; Costa, M.; Pereira, H.; Trovão, M.; Cardoso, H.; Carvalho, B.; Soares, M.; Correia, N.; Silva, J.T.; et al. Scenedesmus rubescens Heterotrophic Production Strategies for Added Value Biomass. Mar. Drugs 2023, 21, 411. https://doi.org/10.3390/md21070411
Santo GE, Barros A, Costa M, Pereira H, Trovão M, Cardoso H, Carvalho B, Soares M, Correia N, Silva JT, et al. Scenedesmus rubescens Heterotrophic Production Strategies for Added Value Biomass. Marine Drugs. 2023; 21(7):411. https://doi.org/10.3390/md21070411
Chicago/Turabian StyleSanto, Gonçalo Espírito, Ana Barros, Margarida Costa, Hugo Pereira, Mafalda Trovão, Helena Cardoso, Bernardo Carvalho, Maria Soares, Nádia Correia, Joana T. Silva, and et al. 2023. "Scenedesmus rubescens Heterotrophic Production Strategies for Added Value Biomass" Marine Drugs 21, no. 7: 411. https://doi.org/10.3390/md21070411
APA StyleSanto, G. E., Barros, A., Costa, M., Pereira, H., Trovão, M., Cardoso, H., Carvalho, B., Soares, M., Correia, N., Silva, J. T., Mateus, M., & Silva, J. L. (2023). Scenedesmus rubescens Heterotrophic Production Strategies for Added Value Biomass. Marine Drugs, 21(7), 411. https://doi.org/10.3390/md21070411