Prospective Antiviral Effect of Ulva lactuca Aqueous Extract against COVID-19 Infection
Abstract
:1. Introduction
2. Results
2.1. Algal Collection and Ulvan Extraction
2.2. Ulvan Characterization
2.2.1. HPLC Analysis
2.2.2. Fourier-Transform Infrared Spectroscopy (FTIR)
2.2.3. X-ray Diffraction (XRD)
2.2.4. Energy-Dispersive X-ray (EDX)
2.2.5. SEM
2.3. Antiviral Activity of Ulva lactuca
2.3.1. Cytotoxicity Assay
2.3.2. Plaque Reduction Assay
2.3.3. Mechanism of Antiviral Action
3. Discussion
4. Materials and Methods
4.1. Collection and Processing of Algal Samples
4.2. Aqueous Extract from U. lactuca
4.3. Analysis of the Extracted Ulvan
4.3.1. Water Content
4.3.2. Ash Content
4.3.3. Elemental Analysis
4.3.4. Protein Content
4.3.5. Total Sugar Content
4.3.6. Sulfate Content
4.4. Characterization of the U. lactuca Extract
4.4.1. Monosaccharide Composition Determination
4.4.2. FTIR
4.4.3. XRD
4.4.4. SEM and EDX
4.5. Cytotoxicity Assay
4.6. Plaque Reduction Assay
4.7. Mechanism of Antiviral Action
4.7.1. Viral Replication
4.7.2. Viral Adsorption
4.7.3. Virucidal Activity
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domínguez, H. Algae as a Source of Biologically Active Ingredients for the Formulation of Functional Foods and Nutraceuticals. In Functional Ingredients from Algae for Foods and Nutraceuticals; Elsevier Science: Amsterdam, The Netherlands, 2013; pp. 1–19. [Google Scholar] [CrossRef]
- Moreira, A.; Cruz, S.; Marques, R.; Cartaxana, P. The Underexplored Potential of Green Macroalgae in Aquaculture. Rev. Aquacult. 2022, 14, 5–26. [Google Scholar] [CrossRef]
- Gheda, S.; El-Sheekh, M.M.; Abou-Zeid, A. In Vitro Anticancer Activity of Polysaccharide Extracted from the Red Alga Jania rubens Against Breast and Colon Cancer Cell Lines. Asian Pac. J. Trop. Med. 2018, 11, 583–589. [Google Scholar] [CrossRef]
- El-Nabi, S.H.; Elhiti, M.; El-Sheekh, M. A New Approach for COVID-19 Treatment by micro-RNA. Med. Hypotheses 2020, 143, 110203. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Fu, G.; Wang, K.; Yang, Q.; Zhao, J.; Wang, Y.; Ji, K.; Song, S. Advances in Research on Antiviral Activities of Sulfated Polysaccharides from Seaweeds. Pharmaceuticals 2022, 15, 581. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gong, Y.; Yao, W.; Chen, X.; Xian, J.; You, L.; Fardim, P. Structural Characterization and Protective Effects of Polysaccharide from Gracilaria lemaneiformis on LPS-Induced Injury in IEC-6 Cells. Food Chem. X 2021, 12, 100157. [Google Scholar] [CrossRef]
- Huang, L.X.; Shen, M.Y.; Morris, G.A.; Xie, J.H. Sulfated Polysaccharides: Immunomodulation and Signaling Mechanisms. Trends Food Sci. Technol. 2019, 92, 1–11. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.X.; Guan, H.S. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview. Mar. Drugs 2012, 10, 2795–2816. [Google Scholar] [CrossRef]
- Cindana Mo’o, F.R.; Wilar, G.; Devkota, H.P.; Wathoni, N. Ulvan, a Polysaccharide from Macroalga Ulva sp.: A Review of Chemistry, Biological Activities and Potential for Food and Biomedical Applications. Appl. Sci. 2020, 10, 5488. [Google Scholar] [CrossRef]
- Yeo, C.; Kaushal, S.; Yeo, D. Enteric Involvement of Coronaviruses: Is Faecal-Oral Transmission of SARS-CoV-2 Possible? Lancet Gastroenterol. Hepatol. 2020, 5, 335–337. [Google Scholar] [CrossRef]
- Seadawy, M.G.; Binsuwaidan, R.; Alotaibi, B.; El-Masry, T.A.; El-Harty, B.E.; Gad, A.F.; Elkhatib, W.F.; El-Bouseary, M.M. The Mutational Landscape of SARS-CoV-2 Variants of Concern Recovered from Egyptian Patients in 2021. Front. Microbiol. 2022, 13, 923137. [Google Scholar] [CrossRef]
- Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.; McVicar, R.N.; et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020, 183, 1043–1057.e15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.P.; Mann, M.; Syed, Z.A.; Reynolds, H.M.; Tian, E.; Samara, N.L.; Zeldin, D.C.; Tabak, L.A.; Hagen, K.G.T. Furin Cleavage of the SARS-CoV-2 Spike Is Modulated by O-Glycosylation. Proc. Natl. Acad. Sci. USA 2021, 118, e2109905118. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the Novel Coronavirus from the Ongoing Wuhan Outbreak and Modeling of Its Spike Protein for Risk of Human Transmission. Sci. China Life Sci. 2020, 63, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Balachandar, V.; Mahalaxmi, I.; Subramaniam, M.; Kaavya, J.; Senthil Kumar, N.; Laldinmawii, G.; Narayanasamy, A.; Reddy, P.J.K.; Sivaprakash, P.; Kanchana, S.; et al. Follow-Up Studies in COVID-19 Recovered Patients—Is It Mandatory? Sci. Total Environ. 2020, 729, 139021. [Google Scholar] [CrossRef] [PubMed]
- Mitrani, R.D.; Dabas, N.; Goldberger, J.J. COVID-19 Cardiac Injury: Implications for Long-Term Surveillance and Outcomes in Survivors. Heart Rhythm 2020, 17, 1984–1990. [Google Scholar] [CrossRef] [PubMed]
- Shefer, S.; Robin, A.; Chemodanov, A.; Lebendiker, M.; Bostwick, R.; Rasmussen, L.; Lishner, M.; Gozin, M.; Golberg, A. Fighting SARS-CoV-2 with Green Seaweed Ulva sp. Extract: Extraction Protocol Predetermines Crude Ulvan Extract Anti-SARS-CoV-2 Inhibition Properties in In Vitro Vero-E6 Cells Assay. PeerJ 2021, 9, e12398. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 2020, 10, 766–788. [Google Scholar] [CrossRef]
- Gudima, G.; Kofiadi, I.; Shilovskiy, I.; Kudlay, D.; Khaitov, M. Antiviral Therapy of COVID-19. Int. J. Mol. Sci. 2023, 24, 8867. [Google Scholar] [CrossRef]
- Baum, A.; Fulton, B.O.; Wloga, E.; Copin, R.; Pascal, K.E.; Russo, V.; Giordano, S.; Lanza, K.; Negron, N.; Ni, M.; et al. Antibody Cocktail to SARS-CoV-2 Spike Protein Prevents Rapid Mutational Escape Seen with Individual Antibodies. Science 2020, 369, 1014–1018. [Google Scholar] [CrossRef]
- Hilgenfeld, R.; Peiris, M. From SARS to MERS: 10 Years of Research on Highly Pathogenic Human Coronaviruses. Antiviral Res. 2013, 100, 286–295. [Google Scholar] [CrossRef]
- Yaich, H.; Amira, A.B.; Abbes, F.; Bouaziz, M.; Besbes, S.; Richel, A.; Blecker, C.; Attia, H.; Garna, H. Effect of Extraction Procedures on Structural, Thermal and Antioxidant Properties of Ulvan from Ulva Lactuca Collected in Monastir Coast. Int. J. Biol. Macromol. 2017, 105, 1430–1439. [Google Scholar] [CrossRef] [PubMed]
- Mhatre, A.; Navale, M.; Trivedi, N.; Pandit, R.; Lali, A.M. Pilot Scale Flat Panel Photobioreactor System for Mass Production of Ulva lactuca (Chlorophyta). Bioresour. Technol. 2018, 249, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Robic, A.; Rondeau-Mouro, C.; Sassi, J.-F.; Lerat, Y.; Lahaye, M. Structure and Interactions of Ulvan in the Cell Wall of the Marine Green Algae Ulva rotundata (Ulvales, Chlorophyceae). Carbohydr. Polym. 2009, 77, 206–216. [Google Scholar] [CrossRef]
- Wahlström, N.; Nylander, F.; Malmhäll-Bah, E.; Sjövold, K.; Edlund, U.; Westman, G.; Albers, E. Composition and Structure of Cell Wall Ulvans Recovered from Ulva Spp. along the Swedish West Coast. Carbohydr. Polym. 2020, 233, 115852. [Google Scholar] [CrossRef] [PubMed]
- Ponce, M.; Zuasti, E.; Anguís, V.; Fernández-Díaz, C. Effects of the Sulfated Polysaccharide Ulvan from Ulva ohnoi on the Modulation of the Immune Response in Senegalese Sole (Solea senegalensis). Fish Shellfish Immunol. 2020, 100, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Peasura, N.; Laohakunjit, N.; Kerdchoechuen, O.; Wanlapa, S. Characteristics and Antioxidant of Ulva Intestinalis Sulphated Polysaccharides Extracted with Different Solvents. Int. J. Biol. Macromol. 2015, 81, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Sun, Y. Antioxidant Activity of High Sulfate Content Derivative of Ulvan in Hyperlipidemic Rats. Int. J. Biol. Macromol. 2015, 76, 326–329. [Google Scholar] [CrossRef]
- Lahaye, M.; Robic, A. Structure and Functional Properties of Ulvan, a Polysaccharide from Green Seaweeds. Biomacromolecules 2007, 8, 1765–1774. [Google Scholar] [CrossRef]
- Ibrahim, M.I.A.; Amer, M.S.; Ibrahim, H.A.H.; Zaghloul, E.H. Considerable Production of Ulvan from Ulva lactuca with Special Emphasis on Its Antimicrobial and Anti-fouling Properties. Appl. Biochem. Biotechnol. 2022, 194, 3097–3118. [Google Scholar] [CrossRef]
- Ray, B.; Lahaye, M. Cell-Wall Polysaccharides from the Marine Green Alga Ulva Rigida (Ulvales, Chlorophyta). Extraction and Chemical Composition. Carbohydr. Res. 1995, 274, 251–261. [Google Scholar] [CrossRef]
- Alves, A.; Caridade, S.G.; Mano, J.F.; Sousa, R.A.; Reis, R.L. Extraction and Physico-Chemical Characterization of a Versatile Biodegradable Polysaccharide Obtained from Green Algae. Carbohydr. Res. 2010, 345, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Alves, A.; Pinto, P.R.; Sousa, R.A.; Borges da Silva, E.A.; Reis, R.L.; Rodrigues, A.E. Characterization of Ulvan Extracts to Assess the Effect of Different Steps in the Extraction Procedure. Carbohydr. Polym. 2012, 88, 537–546. [Google Scholar] [CrossRef]
- Olasehinde, T.A.; Mabinya, L.V.; Olaniran, A.O.; Okoh, A.I. Chemical Characterization of Sulfated Polysaccharides from Gracilaria gracilis and Ulva lactuca and Their Radical Scavenging, Metal Chelating, and Cholinesterase Inhibitory Activities. Int. J. Food Prop. 2019, 22, 100–110. [Google Scholar] [CrossRef]
- Fareeha, A.; Atika, A.; Aliya, R. Protein Extraction from Ulva lactuca and Padinapavonica Found at Buleji Coast, Karachi. Pak. Int. J. Phycol. Phycochem. 2013, 9, 49–52. [Google Scholar]
- Rico, J.M.; Fernández, C. Seasonal Nitrogen Metabolism in an Intertidal Population of Gelidium latifolium (Gelidiaceae, Rhodophyta). Eur. J. Phycol. 1996, 31, 149–155. [Google Scholar] [CrossRef]
- Torres, P.B.; Nagai, A.; Jara, C.E.P.; Santos, J.P.; Chow, F.; Santos, D.Y.A.C. Determination of sulfate in algal polysaccharide samples: A step-by-step protocol using microplate reader. Ocean. Coast. Res. 2021, 69, e21021. [Google Scholar] [CrossRef]
- Quemener, B.; Lahaye, M.; Bobin-Dubigeon, C. Sugar Determination in Ulvans by a Chemical-Enzymatic Method Coupled to High-Performance Anion Exchange Chromatography. J. Appl. Phycol. 1997, 9, 179–188. [Google Scholar] [CrossRef]
- Hung, Y.R.; Chen, G.W.; Pan, C.L.; Lin, H.V. Production of Ulvan Oligosaccharides with Antioxidant and Angiotensin-Converting Enzyme-Inhibitory Activities by Microbial Enzymatic Hydrolysis. Fermentation 2021, 7, 160. [Google Scholar] [CrossRef]
- Figueira, T.A.; da Silva, A.J.R.; Enrich-Prast, A.; Yoneshigue-Valentin, Y.; de Oliveira, V.P. Structural Characterization of Ulvan Polysaccharide from Cultivated and Collected Ulva Fasciata (Chlorophyta). Adv. Biosci. Biotechnol. 2020, 11, 206–216. [Google Scholar] [CrossRef]
- Jagtap, A.S.; Parab, A.S.; Manohar, C.S.; Kadam, N.S. Prebiotic Potential of Enzymatically Produced Ulvan Oligosaccharides Using Ulvan Lyase of Bacillus subtilis, NIOA181, a Macroalgae-Associated Bacteria. J. Appl. Microbiol. 2022, 133, 3176–3190. [Google Scholar] [CrossRef]
- Tian, H.; Yin, X.; Zeng, Q.; Zhu, L.; Chen, J. Isolation, Structure, and Surfactant Properties of Polysaccharides from Ulva lactuca L. from South China Sea. Int. J. Biol. Macromol. 2015, 79, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.S.; Soares, A.R.; Martins, F.O.; Albuquerque, M.C.; Costa, S.S.; Yoneshigue-Valentin, Y.; Gestinari, L.M.; Santos, N.; Romanos, M.T. Antiviral Activity of the Green Marine Alga Ulva fasciata on the Replication of Human Metapneumovirus. Rev. Inst. Med. Trop. Sao Paulo 2010, 52, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Jiao, G.; Yu, G.; Wang, W.; Zhao, X.; Zhang, J.; Ewart, S.H. Properties of Polysaccharides in Several Seaweeds from Atlantic Canada and Their Potential Anti-influenza Viral Activities. J. Ocean Univ. China 2012, 11, 205–212. [Google Scholar] [CrossRef]
- Wang, H.; Ooi, E.V.; Ang, P.O., Jr. Antiviral Activities of Extracts from Hong Kong Seaweeds. J. Zhejiang Univ. Sci. B 2008, 9, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Damonte, E.; Neyts, J.; Pujol, C.A.; Snoeck, R.; Andrei, G.; Ikeda, S.; Witvrouw, M.; Reymen, D.; Haines, H.; Matulewicz, M.C.; et al. Antiviral Activity of a Sulphated Polysaccharide from the Red Seaweed Nothogenia fastigiata. Biochem. Pharmacol. 1994, 47, 2187–2192. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.R.; Robaina, M.C.S.; Mendes, G.S.; Silva, T.S.L.; Gestinari, L.M.S.; Pamplona, O.S.; Yoneshigue-Valentin, Y.; Kaiser, C.R.; Romanos, M.T.V. Antiviral Activity of Extracts from Brazilian Seaweeds Against Herpes Simplex Virus. Rev. Bras. Farmacogn. 2012, 22, 714–723. [Google Scholar] [CrossRef]
- Zhu, W.; Ooi, V.E.C.; Chan, P.K.S.; Ang, P.O., Jr. Isolation and Characterization of a Sulfated Polysaccharide from the Brown Alga Sargassum patens and Determination of Its Anti-herpes Activity. Biochem. Cell Biol. 2003, 81, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Wang, A.; Lu, Z.; Qin, C.; Hu, J.; Yin, J. Overview on the Antiviral Activities and Mechanisms of Marine Polysaccharides from Seaweeds. Carbohydr. Res. 2017, 453–454, 1–9. [Google Scholar] [CrossRef]
- Morán-Santibañez, K.; Cruz-Suárez, L.E.; Ricque-Marie, D.; Robledo, D.; Freile-Pelegrín, Y.; Peña-Hernández, M.A.; Rodríguez-Padilla, C.; Trejo-Avila, L.M. Synergistic Effects of Sulfated Polysaccharides from Mexican Seaweeds Against Measles Virus. BioMed Res. Int. 2016, 2016, 8502123. [Google Scholar] [CrossRef]
- Witvrouw, M.; de Clercq, E. Sulfated Polysaccharides Extracted from Sea Algae as Potential Antiviral Drugs. Gen. Pharmacol. 1997, 29, 497–511. [Google Scholar] [CrossRef]
- González, M.E.; Alarcón, B.; Carrasco, L. Polysaccharides as Antiviral Agents: Antiviral Activity of Carrageenan. Antimicrob. Agents Chemother. 1987, 31, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Huleihel, M.; Ishanu, V.; Tal, J.; Arad, S. Antiviral Effect of Red Microalgal Polysaccharides on Herpes Simplex and Varicella Zoster Viruses. J. Appl. Phycol. 2001, 13, 127–134. [Google Scholar] [CrossRef]
- Sepúlveda-Crespo, D.; Ceña-Díez, R.; Jiménez, J.L.; Ángeles Muñoz-Fernández, M. Mechanistic Studies of Viral Entry: An Overview of Dendrimer-Based Microbicides as Entry Inhibitors Against Both HIV and HSV-2 Overlapped Infections. Med. Res. Rev. 2017, 37, 149–179. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.H.; Chan, Y.L.; Li, T.L.; Wu, C.J. Inhibition of Japanese Encephalitis Virus Infection by the Sulfated Polysaccharide Extracts from Ulva lactuca. Mar. Biotechnol. 2012, 14, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Lopes, N.; Ray, S.; Espada, S.F.; Bomfim, W.A.; Ray, B.; Faccin-Galhardi, L.C.; Linhares, R.E.C.; Nozawa, C. Green Seaweed Enteromorpha Compressa (Chlorophyta, Ulvaceae) Derived Sulphated Polysaccharides Inhibit Herpes Simplex Virus. Int. J. Biol. Macromol. 2017, 102, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Aleem, A.A. Contributions to the Study of the Marine Algae of the Red Sea. I—The Algae in the Neighborhood of Al-Ghardaqa, Egypt (Cyanophyceae, Chlorophyceae, and Phaeophyceae). Bull. Fac. Sci. (Jeddah King Abdul Aziz Univ.) 1978, 2, 73–88. [Google Scholar]
- Aleem, A.A. Marine Algae in Alexandria, Egypt; Alexandria Privately Published: Alexandria, Egypt, 1993; pp. 1–135. [Google Scholar]
- Lipkin, Y.S. Marine Algae and Seagrasses of the Dahlak Archipelago, Southern Red Sea. Nova Hedwig. 2002, 75, 1–90. [Google Scholar] [CrossRef]
- Braune, W. Meeresalgen: Ein Farbbildführer zu den Verbreiteten Benthischen Grün-, Braun- und Rotalgen der Weltmeere [Seaweeds: A Colour Guide to the Widespread Benthic Green, Brown and Red Algae of the World’s Oceans]; Braun- und Rotalgen Dder Weltmeere Gantner Verlag Ruggell; Gantner Verlag: Bonn, Germany, 2008; Volume 596. [Google Scholar]
- Guiry, M.D.; Guiry, G.M. Algae Base. Worldwide Electronic Publication; National University of Ireland: Galway, UK, 2018; Available online: http://www.algaebase.org (accessed on 1 April 2023).
- Huang, H.J.; Ramaswamy, S.; Al-Dajani, W.W.; Tschirner, U. Process Modeling and Analysis of Pulp Mill-Based Integrated Biorefinery with Hemicellulose Pre-extraction for Ethanol Production: A Comparative Study. Bioresour. Technol. 2010, 101, 624–631. [Google Scholar] [CrossRef]
- Madany, M.A.; Abdel-Kareem, M.S.; Al-Oufy, A.K.; Haroun, M.; Sheweita, S.A. The Biopolymer Ulvan from Ulva fasciata: Extraction towards Nanofibers Fabrication. Int. J. Biol. Macromol. 2021, 177, 401–412. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Dodgson, K.S.; Price, R.G. A note on the determination of the ester sulfate content of sulfated polysaccharides. Biochem. J. 1962, 84, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Toskas, G.; Heinemann, S.; Heinemann, C.; Cherif, C.; Hund, R.D.; Roussis, V.; Hanke, T. Ulvan and Ulvan/Chitosan Polyelectrolyte Nanofibrous Membranes as a Potential Substrate Material for the Cultivation of Osteoblasts. Carbohydr. Polym. 2012, 89, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Saleh Amer, M.; Zaghloul, E.H.; Ibrahim, M.I.A. Characterization of Exopolysaccharide Produced from Marine-Derived Aspergillus terreus SEI with Prominent Biological Activities. Egypt. J. Aquat. Res. 2020, 46, 363–369. [Google Scholar] [CrossRef]
- Aguilar-Briseño, J.A.; Cruz-Suarez, L.E.; Sassi, J.-F.; Ricque-Marie, D.; Zapata-Benavides, P.; Mendoza-Gamboa, E.; Rodríguez-Padilla, C.; Trejo-Avila, L.M. Sulphated Polysaccharides from Ulva clathrata and Cladosiphon okamuranus Seaweeds both Inhibit Viral Attachment/Entry and Cell-Cell Fusion, in NDV Infection. Mar. Drugs 2015, 13, 697–712. [Google Scholar] [CrossRef]
- Hardouin, K.; Bedoux, G.; Burlot, A.S.; Donnay-Moreno, C.; Bergé, J.P.; Nyvall-Collén, P.; Bourgougnon, N. Enzyme-assisted extraction (EAE) for the production of antiviral and antioxidant extracts from the green seaweed Ulva armoricana (Ulvales, Ulvophyceae). Algal Res. 2016, 16, 233–239. [Google Scholar] [CrossRef]
- Hayden, F.G.; Cote, K.M.; Douglas, R.G., Jr. Plaque Inhibition Assay for Drug Susceptibility Testing of Influenza Viruses. Antimicrob. Agents Chemother. 1980, 17, 865–870. [Google Scholar] [CrossRef]
Parameter Measured | Value ± SE (%) |
---|---|
Yield | 11.203 ± 0.32 |
Fresh w.t | 6.175 ± 0.21 |
Water content | 45.57 ± 0.292 |
Dry w.t | 3.361 ± 0.06 |
Chemical composition (%) Dry weight | |
Ash | 44.004 ± 0.417 |
Total Sugars | 33.66 ± 0.65 |
Protein | 7.386 ± 0.41 |
Sulfate content | 14.95 ± 0.24 |
Element composition | |
C content | 28.54 |
H content | 3.61 |
N content | 2.04 |
S content | 7.08 |
Sugar composition (mol%) | |
Rhamnose | 32.88 |
Galactose | 25.46 |
Fructose | 28.25 |
Glucose | 13.41 |
Mode of Action | Ulva lactuca Extract Conc. (mg/mL) | Viral Count Pre-Treatment (PFU/mL) | Viral Count Post-Treatment (PFU/mL) | Inhibition % * |
---|---|---|---|---|
Viral Replication | 0.0312 | 6 × 105 | 4 × 105 | 33.3 |
0.0156 | 4.3 × 105 | 28.3 | ||
0.0078 | 4.6 × 105 | 23.3 | ||
0.0039 | 5.5 × 105 | 8.3 | ||
Viral Adsorption | 0.0312 | 4.5 × 105 | 3.1 × 105 | 31.1 |
0.0156 | 3.4 × 105 | 24.4 | ||
0.0078 | 3.7 × 105 | 17.7 | ||
0.0039 | 4.1 × 105 | 8.8 | ||
Virucidal | 0.0312 | 5 × 105 | 1.8 × 105 | 64 |
0.0156 | 3.3 × 105 | 34 | ||
0.0078 | 3.9 × 105 | 22 | ||
0.0039 | 4.3 × 105 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binsuwaidan, R.; El-Masry, T.A.; El-Sheekh, M.; Seadawy, M.G.; Makhlof, M.E.M.; Aboukhatwa, S.M.; El-Shitany, N.A.; Elmorshedy, K.E.; El-Nagar, M.M.F.; El-Bouseary, M.M. Prospective Antiviral Effect of Ulva lactuca Aqueous Extract against COVID-19 Infection. Mar. Drugs 2024, 22, 30. https://doi.org/10.3390/md22010030
Binsuwaidan R, El-Masry TA, El-Sheekh M, Seadawy MG, Makhlof MEM, Aboukhatwa SM, El-Shitany NA, Elmorshedy KE, El-Nagar MMF, El-Bouseary MM. Prospective Antiviral Effect of Ulva lactuca Aqueous Extract against COVID-19 Infection. Marine Drugs. 2024; 22(1):30. https://doi.org/10.3390/md22010030
Chicago/Turabian StyleBinsuwaidan, Reem, Thanaa A. El-Masry, Mostafa El-Sheekh, Mohamed G. Seadawy, Mofida E. M. Makhlof, Shaimaa M. Aboukhatwa, Nagla A. El-Shitany, Kadreya E. Elmorshedy, Maysa M. F. El-Nagar, and Maisra M. El-Bouseary. 2024. "Prospective Antiviral Effect of Ulva lactuca Aqueous Extract against COVID-19 Infection" Marine Drugs 22, no. 1: 30. https://doi.org/10.3390/md22010030
APA StyleBinsuwaidan, R., El-Masry, T. A., El-Sheekh, M., Seadawy, M. G., Makhlof, M. E. M., Aboukhatwa, S. M., El-Shitany, N. A., Elmorshedy, K. E., El-Nagar, M. M. F., & El-Bouseary, M. M. (2024). Prospective Antiviral Effect of Ulva lactuca Aqueous Extract against COVID-19 Infection. Marine Drugs, 22(1), 30. https://doi.org/10.3390/md22010030