Purification and Molecular Docking Study on the Angiotensin I-Converting Enzyme (ACE)-Inhibitory Peptide Isolated from Hydrolysates of the Deep-Sea Mussel Gigantidas vrijenhoeki
Abstract
:1. Introduction
2. Results and Discussion
2.1. Approximate Chemical Composition of G. vrijenhoeki
2.2. Amino Acid Profile of G. vrijenhoeki
2.3. Preparation of GVHs and Their ACE Inhibitory Activity
2.4. Identification of an ACE Inhibitory Peptide
2.5. Analysis of Molecular Docking Study
3. Materials and Methods
3.1. Materials
3.2. Chemical Composition of G. vrijenhoeki
3.3. Amino Acid Composition of G. vrijenhoeki
3.4. Preparation of Enzymatic Hydrolysates of G. vrijenhoeki
3.5. Preparation of Molecular Weight Fractionation
3.6. Identification of ACE Inhibitory Peptide
3.7. Synthesis of the Purified Peptide
3.8. ACE Inhibitory Activity Assay
3.9. Molecular Docking Analysis
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heo, S.-Y.; Ko, S.-C.; Kim, C.S.; Oh, G.-W.; Ryu, B.; Qian, Z.J.; Kim, G.; Park, W.S.; Choi, I.-W.; Phan, T.T.V. A heptameric peptide purified from Spirulina sp. gastrointestinal hydrolysate inhibits angiotensin I-converting enzyme-and angiotensin II-induced vascular dysfunction in human endothelial cells. Int. J. Mol. Med. 2017, 39, 1072–1082. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.-C.; Kim, J.-Y.; Lee, J.M.; Yim, M.-J.; Kim, H.-S.; Oh, G.-W.; Kim, C.H.; Kang, N.; Heo, S.-J.; Baek, K. Angiotensin I-Converting Enzyme (ACE) Inhibition and Molecular Docking Study of Meroterpenoids Isolated from Brown Alga, Sargassum macrocarpum. Int. J. Mol. Sci. 2023, 24, 11065. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wu, C.; Sun-Waterhouse, D.; Zhao, T.; Waterhouse, G.I.; Zhao, M.; Su, G. Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein Isolate: Their production conditions and in silico molecular docking with ACE. Food Chem. 2021, 345, 128855. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, B.; Ananthanarayan, L.; Jamdar, S. Purification, identification, and characterization of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from alcalase digested horse gram flour. LWT 2019, 103, 155–161. [Google Scholar] [CrossRef]
- Solanki, D.; Sakure, A.; Prakash, S.; Hati, S. Characterization of Angiotensin I-Converting Enzyme (ACE) inhibitory peptides produced in fermented camel milk (Indian breed) by Lactobacillus acidophilus NCDC-15. J. Food Sci. Technol. 2022, 59, 3567–3577. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J.; Cui, J.; Bai, X.; Du, Y.; Miyaguchi, Y.; Lin, B. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chem. 2008, 111, 302–308. [Google Scholar] [CrossRef]
- Ishak, N.H.; Shaik, M.I.; Yellapu, N.K.; Howell, N.K.; Sarbon, N.M. Purification, characterization and molecular docking study of angiotensin-I converting enzyme (ACE) inhibitory peptide from shortfin scad (Decapterus macrosoma) protein hydrolysate. J. Food Sci. Technol. 2021, 58, 4567–4577. [Google Scholar] [CrossRef]
- Shi, J.; Su, R.-Q.; Zhang, W.-T.; Chen, J. Purification and the secondary structure of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the alcalase hydrolysate of seahorse protein. J. Food Sci. Technol. 2020, 57, 3927–3934. [Google Scholar] [CrossRef]
- Su, Y.; Chen, S.; Cai, S.; Liu, S.; Pan, N.; Su, J.; Qiao, K.; Xu, M.; Chen, B.; Yang, S. A novel angiotensin-I-converting enzyme (ACE) inhibitory peptide from Takifugu flavidus. Mar. Drugs 2021, 19, 651. [Google Scholar] [CrossRef]
- Ko, S.-C.; Jang, J.; Ye, B.-R.; Kim, M.-S.; Choi, I.-W.; Park, W.-S.; Heo, S.-J.; Jung, W.-K. Purification and molecular docking study of angiotensin I-converting enzyme (ACE) inhibitory peptides from hydrolysates of marine sponge Stylotella aurantium. Process Biochem. 2017, 54, 180–187. [Google Scholar] [CrossRef]
- Nguyen, M.H.T.; Qian, Z.-J.; Nguyen, V.-T.; Choi, I.-W.; Heo, S.-J.; Oh, C.H.; Kang, D.-H.; Kim, G.H.; Jung, W.-K. Tetrameric peptide purified from hydrolysates of biodiesel byproducts of Nannochloropsis oculata induces osteoblastic differentiation through MAPK and Smad pathway on MG-63 and D1 cells. Process Biochem. 2013, 48, 1387–1394. [Google Scholar] [CrossRef]
- Heo, S.Y.; Ko, S.C.; Nam, S.Y.; Oh, J.; Kim, Y.M.; Kim, J.I.; Kim, N.; Yi, M.; Jung, W.K. Fish bone peptide promotes osteogenic differentiation of MC3T3-E1 pre-osteoblasts through upregulation of MAPKs and Smad pathways activated BMP-2 receptor. Cell Biochem. Funct. 2018, 36, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.-C.; Heo, S.-Y.; Choi, S.-W.; Qian, Z.-J.; Heo, S.-J.; Kang, D.-H.; Kim, N.; Jung, W.-K. A heptameric peptide isolated from the marine microalga Pavlova lutheri suppresses PMA-induced secretion of matrix metalloproteinase-9 through the inactivation of the JNK, p38, and NF-κB pathways in human fibrosarcoma cells. J. Appl. Phycol. 2018, 30, 2367–2378. [Google Scholar] [CrossRef]
- Kang, N.; Kim, E.-A.; Kim, J.; Lee, S.-H.; Heo, S.-J. Identifying potential antioxidant properties from the viscera of sea snails (Turbo cornutus). Mar. Drugs 2021, 19, 567. [Google Scholar] [CrossRef] [PubMed]
- Marasinghe, C.K.; Jung, W.K.; Je, J.Y. Anti-inflammatory action of ark shell (Scapharca subcrenata) protein hydrolysate in LPS-stimulated RAW264. 7 murine macrophages. J. Food Biochem. 2022, 46, e14493. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Pan, N.; Xu, M.; Su, Y.; Qiao, K.; Chen, B.; Zheng, B.; Xiao, M.; Liu, Z. ACE inhibitory peptide from skin collagen hydrolysate of Takifugu bimaculatus as potential for protecting HUVECs injury. Mar. Drugs 2021, 19, 655. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xu, X.; Sun, X.; Zhang, X.; Chen, X.; Xu, N. Preparation and identification of ACE inhibitory peptides from the marine macroalga Ulva intestinalis. Mar. Drugs 2019, 17, 179. [Google Scholar] [CrossRef]
- Oh, J.-Y.; Kim, E.-A.; Lee, H.; Kim, H.-S.; Lee, J.-S.; Jeon, Y.-J. Antihypertensive effect of surimi prepared from olive flounder (Paralichthys olivaceus) by angiotensin-I converting enzyme (ACE) inhibitory activity and characterization of ACE inhibitory peptides. Process Biochem. 2019, 80, 164–170. [Google Scholar] [CrossRef]
- Neves, A.C.; Harnedy, P.A.; FitzGerald, R.J. Angiotensin converting enzyme and dipeptidyl peptidase-iv inhibitory, and antioxidant activities of a blue mussel (Mytilus edulis) meat protein extract and its hydrolysates. J. Aquat. Food Prod. Technol. 2016, 25, 1221–1233. [Google Scholar] [CrossRef]
- Chakraborty, K.; Chakkalakal, S.J.; Joseph, D.; Asokan, P.; Vijayan, K. Nutritional and antioxidative attributes of green mussel (Perna viridis L.) from the southwestern coast of India. J. Aquat. Food Prod. Technol. 2016, 25, 968–985. [Google Scholar] [CrossRef]
- Ryu, T.; Kim, J.G.; Lee, J.; Yu, O.H.; Yum, S.; Kim, D.; Woo, S. First transcriptome assembly of a newly discovered vent mussel, Gigantidas vrijenhoeki, at Onnuri Vent Field on the northern Central Indian Ridge. Mar. Genom. 2021, 57, 100819. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.-J.; Ho, P.-T.; Jun, S.-Y.; Kim, D.; Won, Y.-J. A newly discovered Gigantidas bivalve mussel from the Onnuri Vent Field in the northern Central Indian Ridge. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2020, 161, 103299. [Google Scholar] [CrossRef]
- Wu, Z.X.; Hu, X.P.; Zhou, D.Y.; Tan, Z.F.; Liu, Y.X.; Xie, H.K.; Rakariyatham, K.; Shahidi, F. Seasonal variation of proximate composition and lipid nutritional value of two species of scallops (Chlamys farreri and Patinopecten yessoensis). Eur. J. Lipid Sci. Technol. 2019, 121, 1800493. [Google Scholar] [CrossRef]
- Li, G.; Li, J.; Li, D. Seasonal variation in nutrient composition of Mytilus coruscus from China. J. Agric. Food Chem. 2010, 58, 7831–7837. [Google Scholar] [CrossRef]
- Siriarchavatana, P.; Kruger, M.C.; Miller, M.R.; Tian, H.S.; Wolber, F.M. The preventive effects of greenshell mussel (Perna canaliculus) on early-stage metabolic osteoarthritis in rats with diet-induced obesity. Nutrients 2019, 11, 1601. [Google Scholar] [CrossRef]
- Je, J.-Y.; Park, S.Y.; Hwang, J.-Y.; Ahn, C.-B. Amino acid composition and in vitro antioxidant and cytoprotective activity of abalone viscera hydrolysate. J. Funct. Foods 2015, 16, 94–103. [Google Scholar] [CrossRef]
- Jeong, Y.-R.; Park, J.-S.; Nkurunziza, D.; Cho, Y.-J.; Chun, B.-S. Valorization of blue mussel for the recovery of free amino acids rich products by subcritical water hydrolysis. J. Supercrit. Fluids 2021, 169, 105135. [Google Scholar] [CrossRef]
- Ijarotimi, O.S.; Akinola-Ige, A.O.; Oluwajuyitan, T.D. Okra seeds proteins: Amino acid profile, free radical scavenging activities and inhibition of diabetes and hypertensive converting enzymes indices. Meas. Food 2023, 11, 100101. [Google Scholar] [CrossRef]
- Je, J.-Y.; Park, P.-J.; Byun, H.-G.; Jung, W.-K.; Kim, S.-K. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Bioresour. Technol. 2005, 96, 1624–1629. [Google Scholar] [CrossRef]
- Jayaprakash, R.; Perera, C.O. Partial purification and characterization of bioactive peptides from cooked New Zealand green-lipped mussel (Perna canaliculus) protein hydrolyzates. Foods 2020, 9, 879. [Google Scholar] [CrossRef]
- Suo, S.-K.; Zhao, Y.-Q.; Wang, Y.-M.; Pan, X.-Y.; Chi, C.-F.; Wang, B. Seventeen novel angiotensin converting enzyme (ACE) inhibitory peptides from the protein hydrolysate of Mytilus edulis: Isolation, identification, molecular docking study, and protective function on HUVECs. Food Funct. 2022, 13, 7831–7846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.; Lu, D.; Han, J.; Lu, X.; Tian, Z.; Wang, Z. Angiotensin converting enzyme inhibitory, antioxidant activities, and antihyperlipidaemic activities of protein hydrolysates from scallop mantle (Chlamys farreri). Int. J. Food Prop. 2015, 18, 33–42. [Google Scholar] [CrossRef]
- Xie, C.-L.; Kim, J.-S.; Ha, J.-M.; Choung, S.-Y.; Choi, Y.-J. Angiotensin I-converting enzyme inhibitor derived from cross-linked oyster protein. BioMed Res. Int. 2014, 2014, 379234. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, B.; Dong, S.; Liu, Z.; Zhao, X.; Wang, J.; Zeng, M. A novel ACE inhibitory peptide isolated from Acaudina molpadioidea hydrolysate. Peptides 2009, 30, 1028–1033. [Google Scholar] [CrossRef]
- Ko, S.-C.; Kang, N.; Kim, E.-A.; Kang, M.C.; Lee, S.-H.; Kang, S.-M.; Lee, J.-B.; Jeon, B.-T.; Kim, S.-K.; Park, S.-J. A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats. Process Biochem. 2012, 47, 2005–2011. [Google Scholar] [CrossRef]
- Li, Y.; Sadiq, F.A.; Fu, L.; Zhu, H.; Zhong, M.; Sohail, M. Identification of angiotensin I-converting enzyme inhibitory peptides derived from enzymatic hydrolysates of razor clam Sinonovacula constricta. Mar. Drugs 2016, 14, 110. [Google Scholar] [CrossRef]
- Li, X.; Feng, C.; Hong, H.; Zhang, Y.; Luo, Z.; Wang, Q.; Luo, Y.; Tan, Y. Novel ACE inhibitory peptides derived from whey protein hydrolysates: Identification and molecular docking analysis. Food Biosci. 2022, 48, 101737. [Google Scholar] [CrossRef]
- Lin, Z.; Lai, J.; He, P.; Pan, L.; Zhang, Y.; Zhang, M.; Wu, H. Screening, ACE-inhibitory mechanism and structure-activity relationship of a novel ACE-inhibitory peptide from Lepidium meyenii (Maca) protein hydrolysate. Food Biosci. 2023, 52, 102374. [Google Scholar] [CrossRef]
- Chen, J.; Ryu, B.; Zhang, Y.; Liang, P.; Li, C.; Zhou, C.; Yang, P.; Hong, P.; Qian, Z.J. Comparison of an angiotensin-I-converting enzyme inhibitory peptide from tilapia (Oreochromis niloticus) with captopril: Inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study. J. Sci. Food Agric. 2020, 100, 315–324. [Google Scholar] [CrossRef]
- Soleymanzadeh, N.; Mirdamadi, S.; Mirzaei, M.; Kianirad, M. Novel β-casein derived antioxidant and ACE-inhibitory active peptide from camel milk fermented by Leuconostoc lactis PTCC1899: Identification and molecular docking. Int. Dairy J. 2019, 97, 201–208. [Google Scholar] [CrossRef]
- Renjuan, L.; Xiuli, Z.; Liping, S.; Yongliang, Z. Identification, in silico screening, and molecular docking of novel ACE inhibitory peptides isolated from the edible symbiot Boletus griseus-Hypomyces chrysospermus. LWT 2022, 169, 114008. [Google Scholar] [CrossRef]
- Pan, D.; Cao, J.; Guo, H.; Zhao, B. Studies on purification and the molecular mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate. Food Chem. 2012, 130, 121–126. [Google Scholar] [CrossRef]
- Kaewsahnguan, T.; Noitang, S.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Choowongkomon, K.; Karnchanatat, A. A novel angiotensin I-converting enzyme inhibitory peptide derived from the trypsin hydrolysates of salmon bone proteins. PLoS ONE 2021, 16, e0256595. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W.; Latimer, G.W., Jr. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1990. [Google Scholar]
- Lee, H.-G.; Kim, H.-S.; Oh, J.-Y.; Lee, D.-S.; Yang, H.-W.; Kang, M.-C.; Kim, E.-A.; Kang, N.; Kim, J.; Heo, S.-J. Potential antioxidant properties of enzymatic hydrolysates from Stichopus japonicus against hydrogen peroxide-induced oxidative stress. Antioxidants 2021, 10, 110. [Google Scholar] [CrossRef]
- Kang, N.; Heo, S.-Y.; Cha, S.-H.; Ahn, G.; Heo, S.-J. In Silico Virtual Screening of Marine Aldehyde Derivatives from Seaweeds against SARS-CoV-2. Mar. Drugs 2022, 20, 399. [Google Scholar] [CrossRef]
Scientific Name | Protein | Lipid | Moisture | Ash | Carbohydrate |
---|---|---|---|---|---|
G. vrijenhoeki | 65.83 ± 4.94 | 16.64 ± 0.89 | 2.28 ± 0.04 | 6.29 ± 1.19 | 8.96 ± 0.57 |
Amino Acid | Content (%) |
---|---|
Aspartic acid | 10.20 |
Glutamic acid | 16.39 |
Serine | 5.17 |
Histidine | 2.14 |
Glycine | 9.01 |
Threonine | 5.64 |
Arginine | 8.53 |
Alanine | 4.92 |
Taurine | 0.88 |
Tyrosine | 4.04 |
Valine | 4.61 |
Methionine | 2.73 |
Phenylalanine | 3.65 |
Isoleucine | 4.60 |
Leucine | 6.79 |
Lysine | 6.35 |
Proline | 4.35 |
Total | 100.000 |
Enzyme | IC50 Value (mg/mL) |
---|---|
Papain | 0.401 ± 0.001 f |
Alcalase | 0.319 ± 0.003 d |
Flavourzyme | 0.780 ± 0.070 i |
Neutrase | 0.417 ± 0.010 h |
Bromelain | 0.402 ± 0.012 g |
Protamax | 0.281 ± 0.011 b |
Pepsin | 0.266 ± 0.004 a |
Trypsin | 0.334 ± 0.001 e |
α-chymotrypsin | 0.302 ± 0.001 c |
Molecular Weight Fraction | IC50 Value (mg/mL) |
---|---|
Pepsin hydrolysates | 0.266 ± 0.004 e |
<1 kDa | 0.025 ± 0.022 a |
1–5 kDa | 0.060 ± 0.006 b |
5–10 kDa | 0.067 ± 0.001 c |
>10 kDa | 0.351 ± 0.039 d |
Peptide | Peptide Sequence | Molecular Weight (Da) | IC50 Value (μM) |
---|---|---|---|
GVP-1 | KLQE | 517.29 | 2.955 ± 0.165 k |
GVP-2 | KVLH | 496.32 | 0.162 ± 0.002 d |
GVP-3 | KVHL | 496.32 | 0.292 ± 0.013 e |
GVP-4 | LVR | 387.27 | 0.067 ± 0.005 c |
GVP-5 | PSLVG | 472.27 | 0.582 ± 0.008 h |
GVP-6 | LNSL | 446.26 | 1.390 ± 0.011 j |
GVP-7 | ALRPKF | 366.23 | 0.024 ± 0.017 b |
GVP-8 | PGLADMR | 380.19 | 0.513 ± 0.002 g |
GVP-9 | LLR | 401.28 | 0.435 ± 0.007 f |
GVP-10 | KLLWNGKM | 495.28 | 0.007 ± 0.002 a |
GVP-11 | YALPHAL | 392.72 | 0.795 ± 0.015 i |
Peptide | Peptide Sequence | Binding Energy (kcal/mol) | ACE Residues |
---|---|---|---|
GVP-1 | KLQE | −449.06 | Glu162, Gln281, His353, Ala354, His383, Lys511, Phe512, His513, Tyr520 |
GVP-2 | KVLH | −992.454 | Glu162, Gln281, His353, Ala354, Ser355, His383, Glu384, His387, Glu411, Asp415, Asp453, Lys511, His513, Tyr523, Phe527, Zn2+ |
GVP-3 | KVHL | −884.496 | Glu162, His353, Ala354, Ser355, His383, Glu384, His387, Asp415, Asp453, Lys511, Phe512, His513, Val518, Arg522, Tyr523, Phe523, Phe527, Zn2+ |
GVP-4 | LVR | −570.048 | Glu162, Gln281, His353, Ala354, His383, Glu384, His387, Glu411, Asp415, Asp453, Lys454, Lys511, Tyr520, Tyr523, Phe527, Zn2+ |
GVP-5 | PSLVG | −684.558 | His353, Ala354, Ser355, Ala356, His383, Glu384, His387, Phe391, His410, Glu411, Phe512, His513, Val518, Arg522, Tyr523, Phe527, Zn2+ |
GVP-6 | LNSL | −607.594 | Glu162, His353, Ala354, Ser355, Ala356, His383, Glu384, His387, Phe391, Glu411, Lys511, Phe512, His513, Val518, Arg522, Tyr523, Zn2+ |
GVP-7 | ALRPKF | −670.681 | Glu162, His353, Ala354, Ser355, Ala356, His383, Glu384, His387, Phe391, His410, Glu411, Asp415, Asp453, Lys511, Phe512, His513, Ser516, Val518, Tyr523, Phe527, Zn2+ |
GVP-8 | PGLADMR | −565.024 | Gln281, His353, Ala354, Ser355, Ala356, His383, Glu384, His387, Phe391, Pro407, His410, Glu411, Asp415, Asp453, Lys454, Lys511, Phe512, His513, Val518, Tyr523, Phe527, Zn2+ |
GVP-9 | LLR | −540.849 | Glu162, His353, Ala354, His383, Glu384, His357, Glu411, Asp415, Asp453, Lys454, Tyr523, Phe527, Zn2+ |
GVP-10 | KLLWNGKM | −1317.01 | Gln281, His353, Ala354, Ser355, Ala356, His383, Glu384, His387, Pro407, His410, Glu411, Lys511, Phe512, His513, Ser516, Ser517, Val518, Pro519, Tyr520, Arg522, Tyr523, Phe527, Zn2+ |
GVP-11 | YALPHAL | −782.256 | Gln281, His353, Ala354, Ser355, Ala356, His383, Glu384, His387, Phe391, Pro407, His410, Glu411, Asp415, Asp453, Lys454, Lys511, Phe512, His513, Val518, Tyr523, Phe527, Zn2+ |
Enzyme | Optimal Conditions | |
---|---|---|
pH | Temp. (°C) | |
Alcalase | 8.0 | 50 |
Flavourzyme | 7.0 | 50 |
Neutrase | 6.0 | 50 |
Protamex | 6.0 | 40 |
Pepsin | 2.0 | 37 |
Trypsin | 8.0 | 37 |
α-chymotrypsin | 8.0 | 37 |
Bromelain | 7.0 | 50 |
Papain | 7.0 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, S.-Y.; Kang, N.; Kim, E.-A.; Kim, J.; Lee, S.-H.; Ahn, G.; Oh, J.H.; Shin, A.Y.; Kim, D.; Heo, S.-J. Purification and Molecular Docking Study on the Angiotensin I-Converting Enzyme (ACE)-Inhibitory Peptide Isolated from Hydrolysates of the Deep-Sea Mussel Gigantidas vrijenhoeki. Mar. Drugs 2023, 21, 458. https://doi.org/10.3390/md21080458
Heo S-Y, Kang N, Kim E-A, Kim J, Lee S-H, Ahn G, Oh JH, Shin AY, Kim D, Heo S-J. Purification and Molecular Docking Study on the Angiotensin I-Converting Enzyme (ACE)-Inhibitory Peptide Isolated from Hydrolysates of the Deep-Sea Mussel Gigantidas vrijenhoeki. Marine Drugs. 2023; 21(8):458. https://doi.org/10.3390/md21080458
Chicago/Turabian StyleHeo, Seong-Yeong, Nalae Kang, Eun-A Kim, Junseong Kim, Seung-Hong Lee, Ginnae Ahn, Je Hyeok Oh, A Young Shin, Dongsung Kim, and Soo-Jin Heo. 2023. "Purification and Molecular Docking Study on the Angiotensin I-Converting Enzyme (ACE)-Inhibitory Peptide Isolated from Hydrolysates of the Deep-Sea Mussel Gigantidas vrijenhoeki" Marine Drugs 21, no. 8: 458. https://doi.org/10.3390/md21080458
APA StyleHeo, S. -Y., Kang, N., Kim, E. -A., Kim, J., Lee, S. -H., Ahn, G., Oh, J. H., Shin, A. Y., Kim, D., & Heo, S. -J. (2023). Purification and Molecular Docking Study on the Angiotensin I-Converting Enzyme (ACE)-Inhibitory Peptide Isolated from Hydrolysates of the Deep-Sea Mussel Gigantidas vrijenhoeki. Marine Drugs, 21(8), 458. https://doi.org/10.3390/md21080458