Bioactive Peptides from Barnacles and Their Potential for Antifouling Development
Abstract
:1. Introduction
2. Barnacles–Smart Macrofouler
2.1. The Structure of Barnacles
2.2. The Role of Barnacle in Biofouling
2.3. The Settlement and the Molting Processes of Barnacles
3. The Role of Barnacle-Derived Peptides in Biofouling
3.1. Neuropeptides—The Regulator
3.2. Settlement Peptide—Adsorption Step in Biofouling
3.3. Adhesive and Chemosensory Peptides—The Attachment Strategies of Barnacles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fitridge, I.; Dempster, T.; Guenther, J.; de Nys, R. The impact and control of biofouling in marine aquaculture: A review. Biofouling 2012, 28, 649–669. [Google Scholar] [CrossRef]
- Mathew, N.T.; Kronholm, J.; Bertilsson, K.; Despeisse, M.; Johansson, B. Environmental and Economic Impacts of Biofouling on Marine and Coastal Heat Exchangers. In Life Cycle Engineering and Management; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Stay, B.; Tobe, S.S. The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu. Rev. Entomol. 2007, 52, 277–299. [Google Scholar] [CrossRef]
- Liu, L.L.; Wu, C.H.; Qian, P.Y. Marine natural products as antifouling molecules—A mini-review (2014–2020). Biofouling 2020, 36, 1210–1226. [Google Scholar] [CrossRef]
- Qian, P.Y.; Li, Z.; Xu, Y.; Li, Y.; Fusetani, N. Mini-review: Marine natural products and their synthetic analogs as antifouling compounds: 2009–2014. Biofouling 2015, 31, 101–122. [Google Scholar] [CrossRef]
- Qi, S.H.; Ma, X. Antifouling Compounds from Marine Invertebrates. Mar. Drugs 2017, 15, 263. [Google Scholar] [CrossRef]
- Yan, X.C.; Chen, Z.F.; Sun, J.; Matsumura, K.; Wu, R.S.; Qian, P.Y. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: Evidence of roles in larval settlement. PLoS ONE 2012, 7, e46513. [Google Scholar] [CrossRef]
- Liang, C.; Strickland, J.; Ye, Z.; Wu, W.; Hu, B.; Rittschof, D. Biochemistry of Barnacle Adhesion: An Updated Review. Front. Mar. Sci. 2019, 6, 565. [Google Scholar] [CrossRef]
- Xiang, Z.; Xue, Q.; Gao, P.; Yu, H.; Wu, M.; Zhao, Z.; Li, Y.; Wang, S.; Zhang, J.; Dai, L. Antioxidant peptides from edible aquatic animals: Preparation method, mechanism of action, and structure-activity relationships. Food Chem. 2023, 404 Pt B, 134701. [Google Scholar] [CrossRef]
- Ahmed, S.; Mirzaei, H.; Aschner, M.; Khan, A.; Al-Harrasi, A.; Khan, H. Marine peptides in breast cancer: Therapeutic and mechanistic understanding. Biomed. Pharmacother. 2021, 142, 112038. [Google Scholar] [CrossRef]
- Dang, T.; Süssmuth, R.D. Bioactive Peptide Natural Products as Lead Structures for Medicinal Use. Acc. Chem. Res. 2017, 50, 1566–1576. [Google Scholar] [CrossRef]
- Cui, M.; Ma, Y.; Wang, L.; Wang, Y.; Wang, S.; Luo, X. Antifouling sensors based on peptides for biomarker detection. TrAC Trends Anal. Chem. 2020, 127, 115903. [Google Scholar] [CrossRef]
- Domínguez-Pérez, D.; Almeida, D.; Wissing, J.; Machado, A.M.; Jänsch, L.; Castro, L.F.; Antunes, A.; Vasconcelos, V.; Campos, A.; Cunha, I. The Quantitative Proteome of the Cement and Adhesive Gland of the Pedunculate Barnacle, Pollicipes pollicipes. Int. J. Mol. Sci. 2020, 21, 2524. [Google Scholar] [CrossRef]
- Kotsiri, M.; Protopapa, M.; Roumelioti, G.M.; Economou-Amilli, A.; Efthimiadou, E.K.; Dedos, S.G. Probing the settlement signals of Amphibalanus amphitrite. Biofouling 2018, 34, 492–506. [Google Scholar] [CrossRef]
- Müller, W.E.; Wang, X.; Proksch, P.; Perry, C.C.; Osinga, R.; Gardères, J.; Schröder, H.C. Principles of biofouling protection in marine sponges: A model for the design of novel biomimetic and bio-inspired coatings in the marine environment? Mar. Biotechnol. 2013, 15, 375–398. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, X.; Xu, T.; Yang, X.; Liu, Y. Diketopiperazines from marine organisms. Chem. Biodivers. 2010, 7, 2809–2829. [Google Scholar] [CrossRef]
- Hedner, E.; Sjögren, M.; Hodzic, S.; Andersson, R.; Göransson, U.; Jonsson, P.R.; Bohlin, L. Antifouling activity of a dibrominated cyclopeptide from the marine sponge Geodia barretti. J. Nat. Prod. 2008, 71, 330–333. [Google Scholar] [CrossRef]
- Rowley, A.F.; Vogan, C.L.; Taylor, G.W.; Clare, A.S. Prostaglandins in non-insectan invertebrates: Recent insights and unsolved problems. J. Exp. Biol. 2005, 208 Pt 1, 3–14. [Google Scholar] [CrossRef]
- Chandramouli, K.H.; Qian, P.; Ravasi, T. Proteomics insights: Proteins related to larval attachment and metamorphosis of marine invertebrates. Front. Mar. Sci. 2014, 1, 52. [Google Scholar] [CrossRef]
- Gómez-Espinoza, O.; Núñez Montero, K.; Barrientos, L. Antimicrobial Activity of Cyanobacteria-Derived Compounds; Academic Press: Cambridge, MA, USA, 2022; pp. 145–172. ISBN 9780128214916. [Google Scholar]
- Bin, Y.; Zhang, W.; Tang, W.; Dai, R.; Li, M.; Zhu, Q.; Xia, J. Prediction of Neuropeptides from Sequence Information Using Ensemble Classifier and Hybrid Features. J. Proteome Res. 2020, 19, 3732–3740. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.M.; Pedersen, L.T.; Laursen, M.H.; Kiil, S.; Dam-Johansen, K. Enzyme-based antifouling coatings: A review. Biofouling 2007, 23, 369–383. [Google Scholar] [CrossRef]
- Chen, Z.F.; Matsumura, K.; Wang, H.; Arellano, S.M.; Yan, X.; Alam, I.; Archer, J.A.; Bajic, V.B.; Qian, P.Y. Toward an understanding of the molecular mechanisms of barnacle larval settlement: A comparative transcriptomic approach. PLoS ONE 2011, 6, 22913. [Google Scholar] [CrossRef] [PubMed]
- Gallus, L.; Diaspro, A.; Beltrame, F.; Fato, M.; Tagliafierro, G. Three-dimensional computer-aided reconstruction of FMRFamide immunopositive neuron distribution in the ventral ganglion of the barnacle Balanus amphitrite (Cirripedia, Crustacea). Eur. J. Histochem. EJH 2001, 45, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Rittschof, D.; Cohen, J.H. Crustacean peptide and peptide-like pheromones and kairomones. Peptides 2004, 25, 1503–1516. [Google Scholar] [CrossRef] [PubMed]
- Christie, A.E.; Stemmler, E.A.; Dickinson, P.S. Crustacean neuropeptides. Cell Mol. Life Sci. 2010, 67, 4135–4169. [Google Scholar] [CrossRef]
- Wassick, A.; Hunsucker, K.; Swain, G. A baseline survey to document the distribution and abundance of native and non-native barnacle species in Port Canaveral, Florida. BioInvasions Rec. 2020, 11, 710–720. [Google Scholar] [CrossRef]
- Martín-Rodríguez, A.J.; Babarro, J.M.; Lahoz, F.; Sansón, M.; Martín, V.S.; Norte, M.; Fernández, J.J. From broad-spectrum biocides to quorum sensing disruptors and mussel repellents: Antifouling profile of alkyl triphenylphosphonium salts. PLoS ONE 2015, 10, e0123652. [Google Scholar] [CrossRef]
- Rajitha, K.; Nancharaiah, Y.V.; Venugopalan, V.P. Role of bacterial biofilms and their EPS on settlement of barnacle (Amphibalanus reticulatus) larvae. Int. Biodeterior. Biodegrad. 2020, 150, 104958. [Google Scholar] [CrossRef]
- Rajitha, K.; Nancharaiah, Y.V.; Venugopalan, V.P. Insight into bacterial biofilm-barnacle larvae interactions for environmentally benign antifouling strategies. Int. Biodeterior. Biodegrad. 2020, 149, 104937. [Google Scholar] [CrossRef]
- Shyamal, S.; Das, S.; Guruacharya, A.; Mykles, D.L.; Durica, D.S. Transcriptomic analysis of crustacean molting gland (Y-organ) regulation via the mTOR signaling pathway. Sci. Rep. 2018, 8, 7307. [Google Scholar] [CrossRef]
- Mykles, D.L. Signaling Pathways That Regulate the Crustacean Molting Gland. Front. Endocrinol. 2021, 12, 674711. [Google Scholar] [CrossRef]
- Aldred, N.; Clare, A.S. The adhesive strategies of cyprids and development of barnacle-resistant marine coatings. Biofouling 2008, 24, 351–363. [Google Scholar] [CrossRef]
- Peng, L.H.; Liang, X.; Xu, J.K.; Dobretsov, S.; Yang, J.L. Monospecific Biofilms of Pseudoalteromonas Promote Larval Settlement and Metamorphosis of Mytilus coruscus. Sci. Rep. 2020, 10, 2577. [Google Scholar] [CrossRef] [PubMed]
- Olivier, F.; Tremblay, R.; Bourget, E.; Rittschof, D. Barnacle settlement:field experiments on the influence of larval supply, tidal level, biofilm quality and age on Balanus amphitrite cyprids. Mar. Ecol. Prog. Ser. 2000, 199, 185–204. [Google Scholar] [CrossRef]
- Al-Aqeel, S.; Ryu, T.; Zhang, H.; Chandramouli, K.H.; Ravasi, T. Transcriptome and Proteome Studies Reveal Candidate Attachment Genes during the Development of the Barnacle Amphibalanus Amphitrite. Front. Mar. Sci. 2016, 3, 171. [Google Scholar] [CrossRef]
- Kelly, M.; Sanford, E. The evolution of mating systems in barnacles. J. Exp. Mar. Biol. Ecol. 2010, 392, 37–45. [Google Scholar] [CrossRef]
- Nagaraju, G.P.C. Is methyl farnesoate a crustacean hormone. Aquaculture 2007, 272, 39–54. [Google Scholar] [CrossRef]
- Zhang, Y.; He, L.S.; Zhang, G.; Xu, Y.; Lee, O.O.; Matsumura, K.; Qian, P.Y. The regulatory role of the NO/cGMP signal transduction cascade during larval attachment and metamorphosis of the barnacle Balanus (=Amphibalanus) amphitrite. J. Exp. Biol. 2012, 215 Pt 21, 3813–3822. [Google Scholar]
- Wang, Z.; Leary, D.H.; Liu, J.; Settlage, R.E.; Fears, K.P.; North, S.H.; Mostaghim, A.; Essock-Burns, T.; Haynes, S.E.; Wahl, K.J.; et al. Molt-dependent transcriptomic analysis of cement proteins in the barnacle Amphibalanus amphitrite. BMC Genom. 2015, 16, 859. [Google Scholar] [CrossRef]
- González-Ortegón, E.; Giménez, L.; Blasco, J.; Le Vay, L. Effects of food limitation and pharmaceutical compounds on the larval development and morphology of Palaemon serratus. Sci. Total Environ. 2015, 503–504, 171–178. [Google Scholar] [CrossRef]
- Hentze, J.L.; Carlsson, M.A.; Kondo, S.; Nässel, D.R.; Rewitz, K.F. The Neuropeptide Allatostatin A Regulates Metabolism and Feeding Decisions in Drosophila. Sci. Rep. 2015, 5, 11680. [Google Scholar] [CrossRef]
- Gallus, L.; Bottaro, M.; Ferrando, S.; Girosi, L.; Ramoino, P.; Tagliafierro, G. Distribution of FMRFamide-like immunoreactivity in the alimentary tract and hindgut ganglia of the barnacle Balanus amphitrite (Cirripedia, Crustacea). Microsc. Res. Tech. 2006, 69, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Essock-Burns, T.; Gohad, N.V.; Orihuela, B.; Mount, A.S.; Spillmann, C.M.; Wahl, K.J.; Rittschof, D. Barnacle biology before, during and after settlement and metamorphosis: A study of the interface. J. Exp. Biol. 2017, 220 Pt 2, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Buchberger, A.; Muthuvel, G.; Li, L. Expression and distribution of neuropeptides in the nervous system of the crab Carcinus maenas and their roles in environmental stress. Proteomics 2015, 15, 3969–3979. [Google Scholar] [CrossRef] [PubMed]
- Nishizaki, M.T.; Carrington, E. The effect of water temperature and velocity on barnacle growth: Quantifying the impact of multiple environmental stressors. J. Therm. Biol. 2015, 54, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.H.; Yu, L.; Zhang, G.; He, L.S.; Qian, P.Y. In Silico Prediction of Neuropeptides/Peptide Hormone Transcripts in the Cheilostome Bryozoan Bugula neritina. PLoS ONE 2016, 11, e0160271. [Google Scholar] [CrossRef]
- Van den Pol, A.N. Neuropeptide transmission in brain circuits. Neuron 2012, 76, 98–115. [Google Scholar] [CrossRef]
- Kalke, P.; Frase, T.; Richter, S. From swimming towards sessility in two metamorphoses—The drastic changes in structure and function of the nervous system of the bay barnacle Amphibalanus improvisus (Crustacea, Thecostraca, Cirripedia) during development. Contrib. Zool. 2020, 89, 324–352. [Google Scholar] [CrossRef]
- Marco, H.G.; Verlinden, H.; Vanden Broeck, J.; Gäde, G. Characterisation and pharmacological analysis of a crustacean G protein-coupled receptor: The red pigment-concentrating hormone receptor of Daphnia pulex. Sci. Rep. 2017, 7, 6851. [Google Scholar] [CrossRef]
- Conzelmann, M.; Offenburger, S.L.; Asadulina, A.; Keller, T.; Münch, T.A.; Jékely, G. Neuropeptides regulate swimming depth of Platynereis larvae. Proc. Natl. Acad. Sci. USA 2011, 108, E1174–E1183. [Google Scholar] [CrossRef]
- Zhou, Y.; Nagata, S. Chapter 93—Crustacean cardioactive peptide. In Handbook of Hormones, 2nd ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 795–797. [Google Scholar]
- Meelkop, E.; Temmerman, L.; Schoofs, L.; Janssen, T. Signalling through pigment dispersing hormone-like peptides in invertebrates. Prog. Neurobiol. 2011, 93, 125–147. [Google Scholar] [CrossRef]
- Conzelmann, M.; Williams, E.A.; Tunaru, S.; Randel, N.; Shahidi, R.; Asadulina, A.; Berger, J.; Offermanns, S.; Jékely, G. Conserved MIP receptor-ligand pair regulates Platynereis larval settlement. Proc. Natl. Acad. Sci. USA 2013, 110, 8224–8229. [Google Scholar] [CrossRef] [PubMed]
- Clare, A.S.; Matsumura, K. Nature and perception of barnacle settlement pheromones. Biofouling 2000, 15, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Krajniak, K.G. Invertebrate FMRFamide related peptides. Protein Pept. Lett. 2013, 20, 647–670. [Google Scholar] [CrossRef] [PubMed]
- Gallus, L.; Ferrando, S.; Bottaro, M.; Diaspro, A.; Girosi, L.; Faimali, M.; Ramoino, P.; Tagliafierro, G. Presence and distribution of FMRFamide-like immunoreactivity in the cyprid of the barnacle Balanus amphitrite (Cirripedia, Crustacea). Microsc. Res. Tech. 2009, 72, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.; Yuan, J.; Liu, X.; Dong, D.; Li, F.; Li, X. Comparative transcriptomic analysis of deep- and shallow-water barnacle species (Cirripedia, Poecilasmatidae) provides insights into deep-sea adaptation of sessile crustaceans. BMC Genom. 2020, 21, 240. [Google Scholar] [CrossRef]
- Wang, C.; Chin-Sang, I.; Bendena, W.G. The FGLamide-allatostatins influence foraging behavior in Drosophila melanogaster. PLoS ONE 2012, 7, e36059. [Google Scholar] [CrossRef]
- Yan, G.; Zhang, G.; Huang, J.; Lan, Y.; Sun, J.; Zeng, C.; Wang, Y.; Qian, P.Y.; He, L. Comparative Transcriptomic Analysis Reveals Candidate Genes and Pathways Involved in Larval Settlement of the Barnacle Megabalanus volcano. Int. J. Mol. Sci. 2017, 18, 2253. [Google Scholar] [CrossRef]
- Xu, Z.; Wei, Y.; Guo, S.; Lin, D.; Ye, H. B-type allatostatin modulates immune response in hepatopancreas of the mud crab Scylla paramamosain. Dev. Comp. Immunol. 2020, 110, 103725. [Google Scholar] [CrossRef]
- Liu, A.; Liu, F.; Shi, W.; Huang, H.; Wang, G.; Ye, H. C-Type allatostatin and its putative receptor from the mud crab serve an inhibitory role in ovarian development. J. Exp. Biol. 2019, 222 Pt 21, 207985. [Google Scholar] [CrossRef]
- Christie, A.E.; Miller, A.; Fernandez, R.; Dickinson, E.S.; Jordan, A.; Kohn, J.; Youn, M.C.; Dickinson, P.S. Non-amidated and amidated members of the C-type allatostatin (AST-C) family are differentially distributed in the stomatogastric nervous system of the American lobster, Homarus americanus. Invertebr. Neurosci. 2018, 18, 2. [Google Scholar] [CrossRef]
- Webster, S.G. Peptidergic Neurons in Barnacles: An Immunohistochemical Study Using Antisera Raised Against Crustacean Neuropeptides. Biol. Bull. 1998, 195, 282–289. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 18673470, Type A Allatostatin I. 2022. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Type-A-Allatostatin-I (accessed on 19 August 2022).
- Kitade, S.; Endo, N.; Nogata, Y.; Matsumura, K.; Yasumoto, K.; Iguchi, A.; Yorisue, T. Faint chemical traces of conspecifics delay settlement of barnacle larvae. Front. Mar. Sci. 2022, 9, 983389. [Google Scholar] [CrossRef]
- Kotsiri, M.; Protopapa, M.; Mouratidis, S.; Zachariadis, M.; Vassilakos, D.; Kleidas, I.; Samiotaki, M.; Dedos, S.G. Should I stay or should I go? The settlement-inducing protein complex guides barnacle settlement decisions. J. Exp. Biol. 2018, 221 Pt 22, 185348. [Google Scholar] [CrossRef] [PubMed]
- Tegtmeyer, K.; Rittschof, D. Synthetic peptide analogs to barnacle settlement pheromone. Peptides 1988, 9, 1403–1406. [Google Scholar] [CrossRef]
- Lind, U.; Alm Rosenblad, M.; Hasselberg Frank, L.; Falkbring, S.; Brive, L.; Laurila, J.M.; Pohjanoksa, K.; Vuorenpää, A.; Kukkonen, J.P.; Gunnarsson, L.; et al. Octopamine receptors from the barnacle balanus improvisus are activated by the alpha2-adrenoceptor agonist medetomidine. Mol. Pharmacol. 2010, 78, 237–248. [Google Scholar] [CrossRef]
- Dobretsov, S.; Rittschof, D. Love at First Taste: Induction of Larval Settlement by Marine Microbes. Int. J. Mol. Sci. 2020, 21, 731. [Google Scholar] [CrossRef]
- Downs, M.; Johnson, P.; Zeece, M. Insects and Their Connection to Food Allergy. EFSA J. 2016, 10, 1016. [Google Scholar]
- Zhang, G.; Yan, G.-Y.; Yang, X.-X.; Wong, Y.-H.; Sun, J.; Zhang, Y.; He, L.-S.; Xu, Y.; Qian, P.-Y. Characterization of Arginine Kinase in the Barnacle Amphibalanus Amphitrite and Its Role in the Larval Settlement. J. Exp. Zool. (Mol. Dev. Evol.) 2016, 326, 237–249. [Google Scholar] [CrossRef]
- Abramova, A.; Alm Rosenblad, M.; Blomberg, A.; Larsson, T.A. Sensory receptor repertoire in cyprid antennules of the barnacle Balanus improvisus. PLoS ONE 2019, 14, e0216294. [Google Scholar] [CrossRef]
- Ederth, T.; Lerm, M.; Orihuela, B.; Rittschof, D. Resistance of Zwitterionic Peptide Monolayers to Biofouling. Langmuir 2019, 35, 1818–1827. [Google Scholar] [CrossRef]
- Dickinson, G.H.; Vega, I.E.; Wahl, K.J.; Orihuela, B.; Beyley, V.; Rodriguez, E.N.; Everett, R.K.; Bonaventura, J.; Rittschof, D. Barnacle cement: A polymerization model based on evolutionary concepts. J. Exp. Biol. 2009, 212, 3499–3510. [Google Scholar] [CrossRef] [PubMed]
- Jouuchi, T.; Satuito, C.G.; Kitamura, H. Sugar compound products of the periphytic diatom Navicula ramosissima induce larval settlement in the barnacle, Amphibalanus amphitrite. Mar. Biol. 2007, 152, 1065–1076. [Google Scholar] [CrossRef]
- Yan, G.; Sun, J.; Wang, Z.; Qian, P.Y.; He, L. Insights into the Synthesis, Secretion and Curing of Barnacle Cyprid Adhesive via Transcriptomic and Proteomic Analyses of the Cement Gland. Mar. Drugs 2020, 18, 186. [Google Scholar] [CrossRef]
- Dobretsov, S.; Qian, P.-Y. The role of epibotic bacteria from the surface of the softcoral Dendronephthya sp. in the inhibition of larval settlement. J. Exp. Mar. Biol. Ecol. 2004, 299, 35–50. [Google Scholar] [CrossRef]
- Lawes, J.C.; Clark, G.F.; Johnston, E.L. Disentangling settlement responses to nutrient-rich contaminants: Elevated nutrients impact marine invertebrate recruitment via water-borne and substrate-bound cues. Sci. Total Environ. 2018, 645, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Ye, Z.; Xue, B.; Zeng, L.; Wu, W.; Zhong, C.; Cao, Y.; Hu, B.; Messersmith, P.B. Self-Assembled Nanofibers for Strong Underwater Adhesion: The Trick of Barnacles. ACS Appl. Mater. Interfaces 2018, 10, 25017–25025. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.; Wu, J.; Sarrafian, T.L.; Mao, X.; Varela, C.E.; Roche, E.T.; Griffiths, L.G.; Nabzdyk, C.S.; Zhao, X. Rapid and coagulation-independent haemostatic sealing by a paste inspired by barnacle glue. Nat. Biomed. Eng. 2021, 5, 1131–1142. [Google Scholar] [CrossRef]
- Urushida, Y.; Nakano, M.; Matsuda, S.; Inoue, N.; Kanai, S.; Kitamura, N.; Nishino, T.; Kamino, K. Identification and functional characterization of a novel barnacle cement protein. FEBS J. 2007, 274, 4336–4346. [Google Scholar] [CrossRef]
- Kamino, K. Absence of cross-linking via trans-glutaminase in barnacle cement and redefinition of the cement. Biofouling 2010, 26, 755–760. [Google Scholar] [CrossRef]
- Yamamoto, H.; Nagai, A. Polypeptide models of the arthropodin protein of the barnacle Balanus balanoides. Mar. Chem. 1992, 37, 131–143. [Google Scholar] [CrossRef]
- Raman, S.; Malms, L.; Utzig, T.; Shrestha, B.R.; Stock, P.; Krishnan, S.; Valtiner, M. Adhesive barnacle peptides exhibit a steric-driven design rule to enhance adhesion between asymmetric surfaces. Colloids Surf. B Biointerfaces 2017, 152, 42–48. [Google Scholar] [CrossRef] [PubMed]
- So, C.R.; Yates, E.A.; Estrella, L.A.; Fears, K.P.; Schenck, A.M.; Yip, C.M.; Wahl, K.J. Molecular Recognition of Structures Is Key in the Polymerization of Patterned Barnacle Adhesive Sequences. ACS Nano 2019, 13, 5172–5183. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Bi, X.; Gan, K.; Wu, J.; He, G.; Xue, B.; Ye, Z.; Cao, Y.; Hu, B. Short Peptides Derived from a Block Copolymer-like Barnacle Cement Protein Self-Assembled into Diverse Supramolecular Structures. Biomacromolecules 2022, 23, 2019–2030. [Google Scholar] [CrossRef]
- Nakano, M.; Shen, J.R.; Kamino, K. Self-assembling peptide inspired by a barnacle underwater adhesive protein. Biomacromolecules 2007, 8, 1830–1835. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Kamino, K. Amyloid-like Conformation and Interaction for the Self-Assembly in Barnacle Underwater Cement. Biochemistry 2015, 54, 826–835. [Google Scholar] [CrossRef]
Peptide | Related Functions | Amino Acids Sequence | References |
---|---|---|---|
Pignent depersing hormone (PDH) | Regular color change and sensing | NSELINSILGLPKVMNDA | [57] |
Crustacean Cardioactive peptide (CCAP) | Control the ecdysis and stomatogastric behavior | PFCNAFTGC | [52] |
A-type allatostatin | Related to the nutrient state such as lipids usage regular metabolism | Conserved pentapeptide C-terminal sequence Y/F-X-F-G-L/lamide | [60] |
B-type allatostatin | Muscle control, metabolism regulation, feeding, sleeping | With conserved W(X0) amide at the C-terminus | [61] |
C-type allatostatin | Modulating the neuromuscular system | Characterized by a non-amidated c-terminal pentapeptide PISCF motif | [7] |
Calcitonin-like diuretic hormone-isoform A | Maintain ionic homeostasis of hemolymph during barnacle development | GFDFGLGRGFSASQAAKHKMGLEAAEFPSGPa | |
SIFamide | Transmitting neural signals and detecting exogenic cues in the settlement processes | MGSRCAVRRVAAVLVVALVAMALLAPLTEAGYRKPTFNGSIFGKRAAAAAEAEAAQGLARMCAAAYTVCGFPAE | |
Tachykinin-relate peptide (TRPs) | Feeding-related behavior: food intake and digestion-related functions | Phe–Xaa1–(Gly/Ala)–Xaa2–Arg–NH2 for most TKRPs or Phe–Xaa1–Xaa2–Xaa3–Arg–NH2 for natalisins | |
The prothoracicotropic hormone (PTTH) | Promote larval development | unsigned | [23] |
FMRFamide-like peptides | Neurotransmitter in the central nervous system and gut Neurosecretory role in the sensory function of frontal filament | A group of peptides with N-terminally extended Phe-Met-Arg-Phe-NH2 | [57] |
Peptide | Amino Acids Sequence | Amide Length (aa) | (Inspired) Source | References |
---|---|---|---|---|
cMr20-S5 | Ac-SKLPCNDEHPCYRKEGGVVSCDCK | 24 | Mrcp- 20k | [88] |
cMr20-S6 | Ac-KTITCNEDHPCYHSYEEDGVTKSDCDCE | 28 | ||
Bp1 | GSGSVPPPCD | 10 | Interfacial cement | [85] |
Bp2 | GSKLDLLTDG | 10 | ||
BCP1 | QTGYTRGGAAVSSTGATQGAGS | 22 | Full-length 19 kDa protein | [86] |
BCP1C | QTGYTRGGAAVSSTGATQGAGSLDLAIDGPGGFKARSK | 38 | ||
BCP2 | AVGNSGVSGSGVSIGDSGFRQKTQT | 25 | ||
BCP2C | AVGNSGVSGSGVSIGDSGFRQKTQTNSEAGSKGTKRA | 37 | ||
BCP3 | TGTQGKGITSGEAVANQKAGAEGG | 24 | ||
BCP3C | TGTQGKGITSGEAVANQKAGAEGGAQRVEAVKYVESDGKNLYKVEKVD | 48 | ||
BCP4 | GTSSSGHKASSSGPGRFITSN | 21 | ||
BCP4C | GTSSSGHKASSSGPGRFITSNEVGTEIKLTTPELD | 35 | ||
mutBCP1 | QTGYTRGGAAVSSTGATQCAGS | 22 | ||
P1 | VPPPSDLSIKSKLKQV | 16 | Barnacle cp19k | [87] |
P2 | GATKGNAAVTTKGTTSGS | 18 | ||
P3 | GVVKSVVRTPTSVEKK | 16 | ||
P4 | KAAVGDTGLSAVSASADNG | 19 | ||
P5 | LFKNLGKATTEVKTTKDGTKVKTK | 24 | ||
P6 | TAGKGKTGGTATTLQIADANGG | 22 | ||
P7 | VSEKSLKLDLLTDGLKFVKVTEKKQ | 25 | ||
P8 | GTATSSSGHKASGVGHS | 17 | ||
P9 | VFKVLNEAETELELKGL | 17 | ||
R1-3 | RRKYSGILGDLIQVAVIRYY | 20 | cp52k | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Jin, H.; Xu, G.; Lai, R.; Wang, A. Bioactive Peptides from Barnacles and Their Potential for Antifouling Development. Mar. Drugs 2023, 21, 480. https://doi.org/10.3390/md21090480
Liu X, Jin H, Xu G, Lai R, Wang A. Bioactive Peptides from Barnacles and Their Potential for Antifouling Development. Marine Drugs. 2023; 21(9):480. https://doi.org/10.3390/md21090480
Chicago/Turabian StyleLiu, Xuan, Hui Jin, Gaochi Xu, Ren Lai, and Aili Wang. 2023. "Bioactive Peptides from Barnacles and Their Potential for Antifouling Development" Marine Drugs 21, no. 9: 480. https://doi.org/10.3390/md21090480
APA StyleLiu, X., Jin, H., Xu, G., Lai, R., & Wang, A. (2023). Bioactive Peptides from Barnacles and Their Potential for Antifouling Development. Marine Drugs, 21(9), 480. https://doi.org/10.3390/md21090480