Insights on the UV-Screening Potential of Marine-Inspired Thiol Compounds
Abstract
:1. Introduction
2. Results
2.1. Absorption Spectra of Oxidized and Reduced Forms of Marine-Inspired Thiol Compounds
2.2. Comparison of UV Absorption Spectra of Chemically Reduced 5-thio and iso-ovoA
2.3. DFT Quantum Mechanical Calculations of Disulphide Bonds
2.4. Shielding Effect of Marine-Inspired Thiol Compounds against UVA-Induced Oxidative Modification of Proteins
2.5 Shielding Effect of Marine-Inspired Thiol Compounds against UVA-Induced Lipid Peroxidation
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. UV-Vis Spectrophotometric Measurements
4.3. UVA Exposure
4.4. Ellman’s Assay
4.5. Sodium Borohydride Assay
4.6. Computational Calculations
4.7. Protein Carbonyl Group Content Determination
4.8. Intrinsic Tryptophan Fluorescence
4.9. Liposome Preparation and Evaluation of Lipid Peroxidation
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mushtaq, S. The Immunogenetics of Non-melanoma Skin Cancer. Adv. Exp. Med. Biol. 2022, 1367, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Addor, F.A.S.; Barcaui, C.B.; Gomes, E.E.; Lupi, O.; Marcon, C.R.; Miot, H.A. Sunscreen lotions in the dermatological perscription: Review of concepts and controversies. An. Bras. Dermatol. 2022, 97, 204–222. [Google Scholar] [CrossRef] [PubMed]
- WHO. Radiation: Sun Protection. Available online: https://www.who.int/news-room/q-a-detail/radiation-sun-protection (accessed on 13 November 2023).
- Corinaldesi, C.; Damiani, E.; Marcellini, F.; Falugi, C.; Tiano, L.; Bruge, F.; Danovaro, R. Sunscreen products impair the early developmental stages of the sea urchin Paracentrotus lividus. Sci. Rep. 2017, 7, 7815. [Google Scholar] [CrossRef] [PubMed]
- Corinaldesi, C.; Marcellini, F.; Nepote, E.; Damiani, E.; Danovaro, R. Impact of inorganic UV filters contained in sunscreen products on tropical stony corals (Acropora spp.). Sci. Total Environ. 2018, 637–638, 1279–1285. [Google Scholar] [CrossRef]
- Danovaro, R.; Bongiorni, L.; Corinaldesi, C.; Giovannelli, D.; Damiani, E.; Astolfi, P.; Greci, L.; Pusceddu, A. Sunscreens cause coral bleaching by promoting viral infections. Environ. Health Perspect. 2008, 116, 441–447. [Google Scholar] [CrossRef]
- Zen Life and Travel. Available online: https://www.zenlifeandtravel.com/sunscreen-bans/ (accessed on 13 November 2023).
- Oral, D.; Yirun, A.; Erkekoglu, P. Safety Concerns of Organic Ultraviolet Filters: Special Focus on Endocrine-Disrupting Properties. J. Environ. Pathol. Toxicol. Oncol. 2020, 39, 201–212. [Google Scholar] [CrossRef]
- Milito, A.; Castellano, I.; Damiani, E. From sea to skin: Is there a future for natural photoprotectants? Mar. Drugs 2021, 19, 379. [Google Scholar] [CrossRef]
- Lindequist, U. Marine-derived pharmaceuticals—Challenges and opportunities. Biomol. Ther. 2016, 24, 561–571. [Google Scholar] [CrossRef]
- Rosic, N.N. Mycosporine-like amino acids: Making the foundation for organic personalised sunscreens. Mar. Drugs 2019, 12, 638. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Incharoensakdi, A. Characterization of UV-screening compounds, mycosporine-like amino acids, and scytonemin in the cyanobacterium Lyngbya sp. CU2555. FEMS Microbiol. Ecol. 2014, 87, 244–256. [Google Scholar] [CrossRef]
- Brancaccio, M.; Tangherlini, M.; Danovaro, R.; Castellano, I. Metabolic Adaptations to Marine Environments: Molecular Diversity and Evolution of Ovothiol Biosynthesis in Bacteria. Genome Biol. Evol. 2021, 13, evab169. [Google Scholar] [CrossRef] [PubMed]
- Castellano, I.; Seebeck, F.P. On ovothiol biosynthesis and biological roles: From life in the ocean to therapeutic potential. Nat. Prod. Rep. 2018, 35, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Gerdol, M.; Sollitto, M.; Pallavicini, A.; Castellano, I. The complex evolutionary history of sulfoxide synthase in ovothiol biosynthesis. Proc. Biol. Sci. 2019, 286, 20191812. [Google Scholar] [CrossRef] [PubMed]
- Milito, A.; Castellano, I.; Burn, R.; Seebeck, F.P.; Brunet, C.; Palumbo, A. First evidence of ovothiol biosynthesis in marine diatoms. Free Radic. Biol. Med. 2020, 152, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.T.; Santin, A.; Zuccarotto, A.; Leone, S.; Palumbo, A.; Ferrante, M.I.; Castellano, I. The first genetic engineered system for ovothiol biosynthesis in diatoms reveals a mitochondrial localization for the sulfoxide synthase OvoA. Open Biol. 2023, 13, 220309. [Google Scholar] [CrossRef] [PubMed]
- Castellano, I.; Migliaccio, O.; D’Aniello, S.; Merlino, A.; Napolitano, A.; Palumbo, A. Shedding light on ovothiol biosynthesis in marine metazoans. Sci. Rep. 2016, 6, 21506. [Google Scholar] [CrossRef] [PubMed]
- Milito, A.; Cocurullo, M.; Columbro, A.; Nonnis, S.; Tedeschi, G.; Castellano, I.; Arnone, M.I.; Palumbo, A. Ovothiol ensures the correct developmental programme of the sea urchin Paracentrotus lividus embryo. Open Biol. 2022, 12, 210262. [Google Scholar] [CrossRef]
- Mirzahosseini, A.; Orgovan, G.; Hosztafi, S.; Noszal, B. The complete microspeciation of ovothiol A, the smallest octafarious antioxidant biomolecule. Anal. Bioanal. Chem. 2014, 406, 2377–2387. [Google Scholar] [CrossRef]
- Osik, N.A.; Zelentsova, E.A.; Tsentalovich, Y.P. Kinetic Studies of Antioxidant Properties of Ovothiol A. Antioxidants 2021, 10, 1470. [Google Scholar] [CrossRef]
- Elder, J.B.; Broome, J.A.; Bushnell, E.A.C. Computational Insights into the Regeneration of Ovothiol and Ergothioneine and Their Selenium Analogues by Glutathione. ACS Omega 2022, 7, 31813–31821. [Google Scholar] [CrossRef]
- Turner, E.; Hager, L.J.; Shapiro, B.M. Ovothiol replaces glutathione peroxidase as a hydrogen peroxide scavenger in sea urchin eggs. Science 1988, 242, 939–941. [Google Scholar] [CrossRef] [PubMed]
- Castellano, I.; Di Tomo, P.; Di Pietro, N.; Mandatori, D.; Pipino, C.; Formoso, G.; Napolitano, A.; Palumbo, A.; Pandolfi, A. Anti-Inflammatory Activity of Marine Ovothiol A in an in Vitro Model of Endothelial Dysfunction Induced by Hyperglycemia. Oxidative Med. Cell. Longev. 2018, 2018, 2087373. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, M.; D’Argenio, G.; Lembo, V.; Palumbo, A.; Castellano, I. Antifibrotic Effect of Marine Ovothiol in an in Vivo Model of Liver Fibrosis. Oxidative Med. Cell. Longev. 2018, 2018, 5045734. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, M.; Russo, M.; Masullo, M.; Palumbo, A.; Russo, G.L.; Castellano, I. Sulfur-containing histidine compounds inhibit gamma-glutamyl transpeptidase activity in human cancer cells. J. Biol. Chem. 2019, 294, 14603–14614. [Google Scholar] [CrossRef]
- Brancaccio, M.; Milito, A.; Viegas, C.A.; Palumbo, A.; Simes, D.C.; Castellano, I. First evidence of dermo-protective activity of marine sulfur-containing histidine compounds. Free Radic. Biol. Med. 2022, 192, 224–234. [Google Scholar] [CrossRef]
- Milito, A.; Orefice, I.; Smerilli, A.; Castellano, I.; Napolitano, A.; Brunet, C.; Palumbo, A. Insights into the Light Response of Skeletonema marinoi: Involvement of Ovothiol. Mar. Drugs 2020, 18, 477. [Google Scholar] [CrossRef]
- Tarrant, A.M.; Payton, S.L.; Reitzel, A.M.; Porter, D.T.; Jenny, M.J. Ultraviolet radiation significantly enhances the molecular response to dispersant and sweet crude oil exposure in Nematostella vectensis. Mar. Environ. Res. 2018, 134, 96–108. [Google Scholar] [CrossRef]
- Yanshole, V.V.; Yanshole, L.V.; Zelentsova, E.A.; Tsentalovich, Y.P. Ovothiol A is the Main Antioxidant in Fish Lens. Metabolites 2019, 9, 95. [Google Scholar] [CrossRef]
- Yadan, J.C. Matching chemical properties to molecular biological activities opens a new perspective on l-ergothioneine. FEBS Lett. 2022, 596, 1299–1312. [Google Scholar] [CrossRef]
- Hseu, Y.C.; Lo, H.W.; Korivi, M.; Tsai, Y.C.; Tang, M.J.; Yang, H.L. Dermato-protective properties of ergothioneine through induction of Nrf2/ARE-mediated antioxidant genes in UVA-irradiated Human keratinocytes. Free Radic. Biol. Med. 2015, 86, 102–117. [Google Scholar] [CrossRef]
- Daunay, S.; Lebel, R.; Farescour, L.; Yadan, J.C.; Erdelmeier, I. Short protecting-group-free synthesis of 5-acetylsulfanyl-histidines in water: Novel precursors of 5-sulfanyl-histidine and its analogues. Org. Biomol. Chem. 2016, 14, 10473–10480. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.L.; Russo, M.; Castellano, I.; Napolitano, A.; Palumbo, A. Ovothiol isolated from sea urchin oocytes induces autophagy in the Hep-G2 cell line. Mar. Drugs 2014, 12, 4069–4085. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, K.P.; Long, P.F.; Young, A.R. Mycosporine-Like Amino Acids for Skin Photoprotection. Curr. Med. Chem. 2018, 25, 5512–5527. [Google Scholar] [CrossRef] [PubMed]
- Tsentalovich, Y.P.; Zelentsova, E.A.; Yanshole, L.V.; Yanshole, V.V.; Odud, I.M. Most abundant metabolites in tissues of freshwater fish pike-perch (Sander lucioperca). Sci. Rep. 2020, 10, 17128. [Google Scholar] [CrossRef] [PubMed]
- Zelentsova, E.A.; Yanshole, L.V.; Fursova, A.Z.; Tsentalovich, Y.P. Optical properties of the human lens constituents. J. Photochem. Photobiol. B 2017, 173, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Venditti, E.; Spadoni, T.; Tiano, L.; Astolfi, P.; Greci, L.; Littarru, G.P.; Damiani, E. In vitro photostability and photoprotection studies of a novel ‘multi-active’ UV-absorber. Free Radic. Biol. Med. 2008, 45, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Chandra, A.K.; Nam, P.C.; Nguyen, M.T. The S−H bond dissociation enthalpies and acidities of para and meta substituted thiophenols: A quantum chemical study. J. Phys. Chem. A 2003, 107, 9182–9188. [Google Scholar] [CrossRef]
- Huang, J.; Meng, H.; Cheng, X.; Pan, G.; Cai, X.; Liu, J. Density of functional theory study on bond dissociation energy of polystyene trimer model compound. IOP Conf. Ser. Mater. Sci. Eng. 2020, 729, 012018. [Google Scholar] [CrossRef]
- Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 2008, 4, 297–306. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals? J. Phys. Chem. A 2008, 112, 1095–1099. [Google Scholar] [CrossRef]
- DiLabio, G.; Wright, J.S. Calculation of bond dissociation energies for large molecules using locally dense basis sets. Chem. Phys. Lett. 1998, 297, 181–186. [Google Scholar] [CrossRef]
- DiLabio, G.; Pratt, D. Density functional theory based model calculations for accurate bond dissociation enthalpies. 2. Studies of X–X and X–Y (X, Y = C, N, O, S, Halogen) Bonds. J. Phys. Chem. A 2000, 104, 1938–1943. [Google Scholar] [CrossRef]
- Damiani, E.; Carloni, P.; Biondi, C.; Greci, L. Increased oxidative modification of albumin when illuminated in vitro in the presence of a common sunscreen ingredient: Protection by nitroxide radicals. Free Radic. Biol. Med. 2000, 28, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [CrossRef]
pre-UVA | post-UVA | |
---|---|---|
GSSG | −0.055 ± 0.016 | −0.041 ± 0.007 |
GSH | 0.522 ± 0.004 | 0.481 ± 0.020 |
5-thio | 0.004 ± 0.001 | 0.939 ± 0.016 ** |
iso-ovoA | −0.065 ± 0.021 | 0.601 ± 0.025 ** |
NaBH4 | ||
---|---|---|
− | + | |
5-Thio | 0.003 ± 0.004 | 0.507 ± 0.095 * |
iso-OvoA | −0.020 ± 0.028 | 0.449 ± 0.091 * |
GSSG | −0.041 ± 0.057 | −0.033 ± 0.056 |
Compound (S-S Dimer) | BDE (with ZPE Correction) (kJ/mol) | S-S Bond Length (Å) |
---|---|---|
iso-ovoA | 99.44 | 2.19 |
5-thio | 111.94 | 2.20 |
ovothiol A | 115.24 | 2.15 |
GSSG | 145.46 | 2.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luccarini, A.; Zuccarotto, A.; Galeazzi, R.; Morresi, C.; Masullo, M.; Castellano, I.; Damiani, E. Insights on the UV-Screening Potential of Marine-Inspired Thiol Compounds. Mar. Drugs 2024, 22, 2. https://doi.org/10.3390/md22010002
Luccarini A, Zuccarotto A, Galeazzi R, Morresi C, Masullo M, Castellano I, Damiani E. Insights on the UV-Screening Potential of Marine-Inspired Thiol Compounds. Marine Drugs. 2024; 22(1):2. https://doi.org/10.3390/md22010002
Chicago/Turabian StyleLuccarini, Alessia, Annalisa Zuccarotto, Roberta Galeazzi, Camilla Morresi, Mariorosario Masullo, Immacolata Castellano, and Elisabetta Damiani. 2024. "Insights on the UV-Screening Potential of Marine-Inspired Thiol Compounds" Marine Drugs 22, no. 1: 2. https://doi.org/10.3390/md22010002
APA StyleLuccarini, A., Zuccarotto, A., Galeazzi, R., Morresi, C., Masullo, M., Castellano, I., & Damiani, E. (2024). Insights on the UV-Screening Potential of Marine-Inspired Thiol Compounds. Marine Drugs, 22(1), 2. https://doi.org/10.3390/md22010002