Activation of a Silent Polyketide Synthase SlPKS4 Encoding the C7-Methylated Isocoumarin in a Marine-Derived Fungus Simplicillium lamellicola HDN13-430
Abstract
:1. Introduction
2. Results
2.1. Bioinformatic Analysis of the Target nrPKS and the Gene Cluster in S. lamellicola HDN13-430
2.2. Heterologous Expression of the Gene Cluster and Elucidation of Compounds 1 and 2
2.3. Origin Verification of Compound 2 by Biotransformation Assay
2.4. Bioactivities of Compounds 1 and 2
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Materials and Culture Conditions
4.3. Sequence Analysis of the SlPKS4 Gene
4.4. Heterologous Expression of SlPKS4 and Sl4001-Sl4007 in A. nidulans A1145
4.5. Fermentation and Extraction
4.6. Compound Isolation
4.7. Biotransformation Assay of 1 in A. nidulans
4.8. Assay of Antimicrobial and Antioxidant Activities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butler, M.S.; Robertson, A.A.B.; Cooper, M.A. Natural Product and Natural Product Derived Drugs in Clinical Trials. Nat. Prod. Rep. 2014, 31, 1612–1661. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J. Natural Products from Marine Fungi. Mar. Drugs 2020, 18, 230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Tang, X.; Moore, B.S. Genetic Platforms for Heterologous Expression of Microbial Natural Products. Nat. Prod. Rep. 2019, 36, 1313–1332. [Google Scholar] [CrossRef] [PubMed]
- Wiemann, P.; Keller, N.P. Strategies for Mining Fungal Natural Products. J. Ind. Microbiol. Biot. 2014, 41, 301–313. [Google Scholar] [CrossRef]
- Zou, R.; Chen, B.; Sun, J.; Guo, Y.-W.; Xu, B. Recent Advances of Activation Techniques-Based Discovery of New Compounds from Marine Fungi. Fitoterapia 2023, 167, 105503–105516. [Google Scholar] [CrossRef]
- Yu, J.; Han, H.; Zhang, X.; Ma, C.; Sun, C.; Che, Q.; Gu, Q.; Zhu, T.; Zhang, G.; Li, D. Discovery of Two New Sorbicillinoids by Overexpression of the Global Regulator LaeA in a Marine-Derived Fungus Penicillium dipodomyis YJ-11. Mar. Drugs 2019, 17, 446. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, W.; Shi, W.; Yan, R.; Zhang, J.; Wei, G.; Liu, L.; Che, Y.; An, C.; Gao, S.-S. Overproduction of Medicinal Ergot Alkaloids Based on a Fungal Platform. Metab. Eng. 2022, 69, 198–208. [Google Scholar] [CrossRef]
- Huo, L.; Hug, J.J.; Fu, C.; Bian, X.; Zhang, Y.; Müller, R. Heterologous Expression of Bacterial Natural Product Biosynthetic Pathways. Nat. Prod. Rep. 2019, 36, 1412–1436. [Google Scholar] [CrossRef]
- Chiang, C.-Y.; Ohashi, M.; Tang, Y. Deciphering Chemical Logic of Fungal Natural Product Biosynthesis through Heterologous Expression and Genome Mining. Nat. Prod. Rep. 2023, 40, 89–127. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, K.; Zhang, X.; Liu, G.; Zhu, T.; Che, Q.; Li, D.; Zhang, G. Heterologous Expression and Metabolic Engineering Tools for Improving Terpenoids Production. Curr. Opin. Biotechol. 2021, 69, 281–289. [Google Scholar] [CrossRef]
- Guo, W.; Wang, S.; Li, N.; Li, F.; Zhu, T.; Gu, Q.; Guo, P.; Li, D. Saroclides A and B, Cyclic Depsipeptides from the Mangrove-Derived Fungus Sarocladium kiliense HDN11-112. J. Nat. Prod. 2018, 81, 1050–1054. [Google Scholar] [CrossRef]
- Shin, T.S.; Yu, N.H.; Lee, J.; Choi, G.J.; Kim, J.-C.; Shin, C.S. Development of a Biofungicide Using a Mycoparasitic Fungus Simplicillium lamellicola BCP and Its Control Efficacy against Gray Mold Diseases of Tomato and Ginseng. Plant Pathol. J. 2017, 33, 337–344. [Google Scholar] [CrossRef]
- Le Dang, Q.; Shin, T.S.; Park, M.S.; Choi, Y.H.; Choi, G.J.; Jang, K.S.; Kim, I.S.; Kim, J.-C. Antimicrobial Activities of Novel Mannosyl Lipids Isolated from the Biocontrol Fungus Simplicillium lamellicola BCP against Phytopathogenic Bacteria. J. Agric. Food Chem. 2014, 62, 3363–3370. [Google Scholar] [CrossRef]
- Abaya, A.; Serajazari, M.; Hsiang, T. Control of Fusarium Head Blight Using the Endophytic Fungus, Simplicillium lamellicola, and Its Effect on the Growth of Triticum Aestivum. Biol. Control 2021, 160, 104684–104693. [Google Scholar] [CrossRef]
- Ahuja, M.; Chiang, Y.-M.; Chang, S.-L.; Praseuth, M.B.; Entwistle, R.; Sanchez, J.F.; Lo, H.-C.; Yeh, H.-H.; Oakley, B.R.; Wang, C.C.C. Illuminating the Diversity of Aromatic Polyketide Synthases in Aspergillus nidulans. J. Am. Chem. Soc. 2012, 134, 8212–8221. [Google Scholar] [CrossRef]
- Matsuda, Y.; Wakimoto, T.; Mori, T.; Awakawa, T.; Abe, I. Complete Biosynthetic Pathway of Anditomin: Nature’s Sophisticated Synthetic Route to a Complex Fungal Meroterpenoid. J. Am. Chem. Soc. 2014, 136, 15326–15336. [Google Scholar] [CrossRef] [PubMed]
- Prompanya, C.; Dethoup, T.; Bessa, L.; Pinto, M.; Gales, L.; Costa, P.; Silva, A.; Kijjoa, A. New Isocoumarin Derivatives and Meroterpenoids from the Marine Sponge-Associated Fungus Aspergillus similanensis sp. Nov. KUFA 0013. Mar. Drugs 2014, 12, 5160–5173. [Google Scholar] [CrossRef]
- Pérez Hemphill, C.F.; Daletos, G.; Liu, Z.; Lin, W.; Proksch, P. Polyketides from the Mangrove-Derived Fungal Endophyte Pestalotiopsis clavispora. Tetrahedron Lett. 2016, 57, 2078–2083. [Google Scholar] [CrossRef]
- Carter, R.H.; Garson, M.J.; Hill, R.A.; Staunton, J.; Sunter, D.C. The Synthesis of Indan-1-ones and Isocoumarins. J. Chem. Soc. Perkin Trans. 1 1981, 9, 471–479. [Google Scholar] [CrossRef]
- Lewis, C.N.; Staunton, J.; Sunter, D.C. Biosynthesis of Canescin, a Metabolite of Aspergillus malignus: Incorporation of Methionine, Acetate, Succinate, and Isocoumarin Precursors, Labelled with Deuterium and Carbon-13. J. Chem. Soc. Perkin Trans. 1 1988, 8, 747–754. [Google Scholar] [CrossRef]
- Lewis, C.N.; Staunton, J.; Sunter, D.C. A 2H and 13C N.M.R. Study of the Biosynthesis of the Polyketide Isocoumarin Residue of Canescin in Aspergillus malignus from [1,2-13C2]-, and [1-13C, 2-2H3]Acetates, [Me-13C, 2H3]Methionine, 6,8-Dihydroxy-3,7-Dimethylisocoumarin, and 6,8-Dihydroxy-7-Formyl-3-Methylisocoumarin. J. Chem. Soc. Chem. Commun. 1986, 3, 58–60. [Google Scholar] [CrossRef]
- Saeed, A. Isocoumarins, Miraculous Natural Products Blessed with Diverse Pharmacological Activities. Eur. J. Med. Chem. 2016, 116, 290–317. [Google Scholar] [CrossRef] [PubMed]
- Xiang, P.; Ludwig-Radtke, L.; Yin, W.-B.; Li, S.-M. Isocoumarin Formation by Heterologous Gene Expression and Modification by Host Enzymes. Org. Biomol. Chem. 2020, 18, 4946–4948. [Google Scholar] [CrossRef]
- Zhou, J.; Li, G.; Deng, Q.; Zheng, D.; Yang, X.; Xu, J. Cytotoxic Constituents from the Mangrove Endophytic Pestalotiopsis Sp. Induce G0/G1 Cell Cycle Arrest and Apoptosis in Human Cancer Cells. Nat. Prod. Res. 2018, 32, 2968–2972. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-Y.; Liu, D.-S.; Li, D.-G.; Huang, Y.-L.; Kang, H.-H.; Wang, C.-H.; Liu, W.-Z. Pyran Rings Containing Polyketides from Penicillium raistrickii. Mar. Drugs 2016, 15, 2. [Google Scholar] [CrossRef]
- Shabir, G.; Saeed, A.; El-Seedi, H.R. Natural Isocoumarins: Structural Styles and Biological Activities, the Revelations Carry on…. Phytochemistry 2021, 181, 112568–112590. [Google Scholar] [CrossRef]
- Pal, S.; Chatare, V.; Pal, M. Isocoumarin and Its Derivatives: An Overview on Their Synthesis and Applications. Curr. Org. Chem. 2011, 15, 782–800. [Google Scholar] [CrossRef]
- Song, R.-Y.; Wang, X.-B.; Yin, G.-P.; Liu, R.-H.; Kong, L.-Y.; Yang, M.-H. Isocoumarin Derivatives from the Endophytic Fungus, Pestalotiopsis sp. Fitoterapia 2017, 122, 115–118. [Google Scholar] [CrossRef]
- Saikia, P.; Gogoi, S. Isocoumarins: General Aspects and Recent Advances in Their Synthesis. Adv. Synth. Catal. 2018, 360, 2063–2075. [Google Scholar] [CrossRef]
- Sarmah, M.; Chutia, K.; Dutta, D.; Gogoi, P. Overview of Coumarin-Fused-Coumarins: Synthesis, Photophysical Properties and Their Applications. Org. Biomol. Chem. 2022, 20, 55–72. [Google Scholar] [CrossRef]
- Noor, A.O.; Almasri, D.M.; Bagalagel, A.A.; Abdallah, H.M.; Mohamed, S.G.A.; Mohamed, G.A.; Ibrahim, S.R.M. Naturally Occurring Isocoumarins Derivatives from Endophytic Fungi: Sources, Isolation, Structural Characterization, Biosynthesis, and Biological Activities. Molecules 2020, 25, 395. [Google Scholar] [CrossRef]
- Cai, Y.; Rao, L.; Zou, Y. Genome Mining Discovery of a C4 -Alkylated Dihydroisocoumarin Pathway in Fungi. Org. Lett. 2021, 23, 2337–2341. [Google Scholar] [CrossRef] [PubMed]
- Tammam, M.A.; Gamal El-Din, M.I.; Abood, A.; El-Demerdash, A. Recent Advances in the Discovery, Biosynthesis, and Therapeutic Potential of Isocoumarins Derived from Fungi: A Comprehensive Update. RSC Adv. 2023, 13, 8049–8089. [Google Scholar] [CrossRef] [PubMed]
- Atanasoff-Kardjalieff, A.K.; Seidl, B.; Steinert, K.; Daniliuc, C.G.; Schuhmacher, R.; Humpf, H.; Kalinina, S.; Studt-Reinhold, L. Biosynthesis of the Isocoumarin Derivatives Fusamarins Is Mediated by the PKS8 Gene Cluster in Fusarium. ChemBioChem 2023, 24, e202200342. [Google Scholar] [CrossRef] [PubMed]
- Kahlert, L.; Villanueva, M.; Cox, R.J.; Skellam, E.J. Biosynthesis of 6-Hydroxymellein Requires a Collaborating Polyketide Synthase-like Enzyme. Angew. Chem. Int. Ed. 2021, 60, 11423–11429. [Google Scholar] [CrossRef]
- Lind, A.L.; Wisecaver, J.H.; Lameiras, C.; Wiemann, P.; Palmer, J.M.; Keller, N.P.; Rodrigues, F.; Goldman, G.H.; Rokas, A. Drivers of Genetic Diversity in Secondary Metabolic Gene Clusters within a Fungal Species. PLoS Biol. 2017, 15, e2003583. [Google Scholar] [CrossRef]
- Wiemann, P.; Guo, C.-J.; Palmer, J.M.; Sekonyela, R.; Wang, C.C.C.; Keller, N.P. Prototype of an Intertwined Secondary-Metabolite Supercluster. Proc. Natl. Acad. Sci. USA 2013, 110, 17065–17070. [Google Scholar] [CrossRef]
- Stroe, M.C.; Netzker, T.; Scherlach, K.; Krüger, T.; Hertweck, C.; Valiante, V.; Brakhage, A.A. Targeted Induction of a Silent Fungal Gene Cluster Encoding the Bacteria-Specific Germination Inhibitor Fumigermin. eLife 2020, 9, e52541. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. AntiSMASH 7.0: New and Improved Predictions for Detection, Regulation, Chemical Structures and Visualisation. NAR 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Attwood, T.K.; Babbitt, P.C.; Blum, M.; Bork, P.; Bridge, A.; Brown, S.D.; Chang, H.-Y.; El-Gebali, S.; Fraser, M.I.; et al. InterPro in 2019: Improving Coverage, Classification and Access to Protein Sequence Annotations. Nucleic Acids Res. 2019, 47, D351–D360. [Google Scholar] [CrossRef]
- Gilchrist, C.L.M.; Chooi, Y.-H. Clinker & Clustermap.Js: Automatic Generation of Gene Cluster Comparison Figures. Bioinformatics 2021, 37, 2473–2475. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wu, G.; Sun, Z.; Zhang, X.; Che, Q.; Gu, Q.; Zhu, T.; Li, D.; Zhang, G. Cytotoxic Tetrahydroxanthone Dimers from the Mangrove-Associated Fungus Aspergillus versicolor HDN1009. Mar. Drugs 2018, 16, 335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, X.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Sorbicillasins A–B and Scirpyrone K from a Deep-Sea-Derived Fungus, Phialocephala sp. FL30r. Mar. Drugs 2018, 16, 245. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Liu, X.; Ma, C.; Li, C.; Zhang, Y.; Che, Q.; Zhang, G.; Zhu, T.; Li, D. Activation of a Silent Polyketide Synthase SlPKS4 Encoding the C7-Methylated Isocoumarin in a Marine-Derived Fungus Simplicillium lamellicola HDN13-430. Mar. Drugs 2023, 21, 490. https://doi.org/10.3390/md21090490
Yu J, Liu X, Ma C, Li C, Zhang Y, Che Q, Zhang G, Zhu T, Li D. Activation of a Silent Polyketide Synthase SlPKS4 Encoding the C7-Methylated Isocoumarin in a Marine-Derived Fungus Simplicillium lamellicola HDN13-430. Marine Drugs. 2023; 21(9):490. https://doi.org/10.3390/md21090490
Chicago/Turabian StyleYu, Jing, Xiaolin Liu, Chuanteng Ma, Chen Li, Yuhan Zhang, Qian Che, Guojian Zhang, Tianjiao Zhu, and Dehai Li. 2023. "Activation of a Silent Polyketide Synthase SlPKS4 Encoding the C7-Methylated Isocoumarin in a Marine-Derived Fungus Simplicillium lamellicola HDN13-430" Marine Drugs 21, no. 9: 490. https://doi.org/10.3390/md21090490
APA StyleYu, J., Liu, X., Ma, C., Li, C., Zhang, Y., Che, Q., Zhang, G., Zhu, T., & Li, D. (2023). Activation of a Silent Polyketide Synthase SlPKS4 Encoding the C7-Methylated Isocoumarin in a Marine-Derived Fungus Simplicillium lamellicola HDN13-430. Marine Drugs, 21(9), 490. https://doi.org/10.3390/md21090490