Marine-Derived Components: Can They Be a Potential Therapeutic Approach to Parkinson’s Disease?
Abstract
:1. Challenges of an Ageing Society: Why Is Advancing Age a Major Risk Factor in Parkinson’s Disease Development?
2. Mechanisms Underlying Parkinson’s Disease Development
3. Marine Natural Products as New Potential Therapeutic Agents for Parkinson’s Disease
3.1. Bacteria
3.2. Fungi
3.3. Mollusks
3.4. Sea Snails
3.5. Sea Cucumber
3.6. Seaweeds
3.7. Soft Coral
3.8. Sponge
3.9. Starfish
4. Marine-Derived Compounds in Clinical Trials for Parkinson’s Disease
5. Conclusions and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations—New York World Population Ageing 2019. Available online: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf (accessed on 18 May 2022).
- WHO Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 21 May 2022).
- Coppedé, F.; Migliore, L. DNA damage in neurodegenerative diseases. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2015, 776, 84–97. [Google Scholar] [CrossRef]
- Dextera, D.T.; Jenner, P. Parkinson disease: From pathology to molecular disease mechanisms. Free Radic. Biol. Med. 2013, 62, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Reeve, A.; Simcox, E.; Turnbull, D. Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor? Ageing Res. Rev. 2014, 14, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Payne, B.A.I.; Chinnery, P.F. Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochim. Et Biophys. Acta 2015, 1847, 1347–1353. [Google Scholar] [CrossRef]
- Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019, 18, e13031. [Google Scholar] [CrossRef] [PubMed]
- Alexander, G.E. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin. Neurosci. 2004, 6, 259–280. [Google Scholar] [CrossRef] [PubMed]
- Golbe, L.I.; Mark, M.H.; Sage, J.I. Parkinson’s Disease Handbook; American Parkinson Disease Associaton: Staten Island, NY, USA, 2009. [Google Scholar]
- Obeso, J.A.; Rodriguez-Oroz, M.C.; Goetz, C.G.; Marin, C.; Kordower, J.H.; Rodriguez, M.; Hirsch, E.C.; Farrer, M.; Schapira, A.H.V. Missing pieces in the Parkinson’s disease puzzle. Nat. Med. 2010, 16, 653–661. [Google Scholar] [CrossRef]
- Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat. 2015, 9, 1–9. [Google Scholar] [CrossRef]
- Chen, H.-C.; Ulane, C.M.; Burke, R.E. Clinical Progression in Parkinson’s Disease and the Neurobiology of Axons. Ann. Neurol. 2010, 67, 715–725. [Google Scholar] [CrossRef]
- Hemmati-Dinarvand, M.; saedi, S.; Valilo, M.; Kalantary-Charvadeh, A.; Alizadeh Sani, M.; Kargar, R.; Safari, H.; Samadi, N. Oxidative stress and Parkinson’s disease: Conflict of oxidant-antioxidant systems. Neurosci. Lett. 2019, 709, 134296. [Google Scholar] [CrossRef]
- Baek, S.; Park, T.; Kang, M.; Park, D. Anti-Inflammatory Activity and ROS Regulation Effect of Sinapaldehyde in LPS-Stimulated RAW 264.7 Macrophages. Molecules 2020, 25, 4089. [Google Scholar] [CrossRef]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef] [PubMed]
- Alvariño, R.; Alonso, E.; Tribalat, M.A.; Gegunde, S.; Thomas, O.P.; Botana, L.M. Evaluation of the Protective Effects of Sarains on H2O2-Induced Mitochondrial Dysfunction and Oxidative Stress in SH-SY5Y Neuroblastoma Cells. Neurotox. Res. 2017, 32, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Agostinho, P.; Cunha, R.A.; Oliveira, C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des. 2010, 16, 2766–2778. [Google Scholar] [CrossRef]
- Niranjan, R. The Role of Inflammatory and Oxidative Stress Mechanisms in the Pathogenesis of Parkinson’s Disease: Focus on Astrocytes. Mol. Neurobiol. 2013, 49, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Tansey, M.G.; Goldberg, M.S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis. 2010, 37, 510–518. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener. 2015, 4, 1–9. [Google Scholar] [CrossRef]
- Dias, V.; Junn, E.; Mouradian, M.M. The Role of Oxidative Stress in Parkinson’s Disease. J. Park. Dis. 2013, 3, 461–491. [Google Scholar] [CrossRef]
- Smeyne, M.; Smeyne, R.J. Glutathione Metabolism and Parkinson’s Disease. Free Radic. Biol. Med. 2013, 62, 13–25. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.; Halliday, G.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson’s Disease. Nat. Rev. Dis. Primers 2017, 3, 1–21. [Google Scholar] [CrossRef]
- Ramanan, V.K.; Saykin, A.J. Pathways to neurodegeneration: Mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am J. Neurodegener. Dis. 2013, 2, 145–175. [Google Scholar] [PubMed]
- Olanow, C.W.; Tatton, W.G. Etiology and Pathogenesis of Parkinson ’ S Disease. Annu. Rev. Neurosci. 1999, 22, 123–144. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Role of Nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Jenner, P.; Olanow, C.W. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 1996, 47, S161–S170. [Google Scholar] [CrossRef]
- Perfeito, R.; Cunha-Oliveira, T.; Rego, A.C. Reprint of: Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-Resemblance to the effect of amphetamine drugs of abuse. Free Radical Biology and Medicine 2013, 62, 186–201. [Google Scholar] [CrossRef]
- Schapira, A.H.V.; Cooper, J.M.; Dexter, D.; Clark, J.B.; Jenner, P.; Marsden, C.D. Mitochondrial Complex I Deficiency in Parkinson’s Disease. J. Neurochem. 1990, 54, 823–827. [Google Scholar] [CrossRef]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef]
- De Jesús-Cortés, H.; Miller, A.D.; Britt, J.K.; DeMarco, A.J.; De Jesús-Cortés, M.; Stuebing, E.; Naidoo, J.; Vázquez-Rosa, E.; Morlock, L.; Williams, N.S.; et al. Protective efficacy of P7C3-S243 in the 6-hydroxydopamine model of Parkinson’s disease. Park. Dis. 2015, 1, 3–8. [Google Scholar] [CrossRef]
- Harry, G.J.; Kraft, A.D. Neuroinflammation and microglia: Considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metanolism Toxicol. 2008, 4, 1265–1277. [Google Scholar] [CrossRef]
- McGeer, P.L.; Itagaki, S.; Boyes, B.E.; McGeer, E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988, 38, 1285. [Google Scholar] [CrossRef]
- Calabrese, V.; Santoro, A.; Monti, D.; Crupi, R.; Di Paola, R.; Latteri, S.; Cuzzocrea, S.; Zappia, M.; Giordano, J.; Calabrese, E.J.; et al. Aging and Parkinson’s Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic. Biol. Med. 2018, 115, 80–91. [Google Scholar] [CrossRef]
- Simon, E.; Obst, J.; Gomez-Nicola, D. The Evolving Dialogue of Microglia and Neurons in Alzheimer’s Disease: Microglia as Necessary Transducers of Pathology. Neuroscience 2018, 1, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Perry, V.H.; Teeling, J. Microglia and macrophages of the central nervous system: The contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin. Immunopathol. 2013, 35, 601–612. [Google Scholar] [CrossRef]
- Rocha, N.P.; De Miranda, A.S.; Teixeira, A.L. Insights into Neuroinflammation in Parkinson ’ s Disease: From Biomarkers to Anti-Inflammatory Based Therapies. BioMed Res. Int. 2015, 2015, 628192. [Google Scholar] [CrossRef] [PubMed]
- Chodobski, A.; Zink, B.J.; Szmydynger-Chodobska, J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl. Stroke Res. 2012, 2, 492–516. [Google Scholar] [CrossRef] [PubMed]
- Presta, I.; Vismara, M.F.M.; Novellino, F.; Donato, A.; Zaffino, P.; Scali, E.; Pirrone, K.C.; Spadea, M.F.; Malara, N.; Donato, G. Innate Immunity Cells and the Neurovascular Unit. Int. J. Mol. Sci. 2018, 19, 3856. [Google Scholar] [CrossRef]
- Costa-Lotufo, L.; Wilke, D.; Leticia, P.J. Organismos marinhos como fonte de novos fármacos: Histórico & perspectivas. Quim. Nova 2009, 32, 703–716. [Google Scholar]
- Costello, M.J.; Chaudhary, C. Marine Biodiversity, Biogeography, Deep-sea Gradients, and Conservation. Curr. Biol. Rev. 2017, 27, 511–527. [Google Scholar] [CrossRef]
- Petersen, L.E.; Kellermann, M.; Schupp, P. Fisheries and Tourism: Social, Economic, and Ecological Trade-offs in Coral Reef Systems; Jungblut, S., Wegener, A., Bode-Dalby, M., Liebich, V., Eds.; Spring Open: Gewesbestrasse, Switzerland, 2020; ISBN 9783030203887. [Google Scholar]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Gustafson, K.R. Marine pharmacology in 2005-2006: Antitumour and cytotoxic compounds. Eur. J. Cancer 2008, 44, 2357–2387. [Google Scholar] [CrossRef]
- Rodrigues, D.; Alves, C.; Horta, A.; Pinteus, S.; Silva, J.; Culioli, G.; Thomas, O.P.; Pedrosa, R. Antitumor and antimicrobial potential of bromoditerpenes isolated from the Red Alga, Sphaerococcus coronopifolius. Mar. Drugs 2015, 13, 713. [Google Scholar] [CrossRef] [PubMed]
- El Gamal, A.A. Biological importance of marine algae. Saudi Pharm. J. 2010, 18, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front. Pharmacol. 2018, 9, 777. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2023, 40, 275–325. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Jiang, X.; Zhang, S.; Gao, X.; Paudel, Y.N.; Zhang, P.; Wang, R.; Liu, K.; Jin, M. Neuroprotective effect of YIAEDAER peptide against Parkinson’s disease like pathology in zebrafish. Biomed. Pharmacother. 2022, 147, 112629. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2014, 31, 160–258. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Hu, W.P.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2007, 24, 31–86. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2006, 23, 26–78. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Hu, W.P.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2009, 26, 170–244. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2004, 21, 15–61. [Google Scholar] [CrossRef]
- Faulkner, D.J. Marine natural products: Metabolites of marine invertebrates. Nat. Prod. Rep. 1984, 1, 551–598. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2017, 34, 235–294. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2018, 35, 8–53. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 2002, 19, 1–48. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2015, 32, 116–211. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2016, 33, 382–431. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2003, 20, 1–48. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2012, 29, 144–222. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2010, 27, 165–237. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Hu, W.P.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2008, 25, 35–94. [Google Scholar] [CrossRef]
- Mena, M.A.; Casarejos, M.J.; Solano, R.; Rodríguez-Navarro, J.A.; Gómez, A.; Rodal, I.; Medina, M.; de Yebenes, J. NP7 protects from cell death induced by oxidative stress in neuronal and glial midbrain cultures from parkin null mice. FEBS Lett. 2009, 583, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.S.S.J.; Pallavi, K.; Aiswarya, P.S.; Ramakrishnan, V.; Husain, R.S.A. Neuroprotective Compounds from Marine Microorganisms. Encycl. Mar. Biotechnol. 2020, 3, 1559–1579. [Google Scholar] [CrossRef]
- Koppula, S.; Kumar, H.; More, S.V.; Kim, B.W.; Kim, I.S.; Choi, D.K. Recent advances on the neuroprotective potential of antioxidants in experimental models of Parkinson’s disease. Int. J. Mol. Sci. 2012, 13, 10608–10629. [Google Scholar] [CrossRef] [PubMed]
- Faria, C.; Jorge, C.D.; Borges, N.; Tenreiro, S.; Outeiro, T.F.; Santos, H. Inhibition of formation of α-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson’s disease. Biochim. Et Biophys. Acta-Gen. Subj. 2013, 1830, 4065–4072. [Google Scholar] [CrossRef]
- Lee, H.W.; Choi, H.; Nam, S.J.; Fenical, W.; Kim, H. Potent Inhibition of Monoamine Oxidase B by a Piloquinone from Marine-Derived Streptomyces sp. J. Microbiol. Biotechnol. 2017, 27, 785–790. [Google Scholar] [CrossRef]
- Kajimura, Y.; Aoki, T.; Kuramochi, K.; Kobayashi, S.; Sugawara, F.; Watanabe, N.; Arai, T. Neoechinulin a protects PC12 cells against MPP+-induced cytotoxicity. J. Antibiot. 2008, 61, 330–333. [Google Scholar] [CrossRef]
- Akashi, S.; Kimura, T.; Takeuchi, T.; Kuramochi, K.; Kobayashi, S.; Sugawara, F.; Watanabe, N.; Arai, T. Neoechinulin A Impedes the Progression of Rotenone-Induced Cytotoxicity in PC12 Cells. Biol. Pharm. Bull. 2011, 34, 243–248. [Google Scholar] [CrossRef]
- Lu, X.; Yao, X.; Liu, Z.; Zhang, H.; Li, H.; Li, Z.; Wang, G.-L.; Pang, J.; Lin, Y.; Xu, Z.; et al. Protective effects of xyloketal B against MPP+-induced neurotoxicity in Caenorhabditis elegans and PC12 cells. Brain Res. 2010, 1332, 110–119. [Google Scholar] [CrossRef]
- Gong, H.; Luo, Z.; Chen, W.; Feng, Z.P.; Wang, G.L.; Sun, H.S. Marine compound xyloketal B as a potential drug development target for neuroprotection. Mar. Drugs 2018, 16, 516. [Google Scholar] [CrossRef]
- Zhai, A.; Zhu, X.; Wang, X.; Chen, R.; Wang, H. Secalonic acid A protects dopaminergic neurons from 1-methyl-4- phenylpyridinium (MPP+)-induced cell death via the mitochondrial apoptotic pathway. Eur. J. Pharmacol. 2013, 713, 58–67. [Google Scholar] [CrossRef]
- Yurchenko, E.A.; Menchinskaya, E.S.; Pislyagin, E.A.; Trinh, P.T.H.; Ivanets, E.V.; Smetanina, O.F.; Yurchenko, A.N. Neuroprotective activity of some marine fungal metabolites in the 6-hydroxydopamin- and paraquat-induced Parkinson’s disease models. Mar. Drugs 2018, 16, 457. [Google Scholar] [CrossRef]
- Xiao, X.; Tong, Z.; Zhang, Y.; Zhou, H.; Luo, M.; Hu, T.; Hu, P.; Kong, L.; Liu, Z.; Yu, C.; et al. Novel Prenylated Indole Alkaloids with Neuroprotection on SH-SY5Y Cells against Oxidative Stress Targeting Keap1–Nrf2. Mar. Drugs 2022, 20, 191. [Google Scholar] [CrossRef]
- Wang, C.; Wang, D.; Xu, J.; Yanagita, T.; Xue, C.; Zhang, T.; Wang, Y. DHA enriched phospholipids with different polar groups (PC and PS) had different improvements on MPTP-induced mice with Parkinson’s disease. J. Funct. Foods 2018, 45, 417–426. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Wen, M.; Du, L.; Gao, X.; Xue, C.; Xu, J.; Wang, Y. Enhanced neuroprotective effect of DHA and EPA-enriched phospholipids against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced oxidative stress in mice brain. J. Funct. Foods 2016, 25, 385–396. [Google Scholar] [CrossRef]
- Wu, F.; Wang, D.D.; Shi, H.H.; Wang, C.C.; Xue, C.H.; Wang, Y.M.; Zhang, T.T. N-3 PUFA-Deficiency in Early Life Exhibits Aggravated MPTP-Induced Neurotoxicity in Old Age while Supplementation with DHA/EPA-Enriched Phospholipids Exerts a Neuroprotective Effect. Mol. Nutr. Food Res. 2021, 65, 202100339. [Google Scholar] [CrossRef]
- Anguchamy, V.; Muthuvel, A. Enhancing the neuroprotective effect of squid outer skin astaxanthin against rotenone-induced neurotoxicity in in-vitro model for Parkinson’s disease. Food Chem. Toxicol. 2023, 178, 113846. [Google Scholar] [CrossRef]
- Grimmiig, B.; Kim, S.-H.; Nash, K.; Bickford, P.C.; Shytle, R.D. Neuroprotective mechanisms of astaxanthin: A potential therapeutic role in preserving cognitive function in age and neurodegeneration. Geroscience 2017, 39, 19–32. [Google Scholar] [CrossRef]
- Luo, S.; Zhangsun, D.; Wu, Y.; Zhu, X.; Hu, Y.; McIntyre, M.; Christensen, S.; Akcan, M.; Craik, D.J.; McIntosh, J.M. Characterization of a novel -conotoxin from conus textile that selectively targets 6/ 3 2 3 nicotinic acetylcholine receptors. J. Biol. Chem. 2013, 288, 894–902. [Google Scholar] [CrossRef]
- Manigandan, V.; Nataraj, J.; Karthik, R.; Manivasagam, T.; Saravanan, R.; Thenmozhi, A.J.; Essa, M.M.; Guillemin, G.J. Low Molecular Weight Sulfated Chitosan: Neuroprotective Effect on Rotenone-Induced In Vitro Parkinson’s Disease. NeuroToxicology 2019, 35, 505–515. [Google Scholar] [CrossRef]
- Caprifico, A.E.; Foot, P.J.S.; Polycarpou, E.; Calabrese, G. Overcoming the blood-brain barrier: Functionalised chitosan nanocarriers. Pharmaceutics 2020, 12, 1013. [Google Scholar] [CrossRef]
- Wang, X.; Cong, P.; Liu, Y.; Tao, S.; Chen, Q.; Wang, J.; Xu, J.; Xue, C. Neuritogenic effect of sea cucumber glucocerebrosides on NGF-induced PC12 cells via activation of the TrkA/CREB/BDNF signalling pathway. J. Funct. Foods 2018, 46, 175–184. [Google Scholar] [CrossRef]
- Vieira, S.R.L.; Schapira, A.H.V. Glucocerebrosidase mutations and Parkinson disease. J. Neural Transm. 2022, 129, 1105–1117. [Google Scholar] [CrossRef]
- Sanguanphun, T.; Sornkaew, N.; Malaiwong, N.; Chalorak, P.; Jattujan, P.; Niamnont, N.; Sobhon, P.; Meemon, K. Neuroprotective effects of a medium chain fatty acid, decanoic acid, isolated from H. leucospilota against Parkinsonism in C. elegans PD model. Front. Pharmacol. 2022, 13, 1004568. [Google Scholar] [CrossRef]
- Sanguanphun, T.; Promtang, S.; Sornkaew, N.; Niamnont, N.; Sobhon, P.; Meemon, K. Anti-Parkinson Effects of Holothuria leucospilota-Derived Palmitic Acid in Caenorhabditis elegans Model of Parkinson’s Disease. Mar. Drugs 2023, 21, 141. [Google Scholar] [CrossRef]
- Murphy, E.J. Blood-brain barrier and brain fatty acid uptake: Role of arachidonic acid and PGE2. J. Neurochem. 2015, 135, 845–848. [Google Scholar] [CrossRef]
- Wang, C.C.; Wang, D.; Zhang, T.T.; Yanagita, T.; Xue, C.H.; Chang, Y.G.; Wang, Y.M. A comparative study about EPA-PL and EPA-EE on ameliorating behavioral deficits in MPTP-induced mice with Parkinson’s disease by suppressing oxidative stress and apoptosis. J. Funct. Foods 2018, 50, 8–17. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, W.; Wang, J.; Yao, J.; Xie, E.; Liu, D.; Duan, D.; Zhang, Q. A study of neuroprotective and antioxidant activities of heteropolysaccharides from six Sargassum species. Int. J. Biol. Macromol. 2014, 67, 336–342. [Google Scholar] [CrossRef]
- Jin, W.; Wang, J.; Jiang, H.; Song, N.; Zhang, W.; Zhang, Q. The neuroprotective activities of heteropolysaccharides extracted from Saccharina japonica. Carbohydr. Polym. 2013, 97, 116–120. [Google Scholar] [CrossRef]
- Subaraja, M.; Krishnan, D.A.; Hillary, V.E.; Raja, T.R.W.; Mathew, P.; RaviKumar, S.; Paulraj, M.G.; Ignacimuthu, S. Fucoidan serves a neuroprotective effect in an Alzheimer’s disease model. Front. Biosci.-Elite 2020, 12, 1–34. [Google Scholar] [CrossRef]
- Gao, Y.; Dong, C.; Yin, J.; Shen, J.; Tian, J.; Li, C. Neuroprotective effect of fucoidan on H2O2-induced apoptosis in PC12 cells via activation of PI3K/Akt pathway. Cell. Mol. Neurobiol. 2012, 32, 523–529. [Google Scholar] [CrossRef]
- Meenakshi, S.; Umayaparvathi, S.; Saravanan, R.; Manivasagam, T.; Balasubramanian, T. Neuroprotective effect of fucoidan from Turbinaria decurrens in MPTP intoxicated Parkinsonic mice. Int. J. Biol. Macromol. 2016, 86, 425–433. [Google Scholar] [CrossRef]
- Luo, D.; Zhang, Q.; Wang, H.; Cui, Y.; Sun, Z.; Yang, J.; Zheng, Y.; Jia, J.; Yu, F.; Wang, X. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur. J. Pharmacol. 2009, 617, 33–40. [Google Scholar] [CrossRef]
- Wang, W.; Song, N.; Jia, F.; Xie, J.; Zhang, Q.; Jiang, H. Neuroprotective effects of porphyran derivatives against 6-hydroxydopamine-induced cytotoxicity is independent on mitochondria restoration. Ann. Transl. Med. 2015, 3, 39. [Google Scholar] [CrossRef]
- Huang, C.Y.; Kuo, C.H.; Chen, P.W. Compressional-puffing pretreatment enhances neuroprotective effects of fucoidans from the brown seaweed sargassum hemiphyllum on 6-hydroxydopamine-induced apoptosis in SH-SY5Y cells. Molecules 2018, 23, 78. [Google Scholar] [CrossRef]
- Yang, M.; Xuan, Z.; Wang, Q.; Yan, S.; Zhou, D.; Naman, C.B.; Zhang, J.; He, S.; Yan, X.; Cui, W. Fucoxanthin has potential for therapeutic efficacy in neurodegenerative disorders by acting on multiple targets. Nutr. Neurosci. 2022, 25, 2167–2180. [Google Scholar] [CrossRef]
- Cha, S.H.; Heo, S.J.; Jeon, Y.J.; Park, S.M. Dieckol, an edible seaweed polyphenol, retards rotenone-induced neurotoxicity and α-synuclein aggregation in human dopaminergic neuronal cells. RSC Adv. 2016, 6, 110040–110046. [Google Scholar] [CrossRef]
- Kwak, J.H.; Yang, Z.; Yoon, B.; He, Y.; Uhm, S.; Shin, H.C.; Lee, B.H.; Yoo, Y.C.; Lee, K.B.; Han, S.Y.; et al. Blood-brain barrier-permeable fluorone-labeled dieckols acting as neuronal ER stress signaling inhibitors. Biomaterials 2015, 61, 52–60. [Google Scholar] [CrossRef]
- Du, Z.R.; Wang, X.; Cao, X.; Liu, X.; Zhou, S.N.; Zhang, H.; Yang, R.L.; Wong, K.H.; Tang, Q.J.; Dong, X.L. Alginate and its Two Components Acted Differently Against Dopaminergic Neuronal Loss in Parkinson’s Disease Mice Model. Mol. Nutr. Food Res. 2022, 66, 202100739. [Google Scholar] [CrossRef]
- Silva, J.; Alves, C.; Pinteus, S.; Susano, P.; Simões, M.; Guedes, M.; Martins, A.; Rehfeldt, S.; Gaspar, H.; Goettert, M.; et al. Disclosing the potential of eleganolone for Parkinson’s disease therapeutics: Neuroprotective and anti-inflammatory activities. Pharmacol. Res. 2021, 168, 105589. [Google Scholar] [CrossRef]
- Yao, Z.A.; Xu, L.; Wu, H.G. Immunomodulatory function of κ-Carrageenan oligosaccharides acting on LPS-activated microglial cells. Neurochem. Res. 2014, 39, 333–343. [Google Scholar] [CrossRef]
- Souza, R.B.; Frota, A.F.; Silva, J.; Alves, C.; Neugebauer, A.Z.; Pinteus, S.; Rodrigues, J.A.G.; Cordeiro, E.M.S.; de Almeida, R.R.; Pedrosa, R.; et al. In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential. Int. J. Biol. Macromol. 2018, 112, 1248–1256. [Google Scholar] [CrossRef]
- Souza, R.B.; Frota, A.F.; Sousa, R.S.; Cezario, N.A.; Santos, T.B.; Souza, L.M.F.; Coura, C.O.; Monteiro, V.S.; Cristino Filho, G.; Vasconcelos, S.M.M.; et al. Neuroprotective Effects of Sulphated Agaran from Marine Alga Gracilaria cornea in Rat 6-Hydroxydopamine Parkinson’s Disease Model: Behavioural, Neurochemical and Transcriptional Alterations. Basic Clin. Pharmacol. Toxicol. 2017, 120, 159–170. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Rahman, A.A.; Elsayed, K.N.M.; Abd El-Mageed, H.R.; Mohamed, H.S.; Ahmed, S.A. Cytotoxic activity, molecular docking, pharmacokinetic properties and quantum mechanics calculations of the brown macroalga Cystoseira trinodis compounds. J. Biomol. Struct. Dyn. 2020, 1102. [Google Scholar] [CrossRef]
- Silva, J.; Alves, C.; Martins, A.; Susano, P.; Simões, M.; Guedes, M.; Rehfeldt, S.; Pinteus, S.; Gaspar, H.; Rodrigues, A.; et al. Loliolide, a new therapeutic option for neurological diseases? In vitro neuroprotective and anti-inflammatory activities of a monoterpenoid lactone isolated from codium tomentosum. Int. J. Mol. Sci. 2021, 22, 1888. [Google Scholar] [CrossRef]
- Xing, M.; Li, G.; Liu, Y.; Yang, L.; Zhang, Y.; Zhang, Y.; Ding, J.; Lu, M.; Yu, G.; Hu, G. Fucoidan from Fucus vesiculosus prevents the loss of dopaminergic neurons by alleviating mitochondrial dysfunction through targeting ATP5F1a. Carbohydr. Polym. 2023, 303, 120470. [Google Scholar] [CrossRef]
- Wen, Z.H.; Chao, C.H.; Wu, M.H.; Sheu, J.H.A. neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. J. Med. Chem. 2010, 45, 5998–6004. [Google Scholar] [CrossRef]
- Kao, C.J.; Chen, W.F.; Guo, B.L.; Feng, C.W.; Hung, H.C.; Yang, W.Y.; Sung, C.S.; Tsui, K.H.; Chu, H.; Chen, N.F.; et al. The 1-tosylpentan-3-one protects against 6-hydroxydopamine-induced neurotoxicity. Int. J. Mol. Sci. 2017, 18, 1096. [Google Scholar] [CrossRef]
- Chen, W.F.; Chakraborty, C.; Sung, C.S.; Feng, C.W.; Jean, Y.H.; Lin, Y.Y.; Hung, H.C.; Huang, T.Y.; Huang, S.Y.; Su, T.M.; et al. Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkinson’s model: A promising candidate for the treatment of Parkinson’s disease. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2012, 385, 265–275. [Google Scholar] [CrossRef]
- Badria, F.A.; Guirguis, A.N.; Perovic, S.; Steffen, R.; Müller, W.E.G.; Schröder, H.C. Sarcophytolide: A new neuroprotective compound from the soft coral Sarcophyton glaucum. Toxicology 1998, 131, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Abbasov, M.E.; Alvariño, R.; Chaheine, C.M.; Alonso, E.; Sánchez, J.A.; Conner, M.L.; Alfonso, A.; Jaspars, M.; Botana, L.M.; Romo, D. Simplified immunosuppressive and neuroprotective agents based on gracilin A. Nat. Chem. 2019, 11, 342–350. [Google Scholar] [CrossRef]
- Leirós, M.L.; Alonso, E.; Rateb, M.E.; Houssen, W.E.; Ebel, R.; Jaspars, M.; Alfonso, A.; Botana, L.M. Bromoalkaloids Protect Primary Cortical Neurons from Induced Oxidative Stress. ACS Chem. Neurosci. 2015, 6, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Boccitto, M.; Lee, N.; Sakamoto, S.; Spruce, L.A.; Handa, H.; Clardy, J.; Seeholzer, S.H.; Kalb, R.G. The neuroprotective marine compound psammaplysene A binds the RNA-binding protein HNRNPK. Mar. Drugs 2017, 15, 246. [Google Scholar] [CrossRef] [PubMed]
- Lütjohann, D.; Von Bergmann, K. 24S-Hydroxycholesterol: A Marker of Brain Cholesterol Metabolism. Pharmacopsychiatry 2003, 36, 102–106. [Google Scholar] [CrossRef]
- Grkovic, T.; Pouwer, R.H.; Vial, M.L.; Gambini, L.; Noel, A.; Hooper, J.N.; Wood, S.A.; Mellick, G.D.; Quinn, R.J. NMR fingerprints of the drug-like natural-product space identify iotrochotazine A: A chemical probe to study Parkinson’s disease. Angew. Chem. Int. Ed. 2014, 53, 6070–6074. [Google Scholar] [CrossRef]
- Wang, D.; Feng, Y.; Murtaza, M.; Wood, S.; Mellick, G.; Hooper, J.N.A.; Quinn, R.J.A. Grand Challenge: Unbiased Phenotypic Function of Metabolites from Jaspis splendens against Parkinson’s Disease. J. Nat. Prod. 2016, 79, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Prebble, D.W.; Er, S.; Xu, M.; Hlushchuk, I.; Domanskyi, A.; Airavaara, M.; Ekins, M.G.; Mellick, G.D.; Carroll, A.R. α-synuclein aggregation inhibitory activity of the bromotyrosine derivatives aerothionin and aerophobin-2 from the subtropical marine sponge Aplysinella sp. Results Chem. 2022, 4, 100472. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, W.; Hou, Y.; Song, X.; Yu, H.; Tan, J.; Zhou, Y.; Zhang, H.T. β-Glucan attenuates cognitive impairment of APP/PS1 mice via regulating intestinal flora and its metabolites. CNS Neurosci. Ther. 2023, 29, 1690–1704. [Google Scholar] [CrossRef]
- Shen, D.-F.; Qi, H.-P.; Ma, C.; Chang, M.-X.; Zhang, W.-N.; Song, R.-R. Astaxanthin suppresses endoplasmic reticulum stress and protects against neuron damage in Parkinson’s disease by regulating miR-7/SNCA axis. Neurosci. Res. 2021, 165, 51–60. [Google Scholar] [CrossRef]
- Ye, Q.; Zhang, X.; Huang, B.; Zhu, Y.; Chen, X. Astaxanthin suppresses MPP+-induced oxidative damage in PC12 cells through a Sp1/NR1 signaling pathway. Mar. Drugs 2013, 11, 1019–1034. [Google Scholar] [CrossRef] [PubMed]
- Yacoubian, A.T. Drug Discovery Approaches for the Treatment of Neurodegenerative Disorders-Neurodegenerative Disorders: Why Do We Need New Therapies? 1st ed.; Adejare, A., Ed.; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Huang, C.; Zhang, Z.; Cui, W. Marine-Derived Natural Compounds for the Treatment of Parkinson’s Disease. Mar. Drugs 2019, 17, 221. [Google Scholar] [CrossRef]
- Pereira, L. Seaweeds as source of bioactive substances and skin care therapy-Cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics 2018, 5, 68. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y.; Tang, M.; Shao, F.; Yang, D.; Chen, S.; Xu, Z.; Zhai, L.; Chen, J.; Li, Q.; et al. Fucoxanthin Prevents Long-Term Administration L-DOPA-Induced Neurotoxicity through the ERK/JNK-c-Jun System in 6-OHDA-Lesioned Mice and PC12 Cells. Mar. Drugs 2022, 20, 245. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.W.; Hung, H.C.; Huang, S.Y.; Chen, C.H.; Chen, Y.R.; Chen, C.Y.; Yang, S.N.; Wang, H.M.D.; Sung, P.J.; Sheu, J.H.; et al. Neuroprotective effect of the marine-derived compound 11-dehydrosinulariolide through DJ-1-related pathway in in vitro and in vivo models of Parkinson’s disease. Mar. Drugs 2016, 14, 187. [Google Scholar] [CrossRef]
- Leirós, M.; Sánchez, J.A.; Alonso, E.; Rateb, M.E.; Houssen, W.E.; Ebel, R.; Jaspars, M.; Alfonso, A.; Botana, L.M. Spongionella secondary metabolites protect mitochondrial function in cortical neurons against oxidative stress. Mar. Drugs 2014, 12, 700–718. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, Y.; Lin, X.; Yang, B.; Yang, X.; Liu, Y. Brominated aliphatic hydrocarbons and sterols from the sponge Xestospongia testudinaria with their bioactivities. Chem. Phys. Lipids 2011, 164, 703–706. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Jin, W.; Zhang, Q. The antioxidant activities and neuroprotective effect of polysaccharides from the starfish Asterias rollestoni. Carbohydr. Polym. 2013, 95, 9–15. [Google Scholar] [CrossRef]
Species | Compound | Models | Effects/Mode of Action | Cross BBB | Reference |
---|---|---|---|---|---|
Bacteria | |||||
Streptomyces sp. | NP7 (1) | In vitro | Inhibition of H2O2-induced neurotoxicity on neuronal-enriched and glial mesencephalic cultures; prevention of ERK and AKT phosphorylation induced by H2O2. | + | [67,68,69] |
n.d. | Mannosylglycerate (2) | In vitro | Inhibition of α-synuclein aggregation on Saccharomyces cerevisiae cells. | − | [70] |
Streptomyces sp. | Piloquinones A (3) | In vitro | Inhibition of monoamine oxidase (A and B) activity. | − | [71] |
Piloquinones B (4) | − | ||||
Fungi | |||||
Eurotium rubrum Microsporum sp. Aspergillus sp. | Neoechinulin A (5) | In vitro | Inhibition of MPP+/rotenone-induced neurotoxicity on PC12 cells; inhibition of mitochondrial Complex I dysfunction. | − | [72,73] |
Xylaria sp. | Xyloketal B (6) | In vitro | Neuroprotective effects on PC12 cells against MPP+-induced neurotoxicity mediated by an increase of cellular viability, reduction of intracellular ROS accumulation, loss of mitochondrial membrane potential, and restoration of total GSH level. | + | [74,75] |
Aspergillus ochraceus Paecilomyces sp. | Secalonic acid A (7) | In vitro | Neuroprotection of SH-SY5Y cells against MPP+-induced neurotoxicity mediated by an increase of cellular viability, down-regulation of Bax expression, suppression of Caspase-3 activation and inhibition of the phosphorylation of JNK and p38 MAPK; capacity to increase the number of dopaminergic neurons and upregulated striatal dopamine in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease mice. | − | [76] |
Penicillium sp. | 6-Hydroxy-N-acetyl-β-oxotryptamine (8) | In vitro | Neuroprotective effects against 6-OHDA-induced neuronal cell death. | − | [77] |
3-Methylorsellinic acid (9) | − | ||||
8-Methoxy-3,5-dimethylisochroman-6-ol (10) | − | ||||
Aspergillus sp. | Candidusin A (11) | In vitro | − | ||
4”-Dehydroxycandidusin A (12) | − | ||||
Aspergillus flocculosus | Diketopiperazine mactanamide (13) | In vitro | Neuroprotective effects against 6-OHDA-induced neuronal cell death. | − | [77] |
Aspergillus ochraceus Penicillium sp. | Asperpendoline (14) | In vitro | Neuroprotective effect against oxidative stress in SH-SY5Y cells through reduction of ROS and augmented glutathione. | − | [78] |
Mollusks | |||||
Sthenoteuthis oualaniensis | Omega-3 fatty acids (Docosahexaenoic acid (15)/Eicosapentaenoic acid (16)) | In vivo | DHA/EPA-PLs supplementation recovers brain DHA levels and exerts neuroprotective effects MPTP induced neurotoxicity on mice model. Protective effect on male C57BL/6J mice, on PD symptoms when MPTP-induced, increasing the number of dopaminergic neurons. Pretreatment with DHA could inhibit apoptosis via mitochondria-mediated pathway and MAPK pathway, and thus protecting dopaminergic neurons in MPTP-induced mice. Neuroprotective effect of DHA/EPA-PL on male C57BL/6J mice MPTP-induced, improving movement disorder, the oxidant–antioxidant status of the brain by reduced intracellular GSH levels and antioxidant enzyme activities, and increase intracellular lipid peroxidation; Reducing the phosphorylation of p38 and Jun N-terminal kinase. | + | [79,80,81] |
Doryteuthis singhalensis | Astaxanthin (17) | In vitro | The astaxanthin treatment attenuated rotenone induced cytotoxicity, mitochondrial dysfunction, and oxidative stress in SKN- SH cells. | + | [82,83] |
Sea snails | |||||
Conus textile | α-Conotoxin (18) | In vivo | Regulation of DA release by blocking Nicotinic acetylcholine receptors α6/α3β2β3 nAChR expression on rat nAChRs model. | − | [84] |
Sepia pharaonis | Sulfated chitosan | In vitro | Neuroprotective effect on SH-SY5Y cells against rotenone–induced neurotoxicity mediated by anti-apoptotic reduction of the intracellular ROS level, normalization of antioxidant enzymes, and mitigation of mitochondrial dysfunction and apoptosis. | + | [85,86] |
Neptunea arthritica cumingii | YIAEDAER | In vivo | Neuroprotective effect through suppression of locomotor impairment, amelioration of DA neuronal degeneration, inhibition of vasculature and loss of cerebral vessels, suppression of α-syn levels, modulation of several autophagy-related genes, and modulation of oxidative stress in an MPTP-induced zebrafish. | − | [49] |
Sea cucumber | |||||
Cucumaria frondosa | Glucocerebrosides -1 (19) | In vitro | Neuritogenic effects on PC12 cells in a dose-dependent and structure-selective manner, increasing the ratio of neurite-bearing cells and expression of axonal (GAP-43) and synaptic (synaptophysin) proteins. | + | [87,88] |
Glucocerebrosides- 2 (20) | − | ||||
Glucocerebrosides- 3 (21) | − | ||||
Holothuria leucospilota | Decanoic acid (22) | In vivo | Neuroprotective effect in 6-OHDA-induced C. elegans through attenuation of DAergic neurodegeneration, reduction of oxidative stress, and upregulation of transcriptional activity of DAF-16 targeted genes. Neuroprotective effect in an overexpressing α-synuclein-C. elegans model through reduction of α-synuclein aggregation, improved motor deficits, recovery of lipid deposition, and activation of mRNA expression of sod-3 and hsp16.2. | − | [89] |
Holothuria leucospilota | Palmitic acid (23) | In vivo | Neuroprotective effect on C. elegans against 6-OHDA-induced neurotoxicity through restoration of dopaminergic neurons viability, improved dopamine-dependent behaviors, reduced oxidative stress, and prolonged lifespan; Neuroprotective effect on α-synuclein-based C. elegans model through improved locomotion, reduction of lipid accumulation, and extended lifespan. | + | [90,91] |
Cucumaria frondosa | Eicosapentaenoic acid (16) | In vivo | Neuroprotective effect on male C57BL/6J mice improving MPTP-induced behavioral deficiency, suppressing oxidative stress, apoptosis and alleviating the loss of dopaminergic neurons via mitochondria-mediated pathway and mitogen-activated protein kinase pathway. | − | [92] |
Seaweeds | |||||
Sargassum integerrimum Sargassum naozhouense Sargassum fusiforme | Heteropolysaccharides | In vitro | Neuroprotective effect on MES 23.5 cells against 6-OHDA-induced neurotoxicity. | − | [93] |
Saccharina japonica | Fucoidan | In vitro | Neuroprotective effect on MES 23.5 and SH-SY5Y cells against 6-OHDA-induced neurotoxicity. | + | [94,95] |
Laminaria japonica | Fucoidan | In vitro/In vivo | Neuroprotective effect on dopaminergic cell line (MN9D) against MPP+-induced neurotoxicity and also on MPTP-induced animal model of Parkinsonism (C57/BL mice); Fucoidan attenuated MPTP-induced neurotoxicity on mice; Neuroprotective effect in MES23.5 cells against H2O2-induced neurotoxicity mediated by apoptosis, inhibition increasing Bcl-2/Bax ratio and decreasing the expression of Caspase-3 in the PI3K/Akt signaling pathway. | − | [96,97,98] |
Porphyra haitanensis | Porphyran | In vitro | Neuroprotective effects in MES23.5 cells against 6-OHDA-induced neurotoxicity. | − | [99] |
Sargassum hemiphyllum | Fucoidan | In vitro | Neuroprotective effects in SH-SY5Y cells against 6-OHDA-induced neurotoxicity decreasing cytochrome C release, Caspase-3; -8; -9 activity, protecting DNA fragmentation and phosphorylation of Akt. | − | [100] |
n.d. | Fucoxanthin (24) | In vitro/In vivo | Neuroprotective effect in PC-12 cells against 6-OHDA-induced neurotoxicity reduction in mitochondrial membrane potential, suppressing ROS over-expression, and inhibiting activity of ERK/JNK-c-Jun system and expression of Caspase-3 protein; In the PD mice model, the long-term administration of fucoxanthin with L-dopa enhanced the motor ability. | + | [101] |
Ecklonia cava | Dieckol (25) | In vitro | Neuroprotective effects in SH-SY5Y cells against rotenone-induced oxidative stress decreasing intracellular reactive oxygen species (ROS), cytochrome C release and retarding α-synuclein aggregation in α -synuclein overexpressing SH-SY5Y cells. | + | [102,103] |
n.d. | Polymannosic acid (26) | In vivo | Neuroprotective effects in an in vivo model of SNpc, improving motor functions and preventing dopaminergic neuronal loss; Ability to improve striatal neurotransmitters of 5-HT and 5-HIAA levels. | − | [104] |
Polyguluronic acid (27) | In vivo | Neuroprotective effects in SNpc model of PD mice, increasing TH expressions in the SNpc. Ability to improve striatal neurotransmitters of 5-HT. | − | ||
Bifurcaria bifurcata | Eleganolone (28) | In vitro | Neuroprotective effects on SH-SY5Y cells against 6-OHDA induced neurotoxicity decreasing ROS production, Caspase-3 activity, protecting mitochondrial membrane potential, increasing Catalase activity, ATP levels, and inhibited blocking translocation of NF-kB factor; Eleganolone also attenuated LPS -induced inflammation on RAW 264.7 macrophages cells, decreasing NO levels and TNF-α and IL-6 interleukins levels. | − | [105] |
Turbinaria decurrens | Fucoidan | In vivo | Neuroprotective effect on in vivo rat model against MPTP-induced neurotoxicity. | − | [97] |
- | κ-Carrageenan | In vitro | Protection of microglial cells through the reduction of TNF-α and arginase levels. | − | [106] |
Hypnea musciformis | κ-Carrageenan | In vitro | Neuroprotective effect on SH- SY5Y cells against 6-OHDA-induced neurotoxicity protecting mitochondrial membrane potential and decreasing Caspase-3 activity. | − | [107] |
Gracilaria cornea | Agaran | In vivo | Neuroprotective effect on in vivo rat model against 6-OHDA-induced neurotoxicity, reducing the oxidative/nitroactive stress and alterations in the MAO contents. | − | [108] |
Codium tomentosum | Loliolide (29) | In vitro | Neuroprotective effects on SH-SY5Y cells against 6-OHDA induced neurotoxicity, decreasing ROS production, Caspase-3 activity, protecting mitochondrial membrane potential, DNA fragmentation and inhibited. blocking translocation NF-kB factor; Attenuates LPS-induced inflammation on RAW 264.7 macrophages cells, decreasing NO levels and TNF-α and IL-6 interleukins levels. | + | [109,110] |
Fucus vesiculosus | Fucoidan | In vivo | Neuroprotective effect through the improvement of mitochondrial dysfunction, prevention of neuronal apoptosis, reduction of dopaminergic neuronal loss, and improvement of motor deficits in an (MPTP)-induced PD mouse model. | − | [111] |
Soft coral | |||||
Cladiella australis | Austrasulfone (30) | In vitro | Neuroprotective effect on SH-SY5Y cells against 6-OHDA-induced neurotoxicity. | − | [112] |
1-Tosylpentan-3-one (31) | In vitro | Neuroprotective effect on SH-SY5Y cells against 6-OHDA-induced neurotoxicity mediated by activation of both p38 MAPK, and a decrease of Caspase-3 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. | − | [113] | |
Sinularia flexibilis | 11-Dehydrosinulariolide (32) | In vitro | Neuroprotective effect on SH-SY5Y cells against 6-OHDA-induced neurotoxicity mediated by anti-apoptotic and anti-inflammatory actions via PI3K signaling pathway. | − | [114] |
Sarcophyton glaucum | Sarcophytolide (33) | In vitro | Neuroprotective effect on primary cortical cells from rat embryos against glutamate–induced neurotoxicity mediating an increase of the proto-oncogenebcl-2 (BCl-2) expression. | − | [115] |
Sponges | |||||
Spongionella gracilis | Gracilin A (34) | In vitro | Inhibition of H2O2-induced neurotoxicity on SH-SY5Y cells; Activation of Nrf2/ARE pathways. | + | [116,16] |
Gracilin H (35) | − | ||||
Gracilin J (36) | − | ||||
Gracilin K (37) | − | ||||
Gracilin L (38) | − | ||||
Tetrahydroaplysuphurin-1 (39) | − | ||||
Haliclona (Rhizoniera) sarai | Sarain A (40) | In vitro | Inhibition of H2O2-induced neurotoxicity on SH-SY5Y cells; Block the mPTP and enhance the Nrf2 pathway. | − | [16] |
n.d. | Hymenin (41) | In vitro | Inhibition of H2O2-induced neurotoxicity in primary cortical neurons; Decrease of ROS production; Increase of GSH levels; Induces the translocation of the Nrf2 factor to the nucleus. | + | [117] |
Hymenialdisine (42) | − | ||||
Psammaplysilla sp. | Psammaplysene A (43) | In vitro/In vivo | Neuroprotective effects in HEK293 cells and Drosophila in vivo model mediated by modifying processes dependent on heterogeneous nuclear ribonucleoprotein (HNRNPK) protein that controls biological aspects of RNA. | − | [118] |
Xestospongia testudinaria | 24-Hydroperoxy-24-vinylcholesterol (44) | In vitro | Inhibition of NF-kB factor transcription activation. | + | [119] |
29-Hydroperoxystigmasta-5.24(28)-dien-3-ol (45) | In vitro | Inhibition of H2O2-induced neurotoxicity on SH-SY5Y cells. | − | ||
Iotrochota sp. | Iotrochotazine A (46) | In vivo | Acts on the early endosome and lysosome markers in idiopathic PD patients. | − | [120] |
Jaspis splendens | Jaspamycin (47) | In vivo | Increase of lysosomal staining and decrease of the number of early endosomes associated with EEA-1 on a hONS cellular model of PD. | − | [121] |
Aplysinella sp. | Aerothionin (48) | In vitro | Inhibits α-syn aggregation in a ThT aggregation assay. | − | [122] |
Aerophobin-2 (49) | In vivo | Inhibited α-syn aggregation in primary dopaminergic mouse neurons. | − | ||
Starfish | |||||
Asterias rollestoni | Glucan | In vitro | Inhibition of 6-OHDA-induced neurotoxicity on MES23.5 cells. | + | [123] |
Several microorganisms (fish and crustaceans) | |||||
− | Astaxanthin (18) | In vitro/in vivo | The astaxanthin treatment the inhibited cell death and apoptosis promotion induced by 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells via inhibiting endoplasmic reticulum (ER) stress and reversed the MPP+ caused dysregulation of miR-7 and SNCA expression. The astaxanthin treatment inhibited cell death induced by MPP+ in PC-12 cells, and oxidative stress, via the SP1/NR1 signaling pathway, through decreased expression of Sp1 and NR1 mRNA. | + | [124,125] |
Name | Source | Clinical Trial.gov Identifier | Study Star | Study Completion | Phase |
---|---|---|---|---|---|
Docosahexaenoic acid (50) | Fish and algae | NCT01563913 | October 2012 | June 2016 | 1 |
Inosine (51) | Sponge | NCT02642393 | June 2016 | June 2019 | 3 |
Pramipexole (52) | Marine yeasts | NCT00197374 | August 2012 | September 2017 | 4 |
CEP-1347 (53) | Nocardiopsis sp. (Marine bacteria) | NCT00040404 | March 2002 | August 2005 | 2/3 |
CEP-1347 (53) | NCT00404170 | November 2006 | July 2014 | 2 | |
GM1 Ganglioside (54) | Pseudomonas sp. | NCT00037830 | November 1999 | June 2010 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.; Alves, C.; Soledade, F.; Martins, A.; Pinteus, S.; Gaspar, H.; Alfonso, A.; Pedrosa, R. Marine-Derived Components: Can They Be a Potential Therapeutic Approach to Parkinson’s Disease? Mar. Drugs 2023, 21, 451. https://doi.org/10.3390/md21080451
Silva J, Alves C, Soledade F, Martins A, Pinteus S, Gaspar H, Alfonso A, Pedrosa R. Marine-Derived Components: Can They Be a Potential Therapeutic Approach to Parkinson’s Disease? Marine Drugs. 2023; 21(8):451. https://doi.org/10.3390/md21080451
Chicago/Turabian StyleSilva, Joana, Celso Alves, Francisca Soledade, Alice Martins, Susete Pinteus, Helena Gaspar, Amparo Alfonso, and Rui Pedrosa. 2023. "Marine-Derived Components: Can They Be a Potential Therapeutic Approach to Parkinson’s Disease?" Marine Drugs 21, no. 8: 451. https://doi.org/10.3390/md21080451
APA StyleSilva, J., Alves, C., Soledade, F., Martins, A., Pinteus, S., Gaspar, H., Alfonso, A., & Pedrosa, R. (2023). Marine-Derived Components: Can They Be a Potential Therapeutic Approach to Parkinson’s Disease? Marine Drugs, 21(8), 451. https://doi.org/10.3390/md21080451